Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 kwietnia 2025 10:40
  • Data zakończenia: 25 kwietnia 2025 10:56

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Pomiar napięcia sygnału przesyłanego
B. Cykliczna redundancja
C. Sprawdzanie parzystości
D. Weryfikacja sumy kontrolnej
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. światłowodowy
B. koncentryczny
C. symetryczny ekranowany (tzw. skrętka ekranowana)
D. symetryczny nieekranowany (tzw. skrętka nieekranowana)
Wybór innych typów kabli, jak kable symetryczne ekranowane czy koncentryczne, to nie najlepsze rozwiązanie, jeśli chodzi o przesył danych na długie dystansy i ochronę przed zakłóceniami. Kable symetryczne ekranowane mogą bronić sygnał przed zakłóceniami, ale nie są tak dobre jak światłowody na dłuższych trasach. Wynika to z tego, że w kablach miedzianych przesył opiera się na sygnałach elektrycznych, które są łatwo zakłócane. Kable koncentryczne, chociaż używa się ich w różnych aplikacjach, mają ograniczenia długości przesyłu i są bardziej narażone na zakłócenia. Z kolei kable symetryczne nieekranowane mogą działać lepiej w sprzyjających warunkach, ale w zgiełku elektromagnetycznym ich efektywność spada. Wybór złego kabla może prowadzić do problemów z komunikacją, większych opóźnień, a czasem nawet do całkowitej utraty sygnału. Zrozumienie tych różnic to kluczowa sprawa dla inżynierów, którzy tworzą systemy mechatroniczne, żeby wszystko działało jak należy.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Sklejanie
B. Zgrzewanie
C. Lutowanie miękkie
D. Lutowanie twarde
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. rotametry
B. tensometry
C. galwanometry
D. akcelerometry
Rotametry, które są stosowane do pomiaru przepływu cieczy lub gazów, nie są odpowiednie do monitorowania przyspieszeń czy drgań. Ich zasada działania opiera się na pomiarze objętościowego przepływu medium, co jest kompletnie inne od potrzeb pomiaru wibracji. Tensometry, z drugiej strony, są używane do pomiaru odkształceń materiałów pod wpływem obciążeń, co również nie odpowiada specyficznym wymaganiom monitorowania drgań w silnikach elektrycznych. Chociaż tensometry mogą być użyteczne w kontekście analiz strukturalnych, ich zastosowanie w monitoringach dynamicznych jest ograniczone. Galwanometry, z kolei, są wykorzystywane do pomiaru prądów elektrycznych, co w kontekście pomiarów wibracyjnych nie ma żadnego zastosowania. Typowym błędem myślowym jest mylenie różnych typów czujników i ich zastosowań, co może prowadzić do wyboru niewłaściwego urządzenia do danego pomiaru. Aby skutecznie monitorować wibracje w elektrycznych silnikach, kluczowe jest zastosowanie odpowiednich czujników, takich jak akcelerometry, które dostarczają rzetelnych danych o stanie technicznym maszyn, co jest istotne dla utrzymania ich w dobrym stanie operacyjnym.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. z żywicy epoksydowej
B. drewnianej
C. polwinitowej
D. metalowej
Ekranowanie urządzeń mechatronicznych to istotny aspekt zapewnienia ich sprawnego działania w obliczu zagrożeń elektromagnetycznych. Wybór materiału do ekranowania jest kluczowy, ponieważ różne materiały posiadają różne właściwości w zakresie ochrony przed falami elektromagnetycznymi. Obudowy drewniane, choć mogą być estetyczne, nie oferują praktycznie żadnej ochrony przed falami elektromagnetycznymi. Drewno jest materiałem dielektrycznym, co oznacza, że nie ma właściwości odbijających ani pochłaniających fale elektromagnetyczne w sposób efektywny. W przypadku obudowy polwinitowej, choć materiał ten ma pewne właściwości izolacyjne, to jednak nie zapewnia wystarczającego ekranowania. Polwinit, podobnie jak drewno, nie jest w stanie skutecznie eliminować fal elektromagnetycznych. Obudowy z żywicy epoksydowej również mają swoje ograniczenia, ponieważ nie są w stanie odbijać fal elektromagnetycznych, a ich działanie ogranicza się głównie do izolacji. Wybierając materiał do ekranowania, należy kierować się wiedzą na temat właściwości materiałów oraz ich zdolności do redukcji zakłóceń elektromagnetycznych. W praktyce oznacza to, że nieprawidłowy wybór materiału ekranowania, jak drewno czy polwinit, prowadzi do poważnych problemów z funkcjonowaniem urządzeń, co może skutkować ich awarią lub nieprawidłowym działaniem w środowisku o dużych zakłóceniach elektromagnetycznych. Dlatego kluczowe znaczenie ma znajomość standardów branżowych i dobrych praktyk w zakresie wyboru materiałów do ekranowania.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. filtr powietrza
B. sprężarka
C. reduktor ciśnienia
D. smarownica
W systemie sprężonego powietrza występuje wiele komponentów, które wspólnie działają, aby zapewnić skuteczne i bezpieczne funkcjonowanie. Sprężarka jest niezaprzeczalnie najważniejszym elementem, ale inne składniki, takie jak smarownica, reduktor ciśnienia i filtr powietrza, odgrywają kluczową rolę w całym procesie. Smarownica jest odpowiedzialna za dostarczanie odpowiedniego smaru do narzędzi pneumatycznych, co pozwala na ich prawidłowe działanie i zwiększenie wydajności. Brak tego elementu może prowadzić do nadmiernego zużycia i awarii sprzętu. Reduktor ciśnienia natomiast reguluje ciśnienie sprężonego powietrza, zapewniając jego optymalne wartości w zależności od wymagań konkretnego zastosowania. Zbyt wysokie ciśnienie może prowadzić do uszkodzeń systemu, a zbyt niskie nie zapewni odpowiedniej mocy dla narzędzi. Filtr powietrza ma na celu usunięcie zanieczyszczeń i wilgoci, co jest niezbędne do uzyskania wysokiej jakości sprężonego powietrza, zgodnie z normami ISO 8573. Zrozumienie roli tych elementów jest kluczowe w projekcie i eksploatacji systemów sprężonego powietrza, a ich prawidłowe dobranie oraz konserwacja mogą znacznie wpłynąć na efektywność operacyjną oraz koszty eksploatacji systemu.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie jest zastosowanie transoptora?

A. galwanicznego połączenia obwodów
B. zamiany impulsów elektrycznych na promieniowanie świetlne
C. sygnalizacji transmisji
D. galwanicznej izolacji obwodów
Wybór odpowiedzi dotyczącej sygnalizacji transmisji, galwanicznego połączenia obwodów lub zamiany impulsów elektrycznych na promieniowanie świetlne odzwierciedla zrozumienie, które pomija fundamentalne zasady działania transoptorów. Transoptory, jako urządzenia przeznaczone do izolacji galwanicznej, nie mają zastosowania w sygnalizacji transmisji, co sugeruje, że mogą one pośredniczyć w przesyłaniu sygnałów bez izolacji, co jest błędne. Galwaniczne połączenie obwodów jest sprzeczne z główną funkcją transoptora, ponieważ jego celem jest stworzenie izolacji, a nie bezpośredniego połączenia, co może prowadzić do uszkodzeń sprzętu. Ponadto, transoptory nie zamieniają impulsów elektrycznych na promieniowanie świetlne w kontekście ich funkcji; zamiast tego przekształcają sygnały elektryczne w sygnały optyczne, ale nie pełnią roli w generowaniu promieniowania świetlnego. Takie nieporozumienia mogą wynikać z niewłaściwego zrozumienia podstawowych funkcji tych komponentów. Kluczowe jest zrozumienie, że transoptory są projektowane z myślą o ochronie obwodów przed niepożądanymi wpływami zewnętrznymi, co czyni je niezastąpionymi w nowoczesnych aplikacjach elektronicznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. okulary ochronne.
B. kask zabezpieczający.
C. rękawice antywibracyjne.
D. obuwie ochronne.
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 26

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. temperatury
B. prędkości
C. drgań
D. szumów
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. natężenia pola elektrycznego
B. pojemności elektrycznej kondensatorów
C. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
D. indukcyjności własnej cewki
Wybór odpowiedzi związanych z pomiarem indukcyjności własnej cewki, pojemności elektrycznej kondensatorów oraz natężenia pola elektrycznego jest błędny, ponieważ oscyloskop nie jest narzędziem przeznaczonym do bezpośrednich pomiarów tych parametrów. Pomiar indukcyjności cewki wymaga zastosowania specjalistycznych urządzeń, takich jak mierniki indukcyjności, które działają na zasadzie analizy obwodów rezonansowych lub wykorzystują metody pomiaru impedancji. Podobnie, pojemność kondensatorów nie jest mierzona oscyloskopem; zamiast tego wykorzystuje się multimetry lub specjalistyczne przyrządy pomiarowe. Natężenie pola elektrycznego również nie jest bezpośrednio mierzone przy użyciu oscyloskopu, ponieważ wymaga to zastosowania detektorów pola elektrycznego. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują mylenie funkcji różnych urządzeń pomiarowych oraz nieznajomość ich specyfikacji i zastosowań. W kontekście technologii elektronicznej, ważne jest, aby zrozumieć, które instrumenty są odpowiednie do określonych pomiarów, aby zapewnić dokładność i niezawodność wyników.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. prostowników
B. generatorów
C. stabilizatorów
D. zasilaczy
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 40

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. chłodziarko-zamrażarka z cyfrowym sterowaniem
B. silnik indukcyjny klatkowy
C. drukarka laserowa
D. odtwarzacz płyt CD oraz DVD
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.