Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 14:12
  • Data zakończenia: 22 maja 2025 14:12

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. LD
C. STL
D. FBD
Niestety, wybrane przez Ciebie odpowiedzi są błędne. Każdy z tych skrótów odnosi się do innego języka programowania w automatyce. FBD, czyli Function Block Diagram, to taki graficzny język, który pozwala na łączenie bloków funkcyjnych w łatwy sposób. Różni się on od LD, bo bardziej nadaje się do złożonych procesów, a nie do prostych układów. Z kolei IL, czyli Instruction List, to już bardziej techniczny język, przypominający kod maszynowy. Może być mylący dla tych, którzy wolą bardziej wizualne podejście. STL, czyli Structured Text, to tekstowy język, który jest bardziej podobny do typowych języków programowania, ale dla kogoś, kto nie ma doświadczenia w programowaniu tekstowym, może być dość trudny. Przez pomyłkę w wyborze skrótów możesz popełnić błąd przy projektowaniu systemu. Ważne, żeby zrozumieć, że te języki mają swoje specyficzne zastosowania i trzeba je dobierać odpowiednio do wymagań projektu.

Pytanie 2

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na załączanie i wyłączanie pracy prasy
B. na wizualizację przebiegu pracy prasy
C. na odczyt wartości zmierzonych parametrów
D. na pomiar parametrów procesowych prasy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenia HMI w mechatronice, jak na przykład w prasie hydraulicznej, to naprawdę ważny element do komunikacji między operatorem a maszyną. W kontekście tego pytania, HMI umożliwia odczyt wartości zmierzonych parametrów, co jest kluczowe, aby wiedzieć, w jakim stanie pracuje prasa. Dzięki temu operator może lepiej zrozumieć, co się dzieje w trakcie pracy maszyny, bo wizualizacja przebiegu pracy jest bardzo pomocna. Poza tym, HMI pozwala na włączanie i wyłączanie prasy, co jest istotne w automatyzacji. Trzeba jednak pamiętać, że pomiar samych parametrów procesowych przy pomocy HMI nie jest możliwy, bo jego główną rolą jest pokazywanie danych z innych czujników. W praktyce, standardy jak ISO 10218 dla robotów mówią, że HMI powinno być używane do komunikacji, a nie do pomiarów. Zrozumienie tego, jak działa HMI, jest naprawdę kluczowe przy projektowaniu i obsłudze automatyzacji, a także w dbaniu o ergonomię i bezpieczeństwo w pracy.

Pytanie 3

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. tachometrem
B. testerem izolacji
C. analizatorem drgań
D. rejestratorem prądu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 4

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
B. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
C. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
D. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na połączenie siłownika pneumatycznego z siłownikiem hydraulicznym, co jest kluczowym elementem w konstrukcji pneumohydraulicznych wzmacniaczy ciśnienia. Tego rodzaju wzmacniacze wykorzystują siłę sprężonego powietrza do generowania ciśnienia hydraulicznego, co pozwala na efektywne przetwarzanie energii. Przykładem zastosowania pneumohydraulicznych wzmacniaczy ciśnienia są systemy automatyki przemysłowej, gdzie precyzyjne sterowanie ruchem jest niezbędne. W praktyce, dzięki zastosowaniu siłowników pneumatycznych i hydraulicznych, możliwe jest osiągnięcie większej siły roboczej przy jednoczesnym wykorzystaniu mniejszej ilości energii. Tego rodzaju rozwiązania są zgodne z normami ISO oraz dobrymi praktykami w dziedzinie hydrauliki i pneumatyki, co zapewnia ich skuteczność oraz niezawodność w długoterminowym użytkowaniu. Zastosowanie takiego rozwiązania w przemyśle umożliwia realizację złożonych procesów technologicznych, a także zwiększa bezpieczeństwo operacji, minimalizując ryzyko awarii.

Pytanie 5

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. okulary ochronne.
B. kask zabezpieczający.
C. obuwie ochronne.
D. rękawice antywibracyjne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 6

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. siłownikiem
B. przerwanym przewodem pneumatycznym
C. nieprawidłowo zamocowanym przewodem pneumatycznym
D. tłoczyskiem siłownika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 7

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. oblać dłoń wodą utlenioną i nałożyć opatrunek
B. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
C. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
D. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 8

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,0 mm
B. 1,9 mm
C. 2,3 mm
D. 2,1 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 9

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Stacja lutownicza
B. Lutownica na gorące powietrze z dyszą w kształcie 7x7
C. Lutownica z końcówką 'minifala'
D. Rozlutownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 10

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej temperatury oleju
B. niskiej ściśliwości oleju
C. wysokiego ciśnienia oleju
D. wysokiej temperatury oleju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysoka temperatura oleju hydraulicznego prowadzi do zmniejszenia jego lepkości. Wzrost temperatury powoduje, że cząsteczki oleju zaczynają się poruszać szybciej, co skutkuje łatwiejszym przepływem i zmniejszeniem oporu. Zjawisko to jest szczególnie istotne w systemach hydraulicznych, gdzie odpowiednia lepkość oleju jest kluczowa dla efektywności działania układów. Na przykład, w maszynach budowlanych lub przemysłowych, gdzie olej hydrauliczny pełni rolę siły napędowej, jego właściwa lepkość zapewnia skuteczne przekazywanie mocy i minimalizuje ryzyko awarii elementów układu. W wielu standardach, takich jak ISO 6743-4, określają się wymagania dotyczące lepkości olejów hydraulicznych w zależności od temperatury pracy, co pozwala na dobór odpowiednich produktów do konkretnych zastosowań. W praktyce, monitorowanie temperatury oleju oraz jego lepkości jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania układów hydraulicznych.

Pytanie 11

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. zawór zwrotno-dławiący.
B. zawór z popychaczem.
C. przełącznik obiegu.
D. rozdzielacz czterodrogowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór z popychaczem to kluczowy element w systemach pneumatycznych, który pozwala na manualne sterowanie przepływem powietrza. Posiada charakterystyczny popychacz znajdujący się na górze, który umożliwia włączenie lub wyłączenie przepływu powietrza poprzez nacisk. Tego rodzaju zawory są często używane w aplikacjach, gdzie wymagana jest szybka i intuicyjna kontrola, na przykład w automatyzacji procesów przemysłowych. Standardy dotyczące elementów pneumatycznych, takie jak ISO 1219, określają zasady projektowania i klasyfikacji tych urządzeń, co zapewnia ich niezawodność i bezpieczeństwo. W praktyce zawory z popychaczem są wykorzystywane w systemach napędowych, w maszynach pakujących, a także w urządzeniach stosowanych w przemyśle motoryzacyjnym. Zrozumienie funkcji i zastosowania tego typu zaworów jest niezbędne dla prawidłowego projektowania i eksploatacji systemów pneumatycznych.

Pytanie 12

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Tensometryczny
B. Ultradźwiękowy
C. Pojemnościowy
D. Hallotronowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 13

Który z poniższych czujników mierzących powinien być użyty do określenia wartości ciśnienia w zbiorniku sprężonego powietrza oraz do przesłania danych do sterownika PLC z analogowymi wejściami?

A. Czujnik termoelektryczny
B. Czujnik manometryczny
C. Czujnik piezorezystancyjny
D. Czujnik ultradźwiękowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik piezorezystancyjny jest idealnym rozwiązaniem do pomiaru ciśnienia w zbiorniku sprężonego powietrza z kilku powodów. Po pierwsze, jego zasada działania opiera się na zmianie oporu elektrycznego materiału piezorezystancyjnego w odpowiedzi na zmieniające się ciśnienie. Dzięki temu, czujniki te charakteryzują się wysoką dokładnością oraz szybkim czasem reakcji, co jest kluczowe w aplikacjach przemysłowych. Piezorezystancyjne czujniki ciśnienia można zintegrować z systemem PLC za pomocą analogowych sygnałów, co umożliwia ciągły monitoring i kontrolę procesów. Przykładowo, w systemach automatyki przemysłowej często wykorzystuje się je do kontrolowania ciśnienia w układach pneumatycznych, co pozwala na precyzyjne zarządzanie pracą urządzeń. Dodatkowo, czujniki te są zgodne z międzynarodowymi normami, co zapewnia ich niezawodność i bezpieczeństwo działania w trudnych warunkach. W kontekście stosowania czujników piezorezystancyjnych, warto również wspomnieć o ich zdolności do pracy w szerokim zakresie ciśnień oraz temperatur, co czyni je uniwersalnym narzędziem w wielu aplikacjach przemysłowych.

Pytanie 14

Element oznaczony symbolem BC 107 to tranzystor?

A. germanowy impulsowy
B. krzemowy m.cz.
C. germanowy mocy
D. krzemowy w.cz.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'krzemowy m.cz.' jest poprawna, ponieważ tranzystor BC 107 to tranzystor bipolarny wykonany z krzemu, który jest powszechnie stosowany w aplikacjach analogowych, zwłaszcza w obwodach wzmacniaczy niskosygnałowych. Krzem charakteryzuje się lepszymi właściwościami elektrycznymi w porównaniu do germanowych odpowiedników, co czyni go bardziej odpowiednim dla większości zastosowań. Tranzystor BC 107 ma maksymalne napięcie kolektor-emiter wynoszące 45V oraz maksymalny prąd kolektora do 100mA, co czyni go odpowiednim do niskonapięciowych zastosowań. Jego zastosowania obejmują wzmacniacze, przełączniki oraz zastosowania w układach cyfrowych. W kontekście praktycznym, użytkownicy powinni pamiętać, że dobór odpowiedniego tranzystora do aplikacji ma kluczowe znaczenie dla efektywności i niezawodności układu elektronicznego. Dlatego zawsze warto zapoznać się ze specyfikacjami technicznymi danego elementu przed jego zastosowaniem w projekcie.

Pytanie 15

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Bezobsługowość
B. Iskrobezpieczeństwo
C. Efektywność
D. Niezawodność

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Iskrobezpieczeństwo jest kluczową cechą w projektowaniu linii produkcyjnych, zwłaszcza w kontekście konfekcjonowania substancji chemicznych, takich jak rozcieńczalniki do farb i lakierów, które są łatwopalne i mogą wydzielać niebezpieczne opary. Użycie podzespołów i urządzeń spełniających normy iskrobezpieczeństwa (np. ATEX w Europie) ma na celu minimalizację ryzyka wybuchów oraz pożarów. Przykładem mogą być pompy, które są zaprojektowane tak, aby nie generować iskier podczas pracy, a także systemy wentylacyjne, które skutecznie odprowadzają opary. W praktyce oznacza to stosowanie materiałów odpornych na korozję, jak również instalację odpowiednich czujników wykrywających obecność niebezpiecznych gazów. Właściwe zabezpieczenie strefy zagrożonej wybuchem powinno obejmować także odpowiednie klasyfikacje stref, które są zgodne z międzynarodowymi standardami, takimi jak IEC 60079. Zatem iskrobezpieczeństwo nie tylko zwiększa bezpieczeństwo pracowników, ale także zapewnia ciągłość produkcji, co jest niezbędne w efektywnych liniach produkcyjnych.

Pytanie 16

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 1,2 A
B. 15,0 A
C. 3,6 A
D. 0,6 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,2 A jest poprawna, ponieważ prąd jałowy transformatora związany jest z jego mocą znamionową. W przypadku transformatora o mocy S_N = 2300 VA, prąd znamionowy można obliczyć, korzystając ze wzoru: I_N = S_N / U_1N, co daje I_N = 2300 VA / 230 V = 10 A. Prąd jałowy wynosi około 10% wartości prądu znamionowego, co w tym przypadku daje I_0 = 0,1 * 10 A = 1 A. Aby dokładnie zmierzyć prąd jałowy, należy wziąć pod uwagę, że amperomierz powinien mieć zakres pomiarowy, który pozwoli na uchwycenie tej wartości z odpowiednim marginesem. Wybór amperomierza o zakresie 1,2 A jest trafny, ponieważ zapewnia wystarczającą precyzję pomiaru oraz minimalizuje ryzyko uszkodzenia urządzenia. W praktyce, pomiar prądu jałowego jest kluczowy w diagnostyce i utrzymaniu transformatorów, ponieważ nadmierny prąd jałowy może wskazywać na problemy z izolacją lub innymi komponentami urządzenia.

Pytanie 17

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. CAM
B. CAD
C. SCADA
D. CAP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "CAM" (Computer-Aided Manufacturing) jest prawidłowa, ponieważ oprogramowanie CAM jest kluczowym narzędziem w procesach wytwarzania, szczególnie w kontekście sterowania maszynami CNC (Computer Numerical Control). Oprogramowanie CAM pozwala na generowanie kodów G, które są niezbędne do precyzyjnego sterowania maszynami, takimi jak frezarki, tokarki czy wtryskarki. Dzięki zastosowaniu CAM, inżynierowie i technicy mogą projektować złożone geometrie części, które następnie są bezpośrednio przekładane na ruchy maszyn, co znacząco zwiększa wydajność produkcji i redukuje ryzyko błędów. W praktyce, systemy CAM są zintegrowane z systemami CAD (Computer-Aided Design), co umożliwia płynne przejście od etapu projektowania do produkcji. Branża wytwórcza korzysta z oprogramowania CAM zgodnie z najlepszymi praktykami, takimi jak standardy ISO, co zapewnia wysoką jakość i powtarzalność procesów wytwarzania. Dodatkowo, korzystanie z CAM może przyspieszyć czasy realizacji projektów oraz umożliwić produkcję złożonych części, które byłyby trudne do wykonania tradycyjnymi metodami.

Pytanie 18

Czy obniżenie temperatury czynnika w sprężarkach prowadzi do

A. wzrostu ciśnienia sprężonego powietrza
B. powiększania objętości sprężonego powietrza
C. osadzania zanieczyszczeń na dnie zbiornika
D. skraplania pary wodnej oraz osuszania powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca skraplania pary wodnej oraz osuszania powietrza jest poprawna, ponieważ ochładzanie czynnika roboczego w sprężarkach prowadzi do zmniejszenia jego temperatury, co z kolei powoduje kondensację pary wodnej zawartej w powietrzu. W praktyce, w systemach klimatyzacyjnych oraz chłodniczych, proces ten jest kluczowy dla zapewnienia efektywności działania układów. W momencie, gdy powietrze jest schładzane, jego zdolność do utrzymywania wilgoci maleje, co prowadzi do skraplania się wody. Zjawisko to jest szczególnie istotne w kontekście osuszania powietrza, co przekłada się na lepszą jakość powietrza oraz wydajność systemów. Standardy takie jak ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) podkreślają znaczenie kontroli wilgotności dla poprawy komfortu użytkowników oraz efektywności energetycznej. Dlatego w wielu zastosowaniach, takich jak chłodzenie przemysłowe czy klimatyzacja budynków, stosuje się wymienniki ciepła, które umożliwiają skuteczne zarządzanie wilgotnością oraz temperaturą powietrza.

Pytanie 19

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18

A. 0,90 l
B. 0,40 l
C. 1,82 l
D. 1,70 l

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,82 l jest prawidłowa, ponieważ dokładnie odpowiada całkowitej ilości oleju potrzebnej do wymiany w pompie IF1 400. Aby obliczyć tę wartość, należy zsumować ilości oleju wymagane w silniku oraz w komorze olejowej, które są przedstawione w tabeli producenta. W praktyce, zapewnienie odpowiedniej ilości oleju jest kluczowe dla prawidłowego funkcjonowania urządzenia, gdyż niedobór oleju może prowadzić do przegrzewania się pompy i jej szybszego zużycia. W branży inżynieryjnej i mechanicznej, przestrzeganie zaleceń producentów dotyczących wymiany oleju i jego ilości jest uznawane za standardową praktykę, która wpływa na niezawodność oraz efektywność działania maszyn. Dobór właściwego oleju i jego ilości ma również znaczenie dla utrzymania optymalnych parametrów pracy, co w efekcie przekłada się na dłuższą żywotność urządzenia oraz oszczędności w kosztach eksploatacji.

Pytanie 20

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. osadzaniem zanieczyszczeń na dnie zbiornika
B. powiększaniem objętości sprężonego powietrza
C. wzrostem ciśnienia sprężonego powietrza
D. skraplaniem pary wodnej oraz osuszaniem powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost ciśnienia sprężonego powietrza po schłodzeniu czynnika jest zjawiskiem fizycznym wynikającym z zastosowania zasady gazów doskonałych, która mówi, że przy stałej objętości gazu, jego ciśnienie rośnie wraz ze spadkiem temperatury. W praktyce, schładzanie czynnika roboczego w sprężarkach służy nie tylko do podniesienia efektywności procesu sprężania, ale również do dehydratacji powietrza, co jest kluczowe w aplikacjach przemysłowych. Zastosowanie systemów chłodzenia w sprężarkach przyczynia się do redukcji kondensacji pary wodnej, co zapobiega korozji i osadzaniu się zanieczyszczeń w układzie pneumatycznym. Udoskonalone systemy, takie jak sprężarki o wyższej wydajności czy chłodnice powietrza, przyczyniają się do zwiększenia efektywności energetycznej, co jest zgodne z najlepszymi praktykami w branży. W efekcie, poprawa ciśnienia sprężonego powietrza poprzez schładzanie czynnika roboczego jest kluczowym elementem dla uzyskania wysokiej jakości sprężonego powietrza.

Pytanie 21

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Obcowzbudny
B. Szeregowy
C. Bezszczotkowy
D. Bocznikowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 22

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z aluminium
B. ze stali
C. z miedzi
D. z polipropylenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'z polipropylenu' jest prawidłowa, ponieważ zbliżeniowe sensory indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym, które są generowane przez metalowe obiekty. Polipropylen, będący materiałem nieprzewodzącym i nieferromagnetycznym, nie wpływa na to pole, co uniemożliwia sensoryzm ich detekcję. Użycie takich materiałów w aplikacjach wymagających wykrywania obiektów jest istotne, na przykład w automatyce przemysłowej, gdzie potrzebne są nietypowe materiały, jak plastiki, do produkcji elementów maszyny. W rzeczywistości, sensory indukcyjne są szeroko stosowane w procesach automatyzacji, takich jak detekcja elementów wykonanych z metali, np. w liniach montażowych. W takich aplikacjach standardy, takie jak ISO 12100 dotyczące bezpieczeństwa maszyn, wymagają odpowiedniego doboru technologii detekcji, co potwierdza praktyczną przydatność sensorów indukcyjnych w przemyśle.

Pytanie 23

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
B. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
C. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
D. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność czynności podczas demontażu urządzenia mechatronicznego zaczyna się od odłączenia instalacji zewnętrznych, co jest kluczowe dla zapewnienia bezpieczeństwa i ochrony przed przypadkowymi uszkodzeniami. Po odłączeniu zasilania i innych systemów zewnętrznych, można przejść do zdjęcia osłon i pokryw, które mają na celu ochronę wewnętrznych komponentów przed zanieczyszczeniami oraz uszkodzeniami mechanicznymi. Następnie, wyciągnięcie elementów zabezpieczających jest niezbędne, by umożliwić dostęp do kluczowych części mechanizmu. Na końcu usuwa się elementy ustalające, co pozwala na swobodne wyjęcie podzespołów. Ta sekwencja jest zgodna z najlepszymi praktykami w zakresie BHP i technik demontażu, które podkreślają znaczenie bezpieczeństwa w miejscu pracy oraz minimalizację ryzyka uszkodzenia sprzętu. Przykładem zastosowania tej metody może być demontaż silnika elektrycznego, gdzie każdy z tych kroków ma kluczowe znaczenie dla skuteczności i bezpieczeństwa operacji.

Pytanie 24

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Mostek tensometryczny
B. Przepływomierz powietrza
C. Pirometr
D. Enkoder

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 25

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. tworzącym emulsję z wodą
B. o niższej lepkości
C. o wyższej gęstości
D. odpornym na proces starzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 26

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
B. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
C. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
D. brązowy (czerwony) - minus zasilania; czarny - plus zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 27

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po wezwaniu pomocy medycznej
B. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
C. po poinformowaniu osoby przełożonej
D. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 28

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. płaskie
B. oczko
C. uniwersalne
D. zapadkowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 29

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. kształtu
B. poziomu złożoności
C. wielkości
D. kolejności montażu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 30

Cyfrowy tachometr jest narzędziem do mierzenia

A. natężenia przepływu powietrza
B. lepkości cieczy
C. naprężeń w metalach
D. prędkości obrotowej wału silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 31

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. roboczą standardową
B. termoaktywną
C. roboczą trudnopalną
D. bawełnianą w formie kombinezonu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 32

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
B. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
C. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
D. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ parametry zaworu pneumatycznego rozdzielającego rzeczywiście odnoszą się do jego konstrukcji i specyfikacji. 'Gl/8' wskazuje na przyłącze walcowe, co jest standardowym typem przyłącza w wielu zastosowaniach przemysłowych, pozwalającym na łatwe podłączenie do systemu pneumatycznego. '550 Nl/min' określa nominalny przepływ powietrza, co jest kluczowym parametrem przy doborze zaworu do systemu; oznacza to, że zawór jest w stanie przepuścić 550 litrów powietrza na minutę przy nominalnych warunkach. '12 V AC' oznacza napięcie cewki zaworu, wskazując, że jest to napięcie zmienne, co jest typowe dla wielu aplikacji w automatyce, gdzie zasilanie zmienne jest powszechnie stosowane. '3 VA' to moc pozorna cewki, co jest istotnym parametrem przy doborze odpowiednich elementów do zasilania zaworu. Znajomość tych parametrów pozwala na prawidłowy dobór i eksploatację zaworów pneumatycznych, co jest niezbędne dla efektywności systemów automatyki przemysłowej. Przykładem zastosowania może być automatyzacja procesów produkcyjnych, gdzie precyzyjnie dobrane zawory zapewniają optymalną pracę siłowników pneumatycznych oraz efektywność energetyczną całego systemu.

Pytanie 33

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. dynamometrycznego
B. nasadkowego
C. oczkowego
D. imbusowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 34

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. zakleszczenie tłoka
B. niespodziewany spadek ciśnienia roboczego
C. wyboczenie tłoczyska
D. blokada odpowietrzania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zakleszczenie tłoka w siłowniku jednostronnego działania może być przyczyną nagłego zatrzymania ruchu tłoczyska, co jest szczególnie istotne w kontekście działania urządzeń pneumatycznych. W przypadku braku obciążenia, jak w opisanym scenariuszu, wszelkie nieprawidłowości w ruchu tłoka mogą prowadzić do zacięcia, co skutkuje zatrzymaniem wyjścia roboczego. Zakleszczenie może być spowodowane różnymi czynnikami, takimi jak zanieczyszczenia wewnętrzne, niewłaściwe smarowanie, czy też uszkodzenia mechaniczne. Praktycznie, w systemach, w których stosuje się siłowniki, regularna konserwacja i czyszczenie układów pneumatycznych są kluczowe dla zapewnienia ich niezawodności. Standardy branżowe, jak ISO 5598, podkreślają znaczenie odpowiedniego projektowania oraz użytkowania komponentów pneumatycznych, aby minimalizować ryzyko zakleszczeń. W związku z tym, monitorowanie stanu technicznego siłowników oraz wdrażanie odpowiednich procedur serwisowych są kluczowe w praktyce inżynieryjnej.

Pytanie 35

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. widoczności.
B. zasięgu ręki.
C. pomieszczeniu, gdzie znajduje się stanowisko pracy.
D. zapleczu zakładu pracy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 36

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. zmniejszenia prędkości obrotowej
C. spadku rezystancji uzwojeń
D. wzrostu rezystancji uzwojeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 37

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HLP, HFA, HTG
C. HV, HLP, HLPD
D. HFA, HFC, HFD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź HFA, HFC, HFD jest prawidłowa, ponieważ te oznaczenia odnoszą się do kategorii trudnopalnych cieczy hydraulicznych, które są stosowane w systemach hydraulicznych w warunkach, gdzie istnieje ryzyko eksplozji. Ciecze te charakteryzują się obniżoną palnością, co minimalizuje ryzyko pożaru i eksplozji. HFA to wodne emulsje olejów mineralnych, HFC to wodne roztwory syntetycznych środków smarujących, a HFD to oleje biologiczne lub syntetyczne, które również zawierają wodę. W praktyce, ich zastosowanie znajduje się w różnych branżach, takich jak przemysł chemiczny, rafinacja, czy energetyka, gdzie bezpieczeństwo operacji ma kluczowe znaczenie. Warto podkreślić, że korzystanie z tych ciecze hydraulicznych jest zgodne z normami bezpieczeństwa, takimi jak ISO 6743-4, które regulują klasyfikację i zastosowanie płynów hydraulicznych w kontekście ochrony przeciwpożarowej.

Pytanie 38

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór dławiący, manometr, smarownica
B. sprężarka, filtr, zawór redukcyjny, manometr
C. filtr, zawór redukcyjny, manometr, smarownica
D. sprężarka, filtr, manometr, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 39

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Zgrzewanie
B. Sklejanie
C. Lutowanie twarde
D. Lutowanie miękkie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 40

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. sterowania w układzie otwartym
B. układu sterowania programowalnego
C. sterowania sekwencyjnego
D. układu regulacji automatycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żelazko elektryczne z termoregulatorem bimetalicznym jest doskonałym przykładem układu regulacji automatycznej, ponieważ wykorzystuje mechanizm, który automatycznie dostosowuje temperaturę grzania w zależności od wymagań użytkownika i właściwości materiału, który jest prasowany. Termoregulator bimetaliczny składa się z dwóch różnych metali, które rozszerzają się różnie pod wpływem temperatury, co powoduje odkształcenie i włączenie lub wyłączenie zasilania do grzałki żelazka. Przykładem praktycznego zastosowania tego rozwiązania jest żelazko, które automatycznie dostosowuje temperaturę do rodzaju tkaniny, co zapobiega ich przypaleniu lub uszkodzeniu. Tego typu regulacja automatyczna jest zgodna z zasadami efektywności energetycznej oraz komfortu użytkowania, co czyni ją standardem w projektowaniu urządzeń gospodarstwa domowego. Zastosowanie termoregulatorów bimetalicznych w żelazkach jest zgodne z najlepszymi praktykami w dziedzinie automatyki i kontrolowania procesów, zapewniając niezawodność oraz bezpieczeństwo eksploatacji urządzeń. Dodatkowo, układy regulacji automatycznej są szeroko stosowane w różnych dziedzinach przemysłu, gdzie precyzyjne utrzymywanie parametrów jest kluczowe dla jakości produkcji.