Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 kwietnia 2025 12:56
  • Data zakończenia: 8 kwietnia 2025 13:13

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W jakich częściach sieci SFC wykorzystuje się oznaczenia literowe N, S, D?

A. W symbolach kroków.
B. W opisach zmiennych.
C. W kwalifikatorach działania.
D. W oznaczeniach tranzycji.
Kwalifikatory działania w sieci SFC (Sequential Function Chart) pełnią kluczową rolę w definiowaniu warunków, które muszą być spełnione, aby dany krok mógł zostać aktywowany. Symbole literowe N, S i D oznaczają kolejno: N - normalny, S - startowy, D - definitywny. W praktyce, te symbole są wykorzystywane do oznaczania różnych stanów i przejść w procesie automatyzacji, co jest zgodne z normą IEC 61131-3, definiującą języki programowania dla urządzeń automatyki. Przykładem zastosowania może być system sterowania w zakładzie produkcyjnym, gdzie kwalifikatory te pomagają określić, czy urządzenie powinno być uruchomione w konkretnych warunkach, co zwiększa bezpieczeństwo operacji i efektywność działania. Zrozumienie tych symboli jest istotne dla każdego inżyniera automatyki, aby odpowiednio implementować logikę sterowania i dostosowywać ją do wymagań procesów przemysłowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Którego z przetworników temperatury należy użyć w układzie mechatronicznym, jeżeli:
- elementem sensorycznym w układzie jest czujnik Pt 100,
- przetwornik będzie zasilany z zasilacza wewnętrznego sterownika PLC (24 V DC),
- wyjście przetwornika podłączone będzie do wejścia analogowego 4 do 20 mA sterownika,
- układ pomiarowy będzie zamontowany na zewnątrz hali produkcyjnej?

Typ czujnika
parametr
7NG3211-PNC007NG3211-PT1007NG3211-PKL007NG3211-PN100
WejścieCzujniki
rezystancyjne
półprzewodnikowe
Czujniki
rezystancyjne
TermoparyCzujniki
rezystancyjne
Wyjście0 ÷ 20 mA0 ÷ 20 mA4 ÷ 20 mA4 ÷ 20 mA
Zasilanie8,5 ÷ 36 V DC8,5 ÷ 30 V DC8,5 ÷ 30 V DC8,5 ÷ 36 V DC
Stopień
ochrony
IP 40IP 40IP 40IP 40
Temperatura
otoczenia
0 ÷ 40°C0 ÷ 40°C-40 ÷ 80°C-40 ÷ 80°C

A. 7NG3211-PT100
B. 7NG3211-PNC00
C. 7NG3211-PKL00
D. 7NG3211-PN100
Odpowiedź 7NG3211-PN100 jest całkiem dobra. Ten przetwornik to naprawdę fajny wybór, bo obsługuje czujniki rezystancyjne Pt 100, co jest bardzo ważne, gdy mówimy o pomiarze temperatury. Pracuje na napięciu 24 V DC, więc spokojnie można go podłączyć do typowych zasilaczy, które znajdziesz w systemach PLC. No i to wyjście analogowe 4-20 mA to standard w przemyśle, co oznacza, że dane są przesyłane dokładnie i stabilnie. Dodatkowo, przetwornik został zaprojektowany do montażu na zewnątrz, co jest super, bo w przemysłowych instalacjach często trzeba mieć do czynienia z różnymi warunkami pogodowymi. Zakres temperatury od -40 do 80°C to duży plus, bo pozwala na jego wszechstronność. Ogólnie rzecz biorąc, to dobry wybór i na pewno spełni swoje zadanie w różnych sytuacjach.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie urządzenie stosuje się do pomiaru rezystancji izolacji w systemach mechatronicznych?

A. induktor pomiarowy
B. multimetr
C. mostek pomiarowy
D. omomierz
Induktor pomiarowy jest kluczowym narzędziem wykorzystywanym do pomiaru rezystancji izolacji w urządzeniach mechatronicznych, ponieważ jego konstrukcja i działanie umożliwiają uzyskanie precyzyjnych wyników, co jest niezwykle istotne dla zapewnienia bezpieczeństwa użytkowników. Pomiar rezystancji izolacji pozwala na ocenę stanu technicznego izolacji elektrycznej, co jest zgodne z wymogami norm takich jak PN-EN 60204-1 dotyczących bezpieczeństwa maszyn. Induktor pomiarowy działa na zasadzie wytwarzania pola elektromagnetycznego, co pozwala na pomiar rezystancji w sposób nieniszczący. Użycie prądu stałego w tym narzędziu eliminuje wpływ efektów pojemnościowych, co jest kluczowe w przypadku izolacji, gdzie wyniki pomiarów mogą być znacznie zafałszowane przez inne urządzenia pomiarowe. Przykładem praktycznego zastosowania induktora pomiarowego może być badanie stanów izolacji w silnikach elektrycznych czy systemach automatyki, gdzie ryzyko awarii izolacji może prowadzić do poważnych konsekwencji, w tym do awarii całego systemu. Warto również zaznaczyć, że odpowiednie pomiary i ich analiza mogą przyczynić się do zwiększenia efektywności energetycznej urządzeń mechatronicznych poprzez wczesne wykrywanie problemów z izolacją.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
B. Większym o 10% od ciśnienia roboczego
C. Ciśnieniu testowemu 6 bar
D. Maksymalnym ciśnieniu, które występuje w trakcie pracy
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakiej czynności nie wykonuje się podczas odbioru maszyny po przeprowadzeniu przeglądu technicznego?

A. Sprawdzenia kondycji oraz poprawności działania urządzeń zabezpieczających
B. Przeprowadzenia testowego uruchomienia maszyny pod obciążeniem znamionowym
C. Określenia zakresu następnego przeglądu technicznego
D. Weryfikacji działania maszyny bez obciążenia
Analizując pozostałe odpowiedzi, można zauważyć, że wszystkie one dotyczą kluczowych aspektów odbioru obrabiarki po przeglądzie technicznym, ale nie są one czynnościami które można pominąć. Testowe uruchomienie obrabiarki pod obciążeniem znamionowym ma fundamentalne znaczenie dla sprawdzenia prawidłowego funkcjonowania maszyny w warunkach zbliżonych do rzeczywistych. Przeprowadzenie takiego testu pozwala zidentyfikować ewentualne problemy związane z wydajnością oraz stabilnością urządzenia, co jest kluczowe dla zapewnienia jego efektywności. Sprawdzanie działania obrabiarki bez obciążenia także nie powinno być lekceważone, gdyż umożliwia wykrycie podstawowych usterek i nieprawidłowości w działaniu systemów sterujących. Ponadto, weryfikacja stanu oraz prawidłowości działania urządzeń zabezpieczających jest niezbędna do zapewnienia bezpieczeństwa operatorów i otoczenia. Zaniedbanie któregokolwiek z tych kroków może prowadzić do poważnych konsekwencji, takich jak awarie, wypadki przy pracy, czy znaczne straty finansowe związane z przestojami produkcyjnymi. Dlatego ważne jest, aby każdy proces odbioru obrabiarek po przeglądzie był dokładnie zaplanowany i realizowany zgodnie z ustalonymi standardami oraz najlepszymi praktykami branżowymi.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAM
B. SCADA
C. CAE
D. CAD
Zrozumienie różnicy pomiędzy systemami CAM, CAE, CAD i SCADA jest kluczowe dla skutecznego wykorzystania technologii w przemyśle. CAM, czyli Computer-Aided Manufacturing, odnosi się do aplikacji wspierających procesy produkcyjne, takich jak programowanie maszyn CNC. Jego zastosowanie polega na automatyzacji produkcji, co zwiększa efektywność i precyzję wytwarzania. Z kolei CAE, czyli Computer-Aided Engineering, obejmuje narzędzia do analizy inżynieryjnej, które wspierają projektowanie i testowanie produktów poprzez symulacje komputerowe, co pozwala na optymalizację konstrukcji zanim przystąpi się do produkcji. CAD, czyli Computer-Aided Design, to systemy używane przede wszystkim do tworzenia dokumentacji technicznej oraz wizualizacji projektów inżynieryjnych. W kontekście wizualizacji procesów przemysłowych, to właśnie SCADA jest odpowiednim rozwiązaniem, które łączy w sobie elementy monitorowania i kontrolowania procesów. Pomimo że CAM, CAE i CAD są niezwykle ważnymi narzędziami w automatyzacji i inżynierii, to ich funkcjonalność i zastosowanie różnią się znacząco od SCADA, które koncentruje się na bieżącym zarządzaniu procesami. Typowym błędem myślowym jest mylenie tych systemów, co może prowadzić do nieefektywnego zarządzania procesami i niewłaściwego doboru narzędzi do konkretnych zastosowań w przemyśle.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. wymiany zabrudzonego komutatora wirnika
B. sprawdzania połączeń elektrycznych
C. sprawdzania napięć silnika
D. czyszczenia żeber radiatorów
Wybrana przez Ciebie odpowiedź sugerująca, że przegląd konserwacyjny obejmuje wymianę zabrudzonego komutatora wirnika, pokazuje pewne nieporozumienie. Przegląd konserwacyjny ma na celu zapewnienie, że wszystko działa w optymalnych warunkach, a nie robienie dużych napraw, jak wymiana kluczowych części. Wymiana komutatora to proces dość skomplikowany, wymaga demontażu silnika, a nie prostej czynności jak czyszczenie radiatorów czy sprawdzanie napięć. Często można się spotkać z sytuacją, że osoby zajmujące się konserwacją mylnie myślą, że wymiana zużytych części powinna być częścią ich rutynowych zadań, co może prowadzić do marnotrawstwa czasu i zasobów. Dlatego warto dobrze wiedzieć, co naprawdę powinno się robić w ramach rutynowych przeglądów, a które zadania wymagają więcej przygotowania i specjalistycznej wiedzy.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie elementy mechanizmów mechatronicznych są zabezpieczane i konserwowane poprzez proces cynkowania?

A. Elementy konstrukcyjne
B. Elementy sterujące
C. Elementy napędowe
D. Elementy sygnalizacyjne
Konstrukcyjne elementy urządzeń mechatronicznych, takie jak ramy, wsporniki i inne elementy nośne, są szczególnie narażone na działanie czynników zewnętrznych, co może prowadzić do ich korozji. Cynkowanie jest skuteczną metodą ochrony przed tym procesem, ponieważ tworzy na powierzchni warstwę cynku, która działa jako bariera dla wilgoci i innych korozjogennych substancji. Dzięki cynkowaniu, elementy te mogą zachować swoje właściwości mechaniczne oraz estetyczne przez długi czas, co jest kluczowe w wielu zastosowaniach przemysłowych. Przykładem może być przemysł budowlany, gdzie elementy konstrukcyjne, takie jak belki czy słupy, muszą być odporne na trudne warunki atmosferyczne. Dobre praktyki branżowe zalecają regularne przeglądy oraz konserwację takich elementów, aby zapewnić ich długowieczność i niezawodność. W standardzie ISO 1461 opisano wymagania dotyczące cynkowania ogniowego, co zapewnia zgodność z międzynarodowymi normami jakości.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. A
B. T
C. P
D. B
Odpowiedź P jest naprawdę na miejscu. W schematach układów hydraulicznych ten symbol oznacza przyłącze zasilające rozdzielacz, co jest mega istotne. To w tym punkcie dostarczane jest ciśnienie robocze, które potrzebne jest, żeby cały układ działał jak należy. W praktyce, ogarnianie oznaczeń w takich schematach jest kluczowe dla inżynierów i techników, którzy zajmują się projektowaniem lub serwisowaniem instalacji hydraulicznych. Poza P, warto znać inne symbole, jak B dla odpływu, A i B dla wyjść roboczych czy T dla powrotu oleju do zbiornika. Wiedza o tych oznaczeniach ma ogromne znaczenie przy czytaniu i tworzeniu dokumentacji technicznej. To pomaga w zwiększeniu efektywności i bezpieczeństwa operacji hydraulicznych. Warto też trzymać się standardów, jak ISO 1219, które dotyczą symboliki hydraulicznej, bo to sprawia, że komunikacja między inżynierami jest lepsza, a współpraca w różnych działach łatwiejsza.

Pytanie 27

Który z parametrów wskazuje na efektywność sprężarki pneumatycznej?

A. Strumień objętości [m3/min]
B. Sprawność [%]
C. Ciśnienie [bar]
D. Prędkość obrotowa wału [obr./min]
Strumień objętości [m3/min] jest kluczowym parametrem określającym wydajność sprężarki pneumatycznej, ponieważ reprezentuje ilość powietrza, którą urządzenie jest w stanie dostarczyć w ciągu jednej minuty. Wydajność sprężarki ma bezpośredni wpływ na jej zastosowanie w różnych procesach przemysłowych, takich jak obróbka materiałów, zasilanie narzędzi pneumatycznych czy systemy transportu pneumatycznego. Wysoka wydajność sprężarki jest istotna w aplikacjach, gdzie wymagana jest ciągła i stabilna dostawa powietrza, na przykład w liniach produkcyjnych. Standardy branżowe, takie jak ISO 8573, określają wymagania dotyczące jakości powietrza i wydajności sprężarek, co podkreśla znaczenie strumienia objętości jako wskaźnika efektywności. W praktyce, przed wyborem sprężarki, warto dokładnie oszacować potrzebny strumień objętości, aby dobrać odpowiedni model, co pozwoli na optymalizację kosztów eksploatacji i zapewnienie odpowiedniego wsparcia dla procesów produkcyjnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W planowanym systemie hydraulicznym kontrola energii czynnika roboczego powinna odbywać się na zasadzie objętościowej. Osiąga to

A. pompa hydrauliczna o stałej wydajności
B. zawór bezpieczeństwa
C. zawór przelewowy
D. pompa hydrauliczna o zmiennej wydajności
Wybór pompy hydraulicznej o stałej wydajności w kontekście objętościowego sterowania energią czynnika roboczego jest nieodpowiedni z wielu powodów. Tego rodzaju pompy dostarczają stałą ilość cieczy w danym czasie, co ogranicza ich elastyczność w dostosowywaniu się do zmiennych warunków pracy. W praktyce oznacza to, że w sytuacji, gdy zapotrzebowanie na przepływ zmienia się, pompa o stałej wydajności nie może efektywnie zareagować, co prowadzi do nieoptymalnego wykorzystania energii oraz potencjalnych problemów z ciśnieniem w systemie. Ponadto, niezdolność do regulacji wydajności może skutkować nadmiernym obciążeniem układu hydraulicznego, co w dłuższej perspektywie prowadzi do uszkodzeń komponentów oraz zwiększenia kosztów konserwacji. Zawory bezpieczeństwa i przelewowe również nie są odpowiednie dla tego zadania, ponieważ ich podstawową funkcją jest ochrona układu przed nadciśnieniem, a nie regulacja przepływu. Wybierając niewłaściwe rozwiązania, można łatwo popaść w pułapki myślowe związane z założeniem, że prostota konstrukcji zapewnia niezawodność. W rzeczywistości, brak możliwości regulacji przepływu w układzie hydraulicznym może prowadzić do poważnych awarii i zakłóceń operacyjnych, co jest niezgodne z aktualnymi standardami jakości i bezpieczeństwa w branży hydraulicznej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie oznaczenie literowe dotyczy manipulatora wyposażonego w dwa obrotowe napędy oraz jeden liniowy?

A. TTT
B. RRT
C. RTT
D. RRR
Odpowiedź 'RRT' jest poprawna, ponieważ oznaczenie to odnosi się do manipulatora charakteryzującego się dwoma napędami obrotowymi oraz jednym liniowym. W kontekście robotyki, napędy obrotowe (oznaczane literą 'R') umożliwiają manipulatorowi ruch w płaszczyznach kątowych, co jest kluczowe w wielu zastosowaniach, takich jak montaż, spawanie czy paletyzacja. Napęd liniowy (oznaczany literą 'T') dodaje możliwość ruchu wzdłuż prostej linii, co zwiększa wszechstronność robota. Przykłady zastosowania takiego manipulatora obejmują roboty przemysłowe w liniach produkcyjnych, gdzie precyzyjne ruchy obrotowe są wymagane do umiejscowienia elementów w określonych pozycjach, a także do manipulacji ciężkimi przedmiotami w ograniczonej przestrzeni. Dodatkowo, stosowanie standardów takich jak ISO 9409-1, które definiują interfejsy dla manipulatorów, umożliwia łatwą integrację z różnymi systemami automatyki. W branży robotycznej, zrozumienie tych oznaczeń jest kluczowe dla efektywnego projektowania i aplikacji systemów robotycznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Na podstawie danych znamionowych prądnicy tachometrycznej określ, jaką wartość napięcia będzie wskazywał woltomierz na wyjściu prądnicy, jeżeli wirnik obraca się z prędkością 4800 obr/min.

Dane znamionowe prądnicy tachometrycznej
PZTK 51-18
ku = 12,5 V/1000 obr/min
Robc min = 5 kΩ
nmax = 8000 obr/min

A. 60 V
B. 18 V
C. 5 V
D. 12,5 V
Wybór innej wartości napięcia, takiej jak 18 V, 12,5 V czy 5 V, świadczy o braku zrozumienia fundamentalnych zasad działania prądnic tachometrycznych. Każda z tych odpowiedzi wynika z błędnego założenia dotyczącego proporcjonalności między prędkością obrotową a generowanym napięciem. Prądnice tachometryczne działają na zasadzie indukcji elektromagnetycznej, gdzie napięcie wyjściowe jest proporcjonalne do prędkości obrotowej wirnika. W przypadku prądnicy, której znamionowa wartość napięcia wynosi 60 V przy 4800 obr/min, każda inna wartość jest wynikiem zrozumienia niewłaściwej charakterystyki prądnicy. Możliwe jest, że wybór niższych napięć wynika z mylnego wrażenia, że wyższe prędkości obrotowe generują mniejsze napięcia, co jest odwrotnością rzeczywistości. W praktyce, błędne odpowiedzi mogą również wynikać z braku znajomości danych znamionowych urządzenia oraz jego zastosowań w układach automatyki, gdzie precyzyjne pomiary są kluczowe. Zrozumienie zasad działania i charakterystyki prądnic tachometrycznych jest niezbędne, a ich zastosowanie w regulacji prędkości silników elektrycznych wymaga znajomości odpowiednich parametrów pracy oraz ich wpływu na cały system.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CNC
B. CAE
C. CAD
D. CAM
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 630 000 Pa
B. 600 kPa
C. 0,58 MPa
D. 650 kPa
Analizując pozostałe odpowiedzi, kluczowe jest zrozumienie, jak odczyty ciśnienia przekładają się na rzeczywiste normy operacyjne. Odpowiedzi takie jak 630 000 Pa i 600 kPa mieszczą się w dopuszczalnym zakresie, co oznacza, że nie stanowią zagrożenia dla urządzenia. Ważne jest, aby pamiętać, że 1 MPa odpowiada 1 000 kPa, więc 0,6 MPa to 600 kPa, a 0,58 MPa to zaledwie 580 kPa, które również są akceptowalne. Często pojawia się błąd myślowy związany z interpretacją jednostek miary, co prowadzi do nieprawidłowych wyborów. Na przykład, niektórzy użytkownicy mogą mylnie sądzić, że ciśnienia bliskie wartości nominalnej są zawsze właściwe, zaniedbując znaczenie określonego zakresu tolerancji. Wartości ciśnienia powinny być regularnie monitorowane i dostosowywane w zależności od warunków pracy, aby zapewnić bezpieczeństwo i efektywność operacyjną. Standardy branżowe podkreślają konieczność stosowania odpowiednich narzędzi pomiarowych oraz procedur kontrolnych, aby uniknąć sytuacji, które mogą prowadzić do uszkodzenia sprzętu lub zagrożenia dla personelu. Właściwe zrozumienie wartości ciśnienia zasilania jest kluczowe dla efektywnej eksploatacji systemów pneumatycznych.