Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 13 kwietnia 2025 19:10
  • Data zakończenia: 13 kwietnia 2025 19:26

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. klimatyzacji
B. uziemienia ochronnego
C. wyłączników różnicowoprądowych
D. zerowania ochronnego
Klimatyzacja, choć może być korzystna w pewnych warunkach pracy, nie jest wymagana na stanowiskach do naprawy i konserwacji urządzeń elektronicznych. Kluczowe jest, aby urządzenia te były odpowiednio wentylowane, co można osiągnąć poprzez naturalną cyrkulację powietrza lub odpowiednie systemy wentylacyjne. Dobrą praktyką w tym zakresie jest zapewnienie, że temperatura w pomieszczeniu nie przekracza zalecanych norm, aby nie wpływać negatywnie na wrażliwe komponenty elektroniczne. Zastosowanie klimatyzacji może być korzystne w kontekście stabilizacji temperatury, ale nie jest to wymóg normatywny. Przykładem może być warsztat serwisowy, gdzie mechanicy stosują wentylację, aby utrzymać optymalne warunki pracy, ale niekoniecznie korzystają z klimatyzacji. Warto zaznaczyć, że odpowiednie warunki pracy, w tym temperatura, mają kluczowe znaczenie dla wydajności i trwałości sprzętu elektronicznego.

Pytanie 2

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. woltomierz
B. galwanometr
C. częstościomierz
D. omomierz
Omomierz to super przyrząd do mierzenia oporu elektrycznego, a to znaczy, że jest świetny do sprawdzania, czy żyły w przewodzie teletechnicznym działają tak, jak powinny. Z mojego doświadczenia, sprawdzanie ciągłości żył jest naprawdę ważne, bo jak będą jakieś przerwy, to cała instalacja teletechniczna może po prostu nie działać. Kiedy używasz omomierza, możesz zmierzyć opór między końcami przewodów; jeśli wartość jest bliska zeru, to wiadomo, że przewód działa jak trzeba. Warto też pamiętać, że standardy takie jak IEC 61010 mówią, jak istotny jest pomiar oporu dla bezpieczeństwa instalacji elektrycznych. Dobrze jest też robić takie pomiary przed włączeniem systemu oraz regularnie je kontrolować, żeby uniknąć problemów później. Ogólnie mówiąc, omomierz to jedno z tych narzędzi, które naprawdę szybko pomogą zdiagnozować problemy z ciągłością, a to może zaoszczędzić czas i kasę na przyszłość.

Pytanie 3

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia mocy
B. przeciążenia oraz zniszczenia instalacji
C. wzrostu napięcia źródła zasilania
D. większego zużycia energii
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 4

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
B. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
C. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
D. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
Zgadza się, żeby bezpiecznie zdemontować kamerę, najpierw musisz wyłączyć zasilanie. To podstawowa zasada, bo zapobiega nieprzyjemnym sytuacjom, jak porażenie prądem. Potem odłączasz przewody zasilające, ale z zachowaniem ostrożności, bo nie chcesz zrobić zwarcia. Kiedy już masz wszystko odłączone, to czas na przewód sygnałowy. To ważne, żeby nie uszkodzić systemu monitoringu. Na końcu, jak masz pewność, że wszystko jest odłączone, możesz przystąpić do demontażu kamery. Takie podejście pozwala na bezpieczne i sprawne serwisowanie sprzętu, a to bardzo ważne, żeby wszystko działało jak należy.

Pytanie 5

Jaka wartość w systemie szesnastkowym odpowiada binarnej liczbie 01101101?

A. 7B
B. 6D
C. BC
D. C6
Odpowiedź 6D jest poprawna, ponieważ liczba binarna 01101101 w systemie szesnastkowym odpowiada wartości 6D. Aby zrozumieć, jak dokonano tej konwersji, warto zauważyć, że system binarny jest systemem pozycyjnym z podstawą 2, a system szesnastkowy ma podstawę 16. Liczbę binarną dzielimy na grupy po cztery bity, co daje nam 0110 i 1101. Następnie każdą z tych grup zamieniamy na odpowiadające wartości w systemie szesnastkowym: 0110 to 6, a 1101 to D. Tak więc, 01101101 to 6D w systemie szesnastkowym. W praktyce takie konwersje są niezwykle ważne, szczególnie w programowaniu na poziomie niskim oraz przy pracy z systemami sprzętowymi, gdzie operacje na bitach i bajtach są powszechne. Rozumienie konwersji między systemami liczbowymi jest fundamentalne w inżynierii oprogramowania oraz w projektowaniu systemów cyfrowych, gdzie często zachodzi potrzeba interpretacji wartości binarnych w bardziej zrozumiałych dla ludzi systemach, takich jak hex.

Pytanie 6

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. kaski ochronne
B. chodniki izolacyjne
C. ekrany z uziemieniem
D. fartuchy ochronne
Zastosowanie fartuchów roboczych, chodników izolacyjnych oraz kasków ochronnych w kontekście ochrony przed falami elektromagnetycznymi jest niewłaściwe, ponieważ te środki nie są zaprojektowane w celu redukcji promieniowania elektromagnetycznego. Fartuchy robocze mają na celu ochronę przed substancjami chemicznymi, ciepłem lub mechanicznymi uszkodzeniami, lecz nie oferują skutecznej ochrony przed falami elektromagnetycznymi. Chodniki izolacyjne, choć mogą być używane do ochrony przed porażeniem elektrycznym, nie działają jako bariera dla promieniowania elektromagnetycznego i nie eliminują jego szkodliwego wpływu. Kaski ochronne z kolei są przystosowane do ochrony głowy przed uderzeniami i nie mają właściwości związanych z osłoną przed promieniowaniem elektromagnetycznym. Typowym błędem myślowym jest zakładanie, że wszystkie środki ochrony osobistej mogą być stosowane w każdym kontekście, co prowadzi do błędnych wniosków. W rzeczywistości, aby skutecznie chronić pracowników przed promieniowaniem elektromagnetycznym, konieczne jest zastosowanie specjalistycznych rozwiązań, takich jak ekrany z uziemieniem, które są dostosowane do specyficznych zagrożeń. Właściwe zrozumienie i zastosowanie odpowiednich środków ochrony jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 7

Jaki środek ochrony osobistej jest najczęściej używany podczas naprawy urządzeń elektronicznych w serwisie RTV?

A. Szkła ochronne
B. Maska ochronna do twarzy
C. Rękawiczki
D. Fartuch ochronny
Wybór innych środków ochrony indywidualnej, takich jak okulary, maski ochronne czy rękawice, może wydawać się logiczny, jednak nie adresują one najistotniejszych zagrożeń podczas wykonywania napraw w serwisach RTV. Okulary, mimo że chronią oczy przed drobnymi odłamkami czy kurzem, nie zapewniają ochrony całego ciała przed substancjami chemicznymi, które mogą być obecne w procesie naprawy. W przypadku maski ochronnej, jej zasadniczym celem jest ochrona dróg oddechowych, co jest istotne, lecz nie wystarcza do zabezpieczenia całego ciała przed ewentualnymi zagrożeniami. Rękawice, choć mogą chronić dłonie przed zranieniami czy chemikaliami, to wciąż pozostawiają inne części ciała nieosłonięte. Zastosowanie fartucha ochronnego jest szczególnie ważne, ponieważ łączy w sobie ochronę przed różnorodnymi zagrożeniami, co czyni go najbardziej wszechstronnym środkiem ochrony w tej sytuacji. Niezrozumienie tej zasady prowadzi do błędnych wniosków dotyczących bezpieczeństwa w miejscu pracy. Kluczowym jest holistyczne podejście do ochrony osobistej, które powinno obejmować stosowanie fartucha jako priorytetowego środka ochrony, a nie jedynie dodatku do pozostałych elementów wyposażenia ochronnego.

Pytanie 8

Czego można dokonać za pomocą cęgów bocznych?

A. usuwać izolację z żył przewodów elektrycznych
B. formować końcówki żył przewodów elektrycznych
C. skręcać żyły przewodów elektrycznych
D. ciąć żyły przewodów elektrycznych
Cęgi boczne to specjalistyczne narzędzia stosowane w elektrotechnice do cięcia przewodów, w tym żył przewodów elektrycznych. Dzięki ich konstrukcji, która posiada ostre krawędzie, umożliwiają one precyzyjne i efektywne cięcie różnych typów materiałów, co jest kluczowe w pracy z instalacjami elektrycznymi. Przykładowo, podczas montażu urządzeń elektrycznych, technicy często muszą dostosować długość przewodów, co wymaga ich cięcia. Ponadto, cęgi boczne są nieocenione w sytuacjach, gdy konieczne jest przycinanie przewodów w ograniczonej przestrzeni, gdzie tradycyjne narzędzia mogą być zbyt duże. W kontekście standardów branżowych, cięcie przewodów powinno być przeprowadzane zgodnie z normami IEC 60204-1, które nakładają obowiązek zapewnienia bezpieczeństwa operacji elektrycznych. Używanie cęgów bocznych zapewnia nie tylko dokładność, ale także minimalizuje ryzyko uszkodzenia izolacji przewodu, co mogłoby prowadzić do awarii instalacji elektrycznej.

Pytanie 9

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Wydłużenie przewodu oraz podwyższenie jego rezystancji
B. Skrócenie przewodu oraz obniżenie jego rezystancji
C. Skrócenie przewodu oraz podwyższenie jego rezystancji
D. Wydłużenie przewodu oraz obniżenie jego rezystancji
Wzrost temperatury naprawdę ma duży wpływ na przewody miedziane. Jak wiadomo, materiały się rozszerzają, więc przewody miedziane też się wydłużają, kiedy robi się cieplej. To jest ważne, bo w instalacjach elektrycznych to może wpłynąć na ich działanie. Jeśli temperatura przewodów wzrasta, to niestety ich rezystancja też rośnie. Przykładowo, w temperaturze 20°C miedź ma swoją rezystancję, ale gdy podgrzejesz ją do 100°C, ta wartość wzrasta o jakieś 40%. W praktyce oznacza to, że projektując instalacje, musimy myśleć o tym, jak te zmiany wpłyną na naszą pracę. Warto zwracać uwagę na normy, jak IEC 60228, bo one pomagają w zapewnieniu bezpieczeństwa i funkcjonalności naszych instalacji. Po prostu trzeba o tym pamiętać przy tworzeniu projektów.

Pytanie 10

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. uszkodzeniami mechanicznymi
B. wysoką temperaturą
C. porażeniem prądem elektrycznym
D. niską wilgotnością
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 11

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. wysuszenie skóry dłoni
B. uszkodzenie wzroku
C. poparzenie dłoni
D. krwawienie podskórne
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 12

Urządzenie, które może być używane na zewnątrz i cechuje się wysoką odpornością na negatywne działanie warunków atmosferycznych, to

A. konwerter satelitarny.
B. tuner telewizji satelitarnej.
C. multiswitch.
D. głowica w.cz.
Konwerter satelitarny to naprawdę ważne urządzenie w telewizji satelitarnej. Działa tak, że zamienia sygnały z satelity na coś, co dekodery lub tunery mogą zrozumieć i wykorzystać. Jest bardzo odporny na różne złe warunki pogodowe, więc spokojnie można go używać na zewnątrz. W praktyce montuje się go na antenach satelitarnych, gdzie musi znosić deszcz, śnieg, wiatr i wysokie lub niskie temperature. Jakość materiałów, z jakich jest zrobiony, ma ogromne znaczenie, bo to zapewnia jego trwałość i niezawodność. Istnieją różne standardy budowy konwerterów, jak na przykład EN 50083, które określają, jak powinny działać i jakie muszą być odporne na pogodę. Dzięki temu, użytkownicy mogą cieszyć się dobrym sygnałem telewizyjnym, nawet jak pogoda jest zmienna. Ważne jest, żeby dobrze wybrać konwerter, bo to wpływa na jakość odbioru, szczególnie w miejscach, gdzie sygnał nie jest najlepszy.

Pytanie 13

Jakim narzędziem wykonuje się pobielanie końcówek przewodów elektrycznych?

A. zgrzewarki
B. opalarki
C. nagrzewnicy
D. lutownicy
Pobielanie końcówek przewodów elektrycznych za pomocą lutownicy jest standardową praktyką w branży elektroinstalacyjnej. Lutownica, która wykorzystuje wysoką temperaturę do stopienia lutu, umożliwia trwałe połączenie przewodu z końcówką, co jest kluczowe dla zapewnienia dobrej przewodności elektrycznej oraz długotrwałej trwałości połączenia. W procesie lutowania ważne jest, aby przed przystąpieniem do pracy, odpowiednio przygotować powierzchnię przewodu, usuwając wszelkie zanieczyszczenia oraz oksydację. Zastosowanie lutownicy jest szczególnie istotne w kontekście norm i standardów, takich jak IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrą praktyką jest również stosowanie lutów o odpowiednich parametrach, co wpływa na jakość oraz niezawodność wykonanego połączenia. Warto zaznaczyć, że technika lutowania wymaga pewnej wprawy oraz znajomości zasad bezpieczeństwa, aby uniknąć poparzeń oraz innych niebezpieczeństw związanych z obsługą urządzeń grzewczych.

Pytanie 14

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. RS-485
B. RS-232
C. I2C
D. GPIB
Wybór RS-232, GPIB czy I2C jako standardów przesyłania danych, które miałyby umożliwić transmisję różnicową sygnałów, jest błędny z kilku powodów. RS-232 jest najstarszym standardem komunikacji szeregowej, który przesyła dane w sposób jednostronny, wykorzystywany głównie do połączeń krótkodystansowych. Jego konstrukcja, oparta na pojedynczym przewodzie z masą, czyni go narażonym na zakłócenia, co sprawia, że nie nadaje się do zastosowań wymagających dużej integracji w trudnych warunkach. GPIB, znany również jako IEEE 488, jest standardem komunikacji równoległej, który obsługuje wiele urządzeń, ale również nie stosuje różnicowej transmisji, co ogranicza jego zastosowanie do krótkich połączeń w środowisku laboratoryjnym. Z kolei I2C to protokół komunikacji szeregowej przeznaczony do krótkich dystansów, wykorzystywany w aplikacjach takich jak komunikacja z czujnikami czy sterownikami. I2C może przesyłać dane w dwóch liniach, ale również nie korzysta z różnicowego przesyłania sygnałów, co czyni go niewłaściwym w kontekście omawianego pytania. Typowe błędy w analizie tych standardów polegają na myleniu różnych technik przesyłania z ich możliwościami w zakresie eliminacji zakłóceń i długości połączeń. Przy wyborze odpowiedniego protokołu komunikacji kluczowe jest zrozumienie ich właściwości i ograniczeń, co pozwala na efektywne projektowanie systemów z uwzględnieniem ich przeznaczenia.

Pytanie 15

Jaki klucz jest używany do luzowania śrub z walcowym łbem oraz sześciokątnym gniazdem?

A. Oczkowy
B. Nasadowy
C. Płaski
D. Imbusowy
Klucz imbusowy, znany również jako klucz sześciokątny, jest idealnym narzędziem do odkręcania śrub z łbem walcowym z gniazdem sześciokątnym. Jego konstrukcja pozwala na efektywne przenoszenie momentu obrotowego, co jest kluczowe w pracy z elementami mocującymi, które mogą być narażone na wysokie obciążenia. Dzięki precyzyjnie wymiarowanym końcówkom, klucz imbusowy minimalizuje ryzyko uszkodzenia łba śruby, co jest częstym problemem przy używaniu innych rodzajów kluczy. Użycie klucza imbusowego jest zgodne z najlepszymi praktykami w inżynierii i mechanice, gdzie precyzyjne dopasowanie narzędzi do rodzajów śrub ma kluczowe znaczenie dla zapewnienia trwałości połączeń. Często stosuje się go w mechanice rowerowej, motocykli i w wielu konstrukcjach metalowych, co czyni go wszechstronnym narzędziem w arsenale każdego majsterkowicza.

Pytanie 16

Skrót "FM" odnosi się do modulacji

A. impulsowo-kodowej
B. amplitudy
C. fazy
D. częstotliwości
Modulacja częstotliwości (FM) to technika, w której informacja jest transmitowana poprzez zmianę częstotliwości fali nośnej. W praktyce oznacza to, że amplituda fali pozostaje stała, natomiast jej częstotliwość ulega modyfikacji w odpowiedzi na sygnał wejściowy, co pozwala na zwiększenie odporności na zakłócenia. Modulacja ta jest szeroko wykorzystywana w radiokomunikacji, w tym w stacjach radiowych FM, ponieważ zapewnia lepszą jakość dźwięku i większy zasięg w porównaniu do innych rodzajów modulacji, takich jak AM (modulacja amplitudy). Przykładem zastosowania FM może być transmisja sygnałów dźwiękowych w radiach samochodowych oraz w systemach komunikacji bezprzewodowej, gdzie kluczowe jest uzyskanie czystości sygnału. Dobry projekt systemu FM musi również uwzględniać normy dotyczące pasma częstotliwości, aby unikać interferencji i zapewnić zgodność z regulacjami na poziomie krajowym i międzynarodowym, takimi jak ITU-R.

Pytanie 17

Kamera, działająca w systemie monitoringu wizyjnego, która jest umieszczona na zewnątrz i rejestruje obraz w każdych warunkach, powinna być wyposażona w

A. oświetlacz IR
B. obudowę z plastiku
C. obiektyw szerokokątny
D. obudowę metalową
No więc tak, obudowa z tworzywa może dawać jakąś ochronę przed deszczem albo śniegiem, ale nie ze wszystkim sobie radzi. Jak mamy kamery na zewnątrz, to istotne jest, żeby były całkowicie odporne na zmienne warunki pogodowe. Obudowy metalowe są lepsze pod względem wytrzymałości, ale czasem mają problem z izolacją termiczną, co może wywołać kondensację pary wewnątrz kamery, a to prowadzi do różnych usterek. Co do obiektywu szerokokątnego, to jest przydatny, ale nie jest najważniejszy w monitorowaniu w nocy. Tu liczy się bardziej oświetlacz IR, żeby kamera mogła działać w ciemności. Ludzie często mylą się, skupiając się na estetyce obudowy, a zapominają, że to jak kamera radzi sobie w trudnych warunkach oświetleniowych jest kluczowe. A to zapewnia odpowiednia technologia, taka jak oświetlacze podczerwone.

Pytanie 18

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. czworokątnym
B. krzyżowym
C. gwiazdkowym
D. płaskim
Wkręty z łbem oznaczonym symbolem PH, czyli Phillips, charakteryzują się krzyżowym rowkiem, który pozwala na lepsze dopasowanie wkrętaka. Użycie wkrętaka krzyżowego pozwala na przekazywanie większego momentu obrotowego, co ułatwia wkręcanie i odkręcanie. Dzięki specyficznej konstrukcji łba, wkrętak krzyżowy minimalizuje ryzyko poślizgu, co jest szczególnie ważne w zastosowaniach wymagających precyzyjnego dokręcenia. W praktyce, wkręty Phillips są powszechnie stosowane w konstrukcji mebli, elektroniki oraz w różnych projektach DIY. Warto również zaznaczyć, że wkrętaki krzyżowe są dostępne w różnych rozmiarach, co pozwala na ich użycie w szerokim zakresie zastosowań. W kontekście standardów przemysłowych, wkręty z łbem Phillips są jednymi z najczęściej stosowanych, co sprawia, że znajomość odpowiedniego narzędzia jest niezbędna w pracy każdego fachowca.

Pytanie 19

Złącza BNC umieszcza się na końcach kabli

A. skrętka STP
B. koncentrycznych
C. symetrycznych
D. skrętka UTP
Złącza BNC (Bayonet Neill-Concelman) są powszechnie wykorzystywane w systemach telekomunikacyjnych do przesyłania sygnałów wideo oraz danych. Montuje się je na końcach przewodów koncentrycznych, co wynika z ich konstrukcji i przeznaczenia. Przewody koncentryczne składają się z centralnego rdzenia przewodnika otoczonego dielektrykiem oraz ekranem, co zapewnia doskonałą izolację i ochronę przed zakłóceniami elektromagnetycznymi. Złącza BNC są idealne do tego typu przewodów, ponieważ ich konstrukcja zapewnia stabilne połączenie oraz łatwe rozłączanie. Typowymi zastosowaniami złącz BNC są instalacje CCTV, systemy telewizji kablowej oraz wszelkie aplikacje wymagające wysokiej jakości przesyłania sygnałów analogowych. W kontekście standardów branżowych, złącza BNC są zgodne z normami IEEE 802.3, co czyni je wiarygodnym wyborem w wielu środowiskach inżynieryjnych, gdzie jakość sygnału jest kluczowa.

Pytanie 20

Który rodzaj kondensatora wymaga zachowania polaryzacji w trakcie wymiany?

A. Powietrzny
B. Foliowy
C. Ceramiczny
D. Elektrolityczny
Kondensatory elektrolityczne są elementami elektronicznymi, które charakteryzują się wyraźnie określoną polaryzacją. Oznacza to, że przy ich wymianie niezwykle istotne jest, aby zachować odpowiednią orientację biegunów, czyli podłączyć je w odpowiedni sposób do obwodu. W przeciwnym razie, mogą one ulec uszkodzeniu poprzez zwarcie, co może prowadzić do wydzielania się szkodliwych substancji i w konsekwencji do niebezpieczeństwa, takiego jak zwarcia i pożary. Elektryczna polaryzacja kondensatorów elektrolitycznych wynika z ich konstrukcji, w której jeden z biegunów, zwykle oznaczony jako „+”, jest anodem, a biegun ujemny jest katodem. W praktyce, stosowanie kondensatorów elektrolitycznych jest powszechne w zasilaczach, filtrach oraz w układach audio, gdzie wymagane są dużej pojemności wartości. Zgodnie z dobrymi praktykami, podczas wymiany kondensatora elektrolitycznego powinno się zawsze używać elementów o takich samych parametrach elektrycznych, w tym napięciu roboczym i pojemności, aby zapewnić stabilność i bezpieczeństwo działania całego układu.

Pytanie 21

Na zakłócenie czasowe w odbiorze sygnału satelitarnego prawidłowo zamontowanej anteny wpływ mają

A. mgła
B. wiatr
C. zawilgocenie kabla antenowego
D. chmura burzowa
Chmury burzowe mają duży wpływ na sygnał satelitarny, zwłaszcza przez rozpraszanie oraz wchłanianie fal radiowych. Kiedy pojawiają się takie chmury, które są naładowane wodą i różnymi cząstkami, sygnał może być naprawdę słabszy, co prowadzi do różnych zakłóceń. Na przykład, w czasie burzy radiofale mogą być odbijane albo rozpraszane, co sprawia, że sygnał staje się niestabilny. Warto pamiętać, że projektując systemy antenowe, powinniśmy brać pod uwagę lokalne warunki atmosferyczne, w tym możliwość wystąpienia burz, bo to może mieć duży wpływ na jakość odbioru. Moim zdaniem, użytkownicy satelitów powinni być świadomi, że podczas intensywnych deszczy czy burz, jakość sygnału może znacznie spaść, więc czasem trzeba pomyśleć o dodatkowych rozwiązaniach, jak mocniejsze anteny czy jakieś systemy zapasowe, by poprawić odbiór.

Pytanie 22

Aby połączyć przewody systemu domofonowego w kostce połączeniowej, należy wykorzystać

A. wiertarkę
B. wkrętak
C. pilnik
D. młotek
Użycie wkrętaka do podłączenia przewodów w kostce podłączeniowej systemu domofonowego jest najlepszym wyborem, ponieważ wkrętak umożliwia precyzyjne i pewne dokręcenie śrub, co jest kluczowe dla zapewnienia trwałego i stabilnego połączenia. Dobrze zaciśnięte przewody w kostce minimalizują ryzyko przypadkowego rozłączenia i zwiększają bezpieczeństwo całego systemu. Na przykład, w przypadku domofonów, które mogą być narażone na działanie warunków atmosferycznych, solidne połączenie przewodów jest niezbędne do utrzymania prawidłowego funkcjonowania. W branży elektrycznej oraz w instalacjach niskonapięciowych stosowanie wkrętaka jest standardem, który zapewnia zgodność z normami, takimi jak PN-IEC 60364, które określają zasady prawidłowego podłączania elementów elektronicznych. Praktycznie rzecz biorąc, użycie wkrętaka odpowiedniego do typu śrub w kostce podłączeniowej zwiększa efektywność pracy oraz bezpieczeństwo instalacji.

Pytanie 23

W systemach zabezpieczeń najbardziej podatna na przeciągi w strzeżonym pomieszczeniu jest

A. czujka wibracyjna
B. czujka magnetyczna
C. pasywna czujka podczerwieni
D. akustyczna czujka stłuczenia szyby
Pasywna czujka podczerwieni (PIR) jest zaprojektowana do wykrywania zmian w promieniowaniu podczerwonym, które emitują obiekty w ruchu, takie jak ludzie. Jej wrażliwość na przeciągi wynika z faktu, że czujka ta działa na zasadzie różnicy temperatur między obiektami a otoczeniem. W przypadku przeciągu, zmiany temperatury mogą wpływać na skuteczność wykrywania, co czyni ją bardziej podatną na zakłócenia. W praktyce, w pomieszczeniach, gdzie występuje wzmożony ruch powietrza, zaleca się umieszczanie czujek PIR w taki sposób, aby zminimalizować ich kontakt z bezpośrednim ruchem powietrza, co jest zgodne z dobrymi praktykami instalacji systemów alarmowych. Warto również stosować czujki o różnej technologii w zależności od charakterystyki chronionego obszaru, aby zwiększyć efektywność systemu. Standardy branżowe, takie jak EN 50131, wskazują na konieczność przeprowadzania analizy ryzyka dla każdego rodzaju instalacji, co podkreśla znaczenie odpowiedniego doboru typów czujek w zależności od warunków w pomieszczeniu.

Pytanie 24

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. płaskiego śrubokręta
B. nóż monterskiego
C. zaciskarki do złączy
D. narzędzia LSA typu KRONE
Zaciskarka złącz to narzędzie kluczowe w procesie instalacji wtyków RJ45, które służy do trwałego połączenia przewodów z wtykiem. Jej konstrukcja umożliwia precyzyjne wciśnięcie metalowych pinów w wtyku w przewody, co zapewnia stabilne i niezawodne połączenie. W przypadku użycia wtyków RJ45, które są powszechnie stosowane w sieciach Ethernet, fundamentalne jest, aby przewody były odpowiednio ułożone w standardzie T568A lub T568B przed ich zaciskiem. Właściwie użyta zaciskarka zapewnia nie tylko poprawne połączenie, ale także minimalizuje ryzyko zakłóceń sygnału, co jest kluczowe dla utrzymania wysokiej wydajności sieci. Dodatkowo, stosowanie zaciskarki z funkcją automatycznego cięcia może przyspieszyć proces instalacji oraz poprawić jakość końcowego połączenia. Znajomość i umiejętność posługiwania się tym narzędziem są niezbędne w pracy technika sieciowego oraz elektrotechnika, co czyni je istotnym elementem szkolenia w tej dziedzinie.

Pytanie 25

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
B. analogowy na zakresie U=200 V i Rwe=10 kOhm
C. analogowy na zakresie U=20 V i Rwe=100 kOhm
D. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 26

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 200 zł
B. 250 zł
C. 350 zł
D. 305 zł
Aby ustalić koszt instalacji dla pojedynczego lokatora, należy najpierw obliczyć całkowity koszt robocizny i materiałów. Dwóch monterów pracuje przez 5 godzin, co daje łącznie 10 roboczogodzin. Przy stawce 50 zł za godzinę roboczogodzina koszt robocizny wynosi 10 roboczogodzin x 50 zł = 500 zł. Następnie dodajemy koszt materiałów, który wynosi 2000 zł, co daje całkowity koszt instalacji równy 500 zł + 2000 zł = 2500 zł. Ponieważ instalacja dotyczy 10 lokatorów, koszt dla jednego lokatora wynosi 2500 zł / 10 = 250 zł. Należy jednak pamiętać, że do całkowitego kosztu dodawany jest podatek VAT w wysokości 22%. Zatem koszt brutto wynosi 250 zł + 22% x 250 zł = 250 zł + 55 zł = 305 zł. Takie podejście pokazuje, jak ważne jest uwzględnianie wszystkich kosztów oraz podatków przy kalkulacji cen, co jest standardem w branży budowlanej i instalacyjnej.

Pytanie 27

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. to, że działają na tej samej częstotliwości
B. ich natychmiastowe działanie
C. ich umiejscowienie na suficie
D. to, że instalacja ma tylko jeden sygnalizator
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 28

Ukształtowanie terenu ma wpływ na zasięg przesyłu sygnału za pośrednictwem

A. światłowodu
B. skrętki ekranowanej
C. skrętki nieekranowanej
D. linii radiowej
Linie radiowe, w przeciwieństwie do innych typów transmisji, takich jak skrętki czy światłowody, są szczególnie wrażliwe na ukształtowanie terenu. Fale radiowe mogą być tłumione i odbijane przez różne przeszkody, w tym góry, budynki i inne elementy krajobrazu. W praktyce oznacza to, że w obszarach górzystych lub zabudowanych zasięg sygnału radiowego może być znacznie ograniczony, co wpływa na jakość transmisji danych. W przypadku skrętek, zarówno ekranowanych, jak i nieekranowanych, sygnał przesyłany jest przewodowo, co eliminuje problem tłumienia przez ukształtowanie terenu. W kontekście standardów, projektowanie sieci radiowych wymaga starannego planowania, w tym analizy terenu oraz zastosowania technologii, które mogą kompensować te efekty, takich jak MIMO (Multiple Input Multiple Output) czy beamforming. Przykładem zastosowania linii radiowych jest komunikacja bezprzewodowa w sieciach komórkowych, gdzie odpowiednie zasięg i jakość sygnału są kluczowe dla użytkowników.

Pytanie 29

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBmA
B. dBµΩ
C. dBµV
D. dBmW
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 30

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. niebieskim
B. żółto-zielonym
C. czarno-białym
D. czerwonym
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 31

Podstawowym celem korytek kablowych jest

A. obniżenie rezystancji izolacji przewodów
B. prowadzenie i maskowanie przewodów
C. zwiększenie efektywności chłodzenia przewodów
D. powiększenie odległości przewodów od ściany
Głównym zadaniem korytek kablowych jest prowadzenie i maskowanie przewodów, co odgrywa kluczową rolę w organizacji instalacji elektrycznych. Korytka kablowe nie tylko umożliwiają estetyczne ukrycie przewodów, ale również zabezpieczają je przed uszkodzeniami mechanicznymi oraz wpływem czynników zewnętrznych, takich jak wilgoć czy zanieczyszczenia. Dzięki zastosowaniu korytek kablowych, możliwe jest także znaczne uproszczenie procesu montażu i konserwacji instalacji, gdyż przewody są zgromadzone w jednym miejscu. W praktyce, korytka kablowe są wykorzystywane w biurach, halach produkcyjnych czy budynkach użyteczności publicznej, gdzie estetyka i porządek w instalacjach elektrycznych mają istotne znaczenie. Zgodnie z normą PN-EN 50085, stosowanie korytek kablowych powinno być dostosowane do rodzaju przewodów oraz warunków montażu, co pozwala na zapewnienie bezpieczeństwa i niezawodności instalacji. Warto również zauważyć, że odpowiednio zainstalowane korytka kablowe ułatwiają identyfikację przyczyn ewentualnych awarii oraz ich szybką naprawę.

Pytanie 32

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
B. bitowej stopy błędów
C. czasów narastania i opadania impulsów
D. współczynnika zniekształceń nieliniowych
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 33

Aby podłączyć czujnik PIR do linii parametrycznej 2EOL (DEOL), co jest wymagane?

A. 6 żył przewodu i dwa rezystory
B. 4 żyły przewodu i dwa rezystory
C. 6 żył przewodu i jeden rezystor
D. 4 żyły przewodu i jeden rezystor
W przypadku podłączenia czujnika PIR do linii parametrycznej 2EOL (DEOL) pomyłki w zakresie liczby żył przewodu i zastosowanych rezystorów mogą prowadzić do nieprawidłowego działania systemu. Odpowiedź sugerująca cztery żyły przewodu oraz jednego rezystora jest nieadekwatna, ponieważ nie zapewnia odpowiednich warunków do stabilnej pracy czujnika. W praktyce, jedno rezystor nie jest wystarczające do uzyskania prawidłowego pomiaru rezystancji linii, co może skutkować fałszywymi alarmami lub brakiem reakcji na wykrycie ruchu. Ponadto, opcja z sześcioma żyłami przewodu również nie jest uzasadniona - zbyt duża liczba żył w tej konfiguracji może prowadzić do zbędnych komplikacji w instalacji oraz zwiększenia kosztów materiałowych, co jest niewłaściwe z perspektywy efektywności kosztowej. Istotnym błędem w myśleniu jest założenie, że więcej przewodów lub rezystorów automatycznie przekłada się na lepszą jakość systemu. W rzeczywistości kluczowa jest odpowiednia liczba żył i ich konfiguracja, co pozwala na osiągnięcie optymalnej wydajności i zgodności z normami bezpieczeństwa. Takie podejście do podłączenia czujników wymaga znajomości zasad działania systemów alarmowych oraz praktycznych aspektów ich instalacji, aby uniknąć typowych pułapek i zapewnić niezawodność systemu."

Pytanie 34

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. obwodzie równoległym R, L, C
B. stabilizatorze napięcia o działaniu impulsowym
C. stabilizatorze napięcia o działaniu ciągłym
D. obwodzie szeregowym R, L, C
Rezonans napięć występuje w obwodach szeregowych R, L, C, gdzie R to opornik, L to induktor, a C to kondensator. Gdy częstotliwość sygnału zmiennego osiąga wartość rezonansową, impedancja obwodu osiąga minimum, co prowadzi do maksymalizacji prądu. W takim stanie napięcia na elementach obwodu są ze sobą ściśle powiązane, co może prowadzić do zjawiska wzmacniania sygnału. Przykładem praktycznym zastosowania tego zjawiska jest obwód rezonansowy stosowany w radioodbiornikach, gdzie umożliwia selekcję określonej częstotliwości sygnału radiowego, eliminując inne zakłócenia. Zrozumienie tego zjawiska jest kluczowe w projektowaniu filtrów, oscylatorów oraz w systemach komunikacyjnych. W praktyce inżynierskiej, wiedza o rezonansie jest niezbędna do efektywnego projektowania układów elektronicznych, aby zapewnić ich stabilność i efektywność działania.

Pytanie 35

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. wzrost obrotów silnika
B. wzrost prądu lasera
C. spadek obrotów silnika
D. obniżenie prądu lasera
Zwiększenie prądu lasera w odtwarzaczu CD jest symptomem zużycia głowicy laserowej, ponieważ wraz z upływem czasu i eksploatacją, soczewki oraz fotodetektory w głowicy mogą tracić swoje optymalne właściwości. W rezultacie, aby odczytać dane z płyty CD, elektronika odtwarzacza musi zwiększyć prąd dostarczany do lasera, co pozwala na uzyskanie wystarczającej intensywności światła potrzebnej do odczytu. Taki proces może prowadzić do dalszego przyspieszenia zużycia głowicy laserowej, ponieważ wyższy prąd może powodować przegrzewanie i uszkodzenia elementów. W praktyce, kiedy zauważysz, że odtwarzacz CD potrzebuje zwiększonego prądu do poprawnego działania, może to być znak, że wymagana jest konserwacja lub wymiana głowicy. Utrzymywanie urządzeń w dobrym stanie poprzez regularne czyszczenie i unikanie nadmiernego używania może wydłużyć ich żywotność. W branży elektroniki użytkowej, normy jakościowe często zalecają monitorowanie parametrów pracy urządzeń, aby wykrywać takie anomalie jak wzrost prądu lasera.

Pytanie 36

Kabel UTP służący do połączenia komputera z gniazdem abonenckim nazywa się potocznie

A. patchcord
B. patch panel
C. pigtail
D. łącznik
Patchcord to kabel, który łączy urządzenia w sieci komputerowej, w tym przypadku komputer z gniazdem abonenckim. Jego główną funkcją jest zapewnienie połączenia między różnymi elementami infrastruktury sieciowej, co jest kluczowe dla prawidłowego funkcjonowania sieci. Patchcordy są powszechnie stosowane w biurach, centrach danych oraz w domowych sieciach lokalnych. Standardowe długości patchcordów wahają się od kilkudziesięciu centymetrów do kilku metrów, co pozwala na ich elastyczne wykorzystanie w różnych konfiguracjach sieciowych. Warto zaznaczyć, że patchcordy mogą być wykonane w różnych kategoriach, takich jak Cat5e, Cat6 czy Cat6a, co wpływa na ich przepustowość i maksymalną długość transmisji. W praktyce oznacza to, że wybór odpowiedniego patchcordu zależy od wymagań sieci, takich jak prędkość transferu danych i odległość. Oprócz tego, stosując patchcordy, należy pamiętać o zachowaniu odpowiedniej organizacji kabli, co jest zgodne z dobrymi praktykami branżowymi, w celu uniknięcia zakłóceń oraz zapewnienia estetyki instalacji.

Pytanie 37

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. tylko w poziomie
B. wyłącznie w pionie
C. najkrótszą trasą
D. w pionie oraz poziomie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 38

Wyładowania elektryczne w atmosferze mogą prowadzić do powstawania niepożądanych napięć, które oddziałują na parametry anteny, skutkując

A. zniekształceniem charakterystyki kierunkowej
B. zmianą długości oraz powierzchni efektywnej
C. obniżeniem rezystancji promieniowania
D. zmniejszeniem impedancji wejściowej
Wyładowania atmosferyczne, takie jak pioruny, mogą wprowadzać niepożądane napięcia, które wpływają na parametry anteny, szczególnie na jej charakterystykę kierunkową. Zniekształcenia te wynikają z zakłóceń elektromagnetycznych, które mogą powodować zmiany w rozkładzie pola elektromagnetycznego wokół anteny. Kiedy indukowane napięcia wpływają na elementy anteny, mogą one zmieniać sposób, w jaki antena emituje lub odbiera fale radiowe. Przykładem może być antena Yagi, której charakterystyka kierunkowa jest kluczowa dla jej funkcji. Zniekształcenia mogą prowadzić do osłabienia sygnału w kierunkach, w których antena powinna być najbardziej czuła. Dlatego istotne jest stosowanie odpowiednich środków ochrony przed przepięciami, takich jak ograniczniki napięcia czy systemy uziemiające, co jest zgodne z normami takimi jak IEEE 1100-2005. Dzięki takim działaniom, można zminimalizować ryzyko uszkodzenia anteny oraz poprawić jej wydajność, co jest kluczowe w zastosowaniach takich jak komunikacja bezprzewodowa czy systemy radarowe.

Pytanie 39

Jakiego sprzętu należy użyć podczas wymiany uszkodzonej diody w elektrozaczepie drzwi wejściowych?

A. Lutownicy transformatorowej
B. Stacji lutowniczej
C. Lutownicy oporowej
D. Stacji na gorące powietrze
Kiedy wybierasz inne narzędzia lutownicze, jak lutownica oporowa czy stacja lutownicza, mogą się zdarzyć problemy przy wymianie diod w elektrozaczepach. Lutownica oporowa, wiadomo, też się używa w elektronice, ale nie daje takiej samej kontroli nad temperaturą jak transformatorowa, co jest istotne, bo diody są wrażliwe na ciepło. Stacje lutownicze są lepsze jakościowo, ale też bardziej skomplikowane w obsłudze, co może być problemem dla początkujących. A stacje na gorące powietrze, choć przydatne, nie nadają się do precyzyjnego lutowania małych elementów, bo mogą rozgrzać otoczenie i uszkodzić inne komponenty. Niektórzy mylą sytuacje niskiej i wysokiej temperatury użytkowania, co może prowadzić do złych decyzji przy wyborze narzędzi. W sumie, ważne jest, żeby w odpowiednich sytuacjach sięgać po narzędzia, które są zgodne z branżowymi zaleceniami.

Pytanie 40

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Induktor
B. Wobulator
C. Mostek Wiena
D. Mostek Thomsona
Induktor, jako element pasywny, jest kluczowy w pomiarach rezystancji izolacji kabli, ponieważ jego działanie opiera się na zjawisku indukcji elektromagnetycznej. Podczas testowania izolacji, induktor jest wykorzystywany do generowania zmiennego pola magnetycznego, co pozwala na ocenę jakości izolacji przewodów. Stosując induktory, technicy mogą testować izolację w warunkach rzeczywistych, co jest zgodne z normami branżowymi, takimi jak IEC 61010, które podkreślają znaczenie bezpieczeństwa i dokładności w pomiarach. Przykład zastosowania induktora w tej dziedzinie to testowanie kabli wysokiego napięcia, gdzie konieczne jest potwierdzenie, że izolacja jest w stanie wytrzymać określone napięcia bez przewodzenia prądu przez izolację. Regularne pomiary rezystancji izolacji pozwalają na wcześniejsze wykrycie potencjalnych problemów, co jest praktyką zalecaną w utrzymaniu infrastruktury elektrycznej, zmniejszając ryzyko awarii i zapewniając większe bezpieczeństwo użytkowników.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły