Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 5 maja 2025 10:01
  • Data zakończenia: 5 maja 2025 10:47

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do prac związanych z konserwacją układu solarnego nie wlicza się

A. zweryfikowania i ewentualnego uzupełnienia czynnika w obiegu solarnym.
B. czyszczenia zbiornika.
C. sprawdzenia stanu izolacji rur w obiegu solarnym.
D. wymiany czynnika grzewczego w obiegu solarnym.
Czynności konserwacji obiegu solarnego obejmują różnorodne działania, mające na celu zapewnienie ciągłości i efektywności działania całego systemu. Kontrola stanu izolacji rur obiegu solarnego jest kluczowa, ponieważ dobrze izolowane rury minimalizują straty ciepła, co bezpośrednio wpływa na efektywność energetyczną systemu. Niezbędne jest regularne sprawdzanie izolacji, aby uniknąć niepotrzebnych strat energii, które mogą prowadzić do wyższych kosztów eksploatacji. Sprawdzenie i ewentualne uzupełnienie czynnika w obiegu solarnym to również istotny element konserwacji. Czynnik roboczy w obiegu solarnym musi być utrzymywany na odpowiednim poziomie, aby zapewnić efektywne przekazywanie ciepła z kolektorów do zasobnika. Niedobór czynnika może prowadzić do obniżenia wydajności, a w skrajnych przypadkach do uszkodzenia układu. Wymiana czynnika grzewczego, choć mniej typowa, może być również konieczna w przypadku degradacji lub zanieczyszczenia czynnika, co wpływa na właściwe funkcjonowanie systemu. Błędem jest myślenie, że te działania są zbędne lub nie mają wpływu na efektywność całego systemu solarnego. Ignorowanie ich może prowadzić do kosztownych awarii oraz zmniejszenia efektywności energetycznej instalacji.

Pytanie 2

Bezpośrednie koszty związane z realizacją montaży urządzeń oraz systemów odnawialnych źródeł energii wynoszą: dla R – 2 000 zł; dla M – 3 000 zł; dla S – 200 zł. Wartość kosztów pośrednich wynosi 80% i jakie to jest

A. 1 760 zł
B. 2 560 zł
C. 4 000 zł
D. 4 160 zł
Zła odpowiedź może wynikać z paru błędów w rozumieniu, jak działają koszty w energetyce odnawialnej. Czasami ludzie mylą koszty bezpośrednie z pośrednimi, co prowadzi do złych obliczeń. Pamiętaj, że całkowite koszty bezpośrednie dla tych trzech projektów wynoszą 5 200 zł, a nie sumujesz ich jakby to dotyczyło jednego projektu. To dość typowy błąd. Koszty pośrednie musimy liczyć jako procent od kosztów bezpośrednich, a nie jako osobną kategorię. Często też zapominamy o kluczowych wartościach, jak ten procent, przez co wyjdą nam nieprawidłowe kwoty. W planowaniu projektów ważne jest, by znać koszty bezpośrednie i przewidzieć dodatkowe wydatki, które mogą się pojawić. Osoby zajmujące się projektami w branży energetyki powinny mieć systematyczne podejście do analizy kosztów, żeby się nie potknąć. Dobrze jest także znać narzędzia finansowe, które pomogą w takich obliczeniach i lepszym podejmowaniu decyzji.

Pytanie 3

Odległość gruntowa pomiędzy sondami pionowymi nie może być mniejsza niż

A. 18 m
B. 24 m
C. 6 m
D. 12 m
Odpowiedź 6 m jest poprawna, ponieważ zgodnie z aktualnymi normami i najlepszymi praktykami w inżynierii geotechnicznej, odległość między sondami pionowymi powinna wynosić co najmniej 6 m. Taka odległość pozwala na uzyskanie reprezentatywnych próbek gruntu, co jest kluczowe dla przeprowadzenia dokładnych badań geotechnicznych. W praktyce oznacza to, że jeśli sondy są umieszczone zbyt blisko siebie, mogą wystąpić zjawiska interferencji, które mogą zniekształcić wyniki badań. Na przykład, w przypadku przeprowadzania badań nośności gruntu, zbyt mała odległość między sondami może prowadzić do błędnych ocen parametrów gruntowych, co w konsekwencji wpłynie na bezpieczeństwo i stabilność projektowanych obiektów budowlanych. W związku z tym, zachowanie odpowiedniej odległości jest kluczowe dla zapewnienia dokładności wyników oraz ich interpretacji w kontekście projektowania i budowy infrastruktury. W praktyce, wiele instytucji i organizacji branżowych zaleca stosowanie tej odległości jako standardu w projektach geotechnicznych.

Pytanie 4

Najlepszym surowcem, z którego powinny być zrobione łopaty wirnika turbiny wiatrowej o mocy 2 MW, jest

A. stal
B. włókna szklane
C. miedź
D. aluminium
Włókna szklane są materiałem o doskonałych właściwościach mechanicznych i niskiej masie, co czyni je idealnym wyborem do produkcji łopat wirników turbin wiatrowych o mocy 2 MW. Ich wysoka wytrzymałość na rozciąganie oraz odporność na działanie warunków atmosferycznych, w tym korozji, sprawiają, że są one bardziej trwałe w porównaniu do innych materiałów, takich jak stal czy aluminium. Wykorzystanie włókien szklanych w konstrukcji łopat pozwala na osiągnięcie większej efektywności energetycznej, ponieważ umożliwia produkcję dłuższych i lżejszych łopat, co z kolei zwiększa powierzchnię do chwytania wiatru. Przykładem zastosowania tego materiału mogą być nowoczesne turbiny wiatrowe, które korzystają z kompozytów z włókien szklanych w połączeniu z żywicami epoksydowymi, co pozwala na osiągnięcie wysokiej wydajności i długowieczności. Standardy branżowe, takie jak IEC 61400, zalecają stosowanie materiałów kompozytowych w konstrukcji łopat, co potwierdza ich przewagę nad innymi materiałami.

Pytanie 5

Przy instalacji kolektorów słonecznych na dachu pokrytym dachówkami, do czego przykręca się stelaż?

A. łat
B. dachówek
C. krokwi
D. murłat
Odpowiedź "krokwi" jest poprawna, ponieważ to właśnie krokwi, będące elementami konstrukcyjnymi dachu, stanowią odpowiednie wsparcie dla stelaży kolektorów słonecznych. Krokwi mają dużą nośność i są zaprojektowane do przenoszenia obciążeń, co jest niezwykle istotne przy montażu cięższych systemów solarnych. Kiedy stelaż jest przykręcany do krokwi, zapewnia to stabilność i bezpieczeństwo całej konstrukcji, co jest kluczowe, zwłaszcza w przypadku silnych wiatrów czy opadów śniegu. Zgodnie z normami budowlanymi, należy stosować odpowiednie wkręty i mocowania, które są przystosowane do materiału krokwi, aby uniknąć uszkodzenia drewna. Dobrą praktyką jest również dokonanie oceny stanu technicznego krokwi przed montażem, aby upewnić się, że nie są one osłabione przez czynniki zewnętrzne, takie jak owady czy wilgoć. Poprawny montaż nie tylko zapewnia efektywność systemu, ale także wydłuża jego żywotność.

Pytanie 6

Jakie rury są najbardziej odpowiednie do wykonania instalacji ogrzewania podłogowego?

A. stalowe
B. miedziane
C. PEX-AL-PEX
D. PP-HD
Rury PEX-AL-PEX to jeden z najlepszych wyborów do budowy instalacji ogrzewania podłogowego. PEX-AL-PEX to rura wielowarstwowa, która łączy w sobie zalety polietylenu (PEX) i aluminium. Warstwa aluminiowa zapewnia wysoką odporność na wysokie ciśnienia oraz wzmocnienie strukturalne, co minimalizuje ryzyko pęknięć i deformacji. Dodatkowo, rury te charakteryzują się doskonałymi właściwościami termicznymi, co wpływa na efektywność ogrzewania podłogowego. Dzięki ich elastyczności łatwo je układać, co pozwala na łatwe dostosowanie do kształtu pomieszczeń. PEX-AL-PEX jest również odporny na korozję, co zwiększa trwałość instalacji. W praktyce, rury te są szeroko stosowane w nowoczesnych systemach grzewczych, spełniając wymagania norm europejskich oraz krajowych, takich jak PN-EN 1264. Dzięki tym właściwościom, rury PEX-AL-PEX są preferowane w instalacjach, gdzie niezawodność i efektywność są kluczowe.

Pytanie 7

Które urządzenie jest używane do wymuszania obiegu cieczy solarnej w systemie?

A. zawór regulacyjny
B. zbiornik wyrównawczy
C. pompa
D. kolektor słoneczny
Pompa w instalacji solarnej odgrywa kluczową rolę w wymuszaniu obiegu cieczy solarnej, co jest niezbędne do efektywnego transportu ciepła z kolektorów do systemu grzewczego. Działa na zasadzie mechanicznego przemieszczenia cieczy, co pozwala na utrzymanie optymalnego przepływu, a tym samym zapewnienie wysokiej efektywności energetycznej całego systemu. Pompy są projektowane z myślą o różnorodnych zastosowaniach, w tym do pracy w warunkach zmiennego obciążenia, co jest typowe dla systemów solarnych, gdzie ilość dostępnej energii cieplnej jest uzależniona od warunków atmosferycznych. Standardy takie jak EN 16297-1 dotyczące pomiarów efektywności pomp podkreślają znaczenie ich właściwego doboru i instalacji, co wpływa na trwałość i niezawodność systemu. Przykładem może być pompa obiegowa, która zapewnia stabilny przepływ w instalacjach z kolektorami słonecznymi, co pozwala na skuteczne wykorzystanie energii odnawialnej.

Pytanie 8

Jakie rury powinny być chronione przed wpływem promieniowania słonecznego?

A. Z cienkościennej stali
B. Ze stali ocynkowanej
C. Z żeliwa
D. Z miedzi
Wybór odpowiedzi związanych z rurami stalowymi, miedzianymi lub ocynkowanymi jest błędny, ponieważ te materiały nie są tak podatne na negatywne skutki promieniowania słonecznego jak rury żeliwne. Rury ze stali cienkościennej, mimo że mogą być narażone na korozję, są zazwyczaj stosunkowo odporne na wysokie temperatury, o ile są odpowiednio zabezpieczone. Miedź, jako materiał stosowany głównie w instalacjach hydraulicznych, nie wykazuje wrażliwości na promieniowanie UV, a jej trwałość zapewnia długotrwałą niezawodność. Z kolei stal ocynkowana, dzięki dodatkowej warstwie cynku, jest odporna na korozję, co czyni ją bardziej stabilną w zmiennych warunkach atmosferycznych. Często występuje nieporozumienie dotyczące tego, że wszystkie materiały metalowe wymagają takiego samego poziomu ochrony. Kluczowe jest zrozumienie, że różne materiały mają różne progi odporności na czynniki zewnętrzne. Przykładowo, błędne jest założenie, że wszystkie rury wymagają tego samego rodzaju zabezpieczeń przed słońcem, co może prowadzić do niepotrzebnych wydatków na dodatkowe osłony, które są nieefektywne w przypadku bardziej odpornych materiałów.

Pytanie 9

Jaki jest maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 r. przy t1 ≥ 16°C?

A. 0,25 W/m2 · K
B. 0,28 W/m2 · K
C. 0,20 W/m2 · K
D. 0,23 W/m2 · K
Maksymalny współczynnik przenikania ciepła (Uc max) dla ścian zewnętrznych nowych budynków, obowiązujący od 1 stycznia 2017 roku, wynosi 0,23 W/m² · K. Ta wartość została ustalona w związku z wprowadzeniem nowych przepisów dotyczących efektywności energetycznej budynków, które mają na celu zmniejszenie zużycia energii oraz poprawę komfortu cieplnego. W praktyce oznacza to, że ściany zewnętrzne nowych budynków muszą być zaprojektowane w taki sposób, aby ich izolacyjność termiczna była na odpowiednio wysokim poziomie. Przykłady zastosowania tej normy można znaleźć w projektach budowlanych, gdzie wykorzystuje się materiały o niskiej przewodności cieplnej, takie jak wełna mineralna, styropian czy nowoczesne systemy izolacji, które spełniają wymagane standardy. Wprowadzenie surowszych norm Uc ma na celu także ograniczenie emisji CO2 oraz zwiększenie komfortu mieszkańców, co jest zgodne z celami zrównoważonego rozwoju i polityką energetyczną Unii Europejskiej.

Pytanie 10

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 2 bary
B. 9 barów
C. 1 bar
D. 6 barów
Nastawa zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła powinna wynosić 6 barów, co odpowiada standardom dla tego typu systemów. Pompy ciepła są projektowane do pracy w określonym zakresie ciśnienia, a 6 barów stanowi odpowiednią wartość zabezpieczającą przed nadmiernym wzrostem ciśnienia, co może prowadzić do uszkodzenia instalacji. W praktyce, zawór bezpieczeństwa powinien otworzyć się, gdy ciśnienie wewnętrzne przekroczy ustaloną wartość, a 6 barów jest powszechnie przyjętą normą dla większości systemów grzewczych. Przykład zastosowania to instalacje ogrzewania podłogowego, gdzie nadmiar ciśnienia może zniszczyć rury. Wybór odpowiedniej nastawy zaworu bezpieczeństwa jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności systemu. Zgodnie z normami PN-EN 12828 oraz PN-EN 12831, należy regularnie kontrolować i konserwować te urządzenia, aby zapewnić ich prawidłowe działanie, co przekłada się na efektywność energetyczną oraz długowieczność instalacji grzewczej.

Pytanie 11

Jakie narzędzia należy zastosować do łączenia rur PE Ø 32 mm podczas instalacji poziomego kolektora, obok gratownika zewnętrznego i wewnętrznego oraz nożyc do cięcia rur?

A. klucza łańcuchowego 1"
B. kształtek zaciskowych 11/4"
C. pilnika w kształcie trójkąta
D. piły metalowej
Kształtki zaciskowe 11/4" są kluczowym elementem w montażu rur PE, zwłaszcza przy instalacji kolektorów poziomych. Te kształtki umożliwiają solidne i szczelne połączenie rur, co jest niezbędne w systemach hydraulicznych i instalacjach wodociągowych. Wykorzystanie kształtek zaciskowych pozwala na łatwe i efektywne złączenie rur, minimalizując ryzyko wycieków, które mogą prowadzić do poważnych uszkodzeń oraz kosztownych napraw. Stosowanie tych kształtek jest zgodne z normami branżowymi, które zalecają użycie komponentów kompatybilnych z materiałem rur, co w przypadku PE jest kluczowe dla zapewnienia długotrwałości i wytrzymałości instalacji. Przykładem zastosowania kształtek zaciskowych 11/4" może być ich użycie w systemach nawadniania, gdzie efektywne połączenia są niezbędne do utrzymania odpowiedniego ciśnienia i przepływu wody. Przed przystąpieniem do montażu warto również zwrócić uwagę na odpowiednie przygotowanie rur, takie jak ich odtłuszczenie oraz użycie gratownika do wygładzenia krawędzi, co dodatkowo zwiększa szczelność połączenia.

Pytanie 12

Filtry powietrza w rekuperatorze powinny być wymieniane

A. co 5-6 miesięcy.
B. co 7-8 miesięcy.
C. na podstawie oceny ich stanu.
D. na podstawie wskazówek od instalatora.
Wymiana filtrów powietrza w rekuperatorze powinna być przeprowadzana na podstawie regularnej oceny ich zużycia, co jest zgodne z najlepszymi praktykami w branży HVAC. Filtry są kluczowymi elementami systemu wentylacji, ponieważ ich stan bezpośrednio wpływa na jakość powietrza oraz efektywność energetyczną urządzenia. Zaleca się regularne sprawdzanie filtrów, aby ocenić stopień ich zatykania i zanieczyszczenia. W praktyce można to zrobić poprzez wizualną inspekcję, a także za pomocą manometrów do pomiaru spadku ciśnienia na filtrze. W przypadku, gdy filtr jest zanieczyszczony, jego wymiana jest konieczna, aby zapewnić optymalną wydajność systemu. Niewłaściwe lub zbyt rzadkie wymiany filtrów mogą prowadzić do obniżenia efektywności rekuperatora, a także zwiększonego zużycia energii, co jest niekorzystne zarówno dla budżetu, jak i dla środowiska. Dlatego kluczowe jest, aby osoby zarządzające systemami wentylacyjnymi były odpowiednio przeszkolone i znały zasady oceny stanu filtrów.

Pytanie 13

Na podstawie projektu technicznego małej elektrowni wodnej wykonuje się

A. protokół odbioru
B. kosztorys inwestorski
C. pomiar powykonawczy
D. zgłoszenie do urzędu dozoru technicznego
Kosztorys inwestorski jest kluczowym dokumentem sporządzanym na podstawie projektu technicznego małej elektrowni wodnej, który szczegółowo przedstawia przewidywane koszty realizacji inwestycji. Jest to istotne narzędzie dla inwestora, ponieważ pozwala na oszacowanie budżetu oraz identyfikację potencjalnych wydatków związanych z budową i eksploatacją elektrowni. Kosztorys obejmuje m.in. koszty materiałów, robocizny, transportu oraz wszelkich niezbędnych prac przygotowawczych. Dobrze przygotowany kosztorys inwestorski uwzględnia także rezerwy na nieprzewidziane wydatki, co jest zgodne z najlepszymi praktykami branżowymi. Na etapie planowania inwestycji, posługiwanie się kosztorysem jest niezbędne, aby ocenić rentowność projektu oraz pozyskać finansowanie, na przykład z funduszy unijnych czy kredytów bankowych. Kosztorysy są również ważnym narzędziem do monitorowania postępów w realizacji projektu oraz do kontroli budżetu w trakcie całego procesu budowlanego.

Pytanie 14

Aby uszczelnić złącza gwintowe stalowych rur, należy użyć

A. taśmę polietylenową
B. pakuły lniane lub konopne
C. celulozy
D. klej uszczelniający
Pakuły lniane lub konopne to tradycyjne materiały uszczelniające, które są powszechnie stosowane do uszczelniania połączeń gwintowych rur stalowych. Dzięki swojej strukturze włókienkowej, pakuły doskonale wypełniają przestrzenie między gwintami, co zapobiega nieszczelnościom. W praktyce, pakuły są używane w instalacjach wodociągowych, gazowych oraz w innych systemach, gdzie wymagane jest szczelne połączenie rur. Warto podkreślić, że pakuły lniane są bardziej odporne na działanie wody, podczas gdy pakuły konopne charakteryzują się większą wytrzymałością mechaniczną. Standardy branżowe, takie jak PN-EN 10226, zalecają stosowanie pakuł jako skutecznego materiału do uszczelniania, zwłaszcza w miejscach narażonych na wysokie ciśnienie. Dobrą praktyką jest także ich impregnacja odpowiednimi smarami, co dodatkowo zwiększa ich właściwości uszczelniające oraz odporność na korozję. Stosowanie pakuł lnianych lub konopnych w połączeniach gwintowych jest nie tylko efektywne, ale i zgodne z normami dotyczącymi materiałów uszczelniających.

Pytanie 15

Do pełnego systemu fotowoltaicznego, który produkuje energię elektryczną z wykorzystaniem energii słonecznej, zaliczają się:

A. powietrzna pompa, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
B. panele fotowoltaiczne, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe
C. kolektor płaski, zasobnik dwuwężownicowy, grupa hydrauliczna, naczynie przeponowe
D. panele fotowoltaiczne, inwerter sieciowy, konstrukcja montażowa na dach, konektor
Poprawna odpowiedź zawiera kluczowe komponenty systemu fotowoltaicznego, który jest niezbędny do efektywnej konwersji promieniowania słonecznego na energię elektryczną. Panele fotowoltaiczne są sercem systemu, ponieważ to w nich zachodzi proces fotowoltaiczny, w wyniku którego energia słoneczna jest przekształcana w prąd stały. Inwerter sieciowy, z kolei, jest odpowiedzialny za konwersję prądu stałego na prąd zmienny, który jest kompatybilny z siecią energetyczną. Konstrukcja montażowa na dach zapewnia stabilność i odpowiednie ustawienie paneli, co maksymalizuje ich wydajność. Konektory służą do bezpiecznego połączenia wszystkich elementów systemu, zapewniając jednocześnie odpowiednią ochronę przed warunkami atmosferycznymi. Ważne jest, aby każdy z tych elementów był zgodny z obowiązującymi standardami branżowymi, co wpływa na trwałość i efektywność całego systemu. Na przykład stosowanie wysokiej jakości materiałów do montażu i komponentów zwiększa niezawodność i żywotność instalacji. Dobrze zaprojektowany system fotowoltaiczny nie tylko przyczynia się do oszczędności energii, ale również zmniejsza emisję CO2, wspierając działania na rzecz zrównoważonego rozwoju.

Pytanie 16

Inwerter to sprzęt instalowany w systemie

A. biogazowni
B. fotowoltaicznej
C. pompy ciepła
D. słonecznej grzewczej
Inwerter jest kluczowym elementem instalacji fotowoltaicznej, służącym do przekształcania prądu stałego (DC) generowanego przez panele słoneczne na prąd zmienny (AC), który może być używany w domowych instalacjach elektrycznych oraz wprowadzany do sieci energetycznej. Jego działanie opiera się na przetwarzaniu energii słonecznej w sposób umożliwiający jej wykorzystanie w codziennym życiu. Przykładowo, w systemach fotowoltaicznych na dachach budynków, inwertery są odpowiedzialne za optymalizację produkcji energii, co przekłada się na niższe rachunki za prąd i zwiększenie efektywności energetycznej. Zgodnie z normami, inwertery powinny spełniać standardy jakości, takie jak IEC 62109, które gwarantują bezpieczeństwo i niezawodność ich działania. Właściwy dobór inwertera, jego moc oraz funkcje, takie jak monitoring wydajności, mają kluczowe znaczenie dla efektywności całego systemu, co podkreśla ich rolę w nowoczesnych instalacjach OZE.

Pytanie 17

Jeśli kolektor słoneczny o powierzchni 2 m2 przy nasłonecznieniu wynoszącym 1 000 W/m2 oddał do systemu 1 400 W energii cieplnej, to jaka jest sprawność urządzenia?

A. 70%
B. 60%
C. 50%
D. 80%
Aby obliczyć sprawność kolektora fototermicznego, należy zastosować wzór: sprawność = (przekazane ciepło / moc napromieniowania) x 100%. W tym przypadku moc napromieniowania wynosi 1 000 W/m2, a powierzchnia kolektora to 2 m2, co daje łączną moc napromieniowania równą 2 000 W (1 000 W/m2 * 2 m2). Kolektor przekazał do instalacji 1 400 W ciepła, więc sprawność wynosi: (1 400 W / 2 000 W) x 100% = 70%. Taka efektywność jest istotna w kontekście projektowania systemów solarnych, ponieważ wyższa sprawność oznacza lepsze wykorzystanie energii słonecznej i niższe koszty eksploatacji. W praktyce, projektanci instalacji solarnych dążą do osiągnięcia jak najwyższej sprawności, aby zminimalizować powierzchnię potrzebną do uzyskania wymaganej ilości energii. Przykładem może być zastosowanie różnych rodzajów powłok absorbujących oraz systemów optymalizacji kątów nachylenia kolektorów, co pozwala na lepsze zbieranie promieniowania słonecznego.

Pytanie 18

Po zakończeniu robót, które są zakrywane, przeprowadza się odbiór

A. końcowy
B. ostateczny
C. wstępny
D. częściowy
Odpowiedź 'częściowy' jest prawidłowa, ponieważ zgodnie z praktyką budowlaną, po zakończeniu robót ulegających zakryciu należy przeprowadzić odbiór częściowy. Działanie to ma na celu zapewnienie, że poszczególne etapy prac zostały wykonane zgodnie z projektem oraz obowiązującymi normami. Odbiór częściowy umożliwia identyfikację ewentualnych błędów przed zakryciem, co jest kluczowe dla dalszych etapów budowy. Na przykład, w przypadku instalacji elektrycznych, dokonanie odbioru częściowego przed zamknięciem ścian pozwala na sprawdzenie poprawności podłączeń oraz zgodności z normami PN-IEC, co może zapobiec poważnym problemom w przyszłości. Zgodnie z definicją zawartą w przepisach prawa budowlanego, odbiór częściowy potwierdza, że dane prace są zakończone, a ich jakość jest zgodna z wymaganiami, co ma kluczowe znaczenie dla bezpieczeństwa i trwałości całej inwestycji.

Pytanie 19

W obiekcie o powierzchni użytkowej 180 m3 system grzewczy działa dzięki kotłowi kondensacyjnemu współpracującemu z kolektorem słonecznym, co w przypadku tej instalacji pozwala na redukcję zużycia gazu o 18%. Jaki jest koszt ogrzewania, jeżeli roczne zużycie gazu wysokometanowego dla tego obiektu wynosi około 2 935 m3, a jednostkowy koszt gazu to przybliżone 1,8 zł/m3?

A. 5 283,00 zł
B. 6 233,94 zł
C. 3 336,00 zł
D. 4 332,06 zł
Odpowiedzi, które nie prowadzą do wyniku 4 332,06 zł, wskazują na nieprawidłową interpretację danych dotyczących zużycia gazu oraz jego kosztów. Należy pamiętać, że całkowite zużycie gazu wynosi 2 935 m3, a po uwzględnieniu 18% oszczędności z wykorzystania kotła kondensacyjnego oraz kolektora słonecznego, rzeczywiste zużycie gazu maleje. Ignorowanie tego faktu prowadzi do błędnych obliczeń. W przypadku niepoprawnych odpowiedzi często popełniane są błędy w proporcjach oraz w podstawowych operacjach matematycznych. Przykładowo, jeśli ktoś pomija oszczędności lub oblicza koszt na podstawie pełnego zużycia bez uwzględnienia redukcji, prowadzi to do znacząco zawyżonych kosztów. Ponadto, nieprawidłowe odpowiedzi mogą wynikać z błędnego pomnożenia lub dodawania wartości, co jest typowe w obliczeniach związanych z kosztami eksploatacyjnymi. Warto zwrócić uwagę na precyzyjne obliczenia oraz prawidłowe podejście do efektywności energetycznej, aby unikać tego typu nieporozumień w przyszłości. Warto również zauważyć, że zgodność z normami dotyczącymi efektywności energetycznej i wykorzystania odnawialnych źródeł energii jest kluczowa dla optymalizacji kosztów oraz ochrony środowiska.

Pytanie 20

Kotły z paleniskiem są odpowiednie do spalania materiałów charakteryzujących się wysoką zawartością żużla?

A. korytkowym
B. narzutowym
C. rusztowym
D. przednim
Kotły z paleniskiem rusztowym są najczęściej stosowane do spalania materiałów o wysokiej zawartości żużla, ponieważ ich konstrukcja umożliwia efektywne odprowadzanie popiołów oraz żużla powstającego podczas procesu spalania. Palenisko rusztowe charakteryzuje się dużą powierzchnią grzewczą, co pozwala na równomierne spalanie paliwa. Dzięki różnym typom rusztów, takim jak ruszty stałe czy ruchome, możliwe jest dostosowanie procesu spalania do specyficznych właściwości paliwa, co zwiększa efektywność energetyczną kotła. Przykładem zastosowania kotłów rusztowych mogą być elektrociepłownie, które wykorzystują węgiel o dużej zawartości popiołu. Dodatkowo, zgodnie z normami emisji, kotły te są zaprojektowane w taki sposób, aby minimalizować emisję zanieczyszczeń, co jest istotnym aspektem w kontekście ochrony środowiska. Warto także zauważyć, że wiele nowoczesnych kotłów rusztowych jest wyposażonych w systemy automatycznego podawania paliwa, co zwiększa komfort eksploatacji oraz efektywność procesu spalania.

Pytanie 21

Do obróbki krawędzi rur miedzianych, które są stosowane w instalacjach ciepłej wody użytkowej i zostały przycięte na odpowiednią długość, należy zastosować

A. zaginarki
B. gradownicy
C. gwinciarki
D. giętarki
Gradownice to narzędzia wykorzystywane do obróbki końców rur, w tym rur miedzianych, w celu uzyskania gładkich i równych krawędzi. Ich zastosowanie jest kluczowe w montażu instalacji ciepłej wody użytkowej, ponieważ zgrubne lub nierówne krawędzie mogą prowadzić do problemów z uszczelnieniem połączeń, co z kolei może skutkować wyciekami i innymi awariami. Gradownice działają na zasadzie mechanicznego usuwania nadmiaru materiału, co pozwala na precyzyjne wygładzenie krawędzi. W praktyce, korzyści płynące z użycia gradownicy obejmują nie tylko poprawę estetyki połączeń, ale również wzrost ich trwałości oraz niezawodności. Zgodnie z obowiązującymi standardami w branży sanitarno-grzewczej, odpowiednio obrobione krawędzie rur miedzianych są kluczowe dla zapewnienia szczelności połączeń lutowanych czy też gwintowanych. Zastosowanie gradownicy jest szczególnie zalecane w sytuacjach, gdy rury są poddawane dużym obciążeniom termicznym i ciśnieniowym, co jest typowe dla instalacji ciepłej wody użytkowej.

Pytanie 22

Do uzupełnienia systemu solarnego, który wspomaga produkcję ciepłej wody użytkowej, powinno się zastosować

A. wodę destylowaną
B. mieszaninę glikolu propylenowego i wody
C. roztwór soli kuchennej
D. wodę z instalacji kotła centralnego ogrzewania
Mieszanina glikolu propylenowego i wody jest optymalnym wyborem do napełnienia instalacji solarnej wspomagającej wytwarzanie ciepłej wody użytkowej. Glikol propylenowy działa jako środek antyzamarzający, co jest kluczowe w przypadku systemów solarnych, szczególnie w chłodniejszych klimatach. Dzięki jego stosunkowo niskiej toksyczności, glikol propylenowy jest bezpieczny dla środowiska i zdrowia, co czyni go preferowanym rozwiązaniem. Taki roztwór nie tylko zapobiega zamarzaniu cieczy w instalacji, ale także zwiększa efektywność przenoszenia ciepła. W praktyce, mieszanka ta pozwala na dłuższe eksploatowanie systemu solarnego bez ryzyka uszkodzeń spowodowanych niskimi temperaturami. W standardach branżowych i zaleceniach producentów instalacji solarnych, tego rodzaju roztwory są powszechnie polecane, co podkreśla ich znaczenie w zapewnieniu niezawodności i wydajności systemu."

Pytanie 23

Skraplacz to urządzenie

A. oddające ciepło do systemu.
B. pobierające ciepło z otoczenia.
C. przekształcające energię elektryczną na cieplną.
D. przekształcające energię cieplną na elektryczną.
Skraplacz jest kluczowym elementem systemów chłodniczych i klimatyzacyjnych, którego podstawową funkcją jest oddawanie energii cieplnej do otoczenia. Działa na zasadzie kondensacji, która zachodzi, gdy gaz chłodniczy, przechodząc z fazy gazowej do ciekłej, oddaje ciepło. Przykładowo, w systemach klimatyzacyjnych, skraplacz odprowadza ciepło z wnętrza budynku na zewnątrz, co pozwala na utrzymanie komfortowej temperatury wewnętrznej. Z perspektywy inżynieryjnej, dobrze zaprojektowany skraplacz powinien charakteryzować się wysoką efektywnością wymiany ciepła oraz niskim oporem przepływu. W praktyce oznacza to zastosowanie odpowiednich materiałów i technologii, takich jak stosowanie rur miedzianych lub aluminium, które dobrze przewodzą ciepło. Warto również wspomnieć o standardach branżowych, takich jak ASHRAE, które określają najlepsze praktyki w projektowaniu i użytkowaniu systemów chłodniczych, w tym skraplaczy.

Pytanie 24

Czym jest mostek termiczny?

A. otworem w przegrodzie budowlanej, który prowadzi rury do kolektora
B. częścią przegrody budowlanej, w której instalowane jest ogrzewanie ścienne
C. przepustem w przegrodzie budowlanej, którym prowadzi się rury do dolnego źródła ciepła
D. elementem przegrody budowlanej, przez który dochodzi do utraty ciepła
Mostek termiczny jest istotnym elementem w konstrukcji przegrody budowlanej, który prowadzi do niepożądanej utraty ciepła. W praktyce oznacza to, że w miejscach, gdzie materiał budowlany ma różne właściwości termiczne, może dojść do powstania mostków, które obniżają efektywność energetyczną budynku. Na przykład, mostki termiczne często występują w miejscach, gdzie materiale budowlanym przechodzą rury, w narożnikach lub na styku różnych materiałów. Zgodnie z normami budowlanymi, takich jak PN-EN ISO 10077, projektanci muszą identyfikować te miejsca i stosować odpowiednie materiały izolacyjne, aby zminimalizować straty ciepła. W praktyce, zastosowanie zaawansowanych technik budowlanych, takich jak termografia, pozwala na lokalizację mostków termicznych, co z kolei umożliwia ich usunięcie lub zredukowanie. Właściwe zarządzanie mostkami termicznymi jest kluczowe dla osiągnięcia wysokiej efektywności energetycznej obiektów budowlanych oraz spełnienia wymogów dotyczących oszczędzania energii.

Pytanie 25

Kiedy odbywa się odbiór instalacji solarnej?

A. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
B. przed pierwszym uruchomieniem systemu.
C. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
D. po pierwszym uruchomieniu systemu.
Odbiór instalacji solarnej po pierwszym uruchomieniu jest kluczowym etapem w zapewnieniu, że system działa zgodnie z wymaganiami projektowymi oraz spełnia normy bezpieczeństwa. Po pierwszym uruchomieniu można ocenić, jak instalacja reaguje na różne warunki operacyjne, takie jak wydajność paneli słonecznych, efektywność wymiany ciepła oraz ogólne zachowanie systemu. Warto zwrócić uwagę na monitorowanie parametrów, takich jak ciśnienie i temperatura, które powinny mieścić się w przyjętych normach. Przykładem zastosowania tego procesu może być sprawdzenie, czy pompa obiegowa działa z odpowiednią mocą, co ma kluczowe znaczenie dla efektywności całej instalacji. Praktyki te są zgodne z wytycznymi branżowymi, takimi jak normy ISO oraz lokalne regulacje dotyczące odnawialnych źródeł energii, które podkreślają znaczenie starannego odbioru technicznego w celu zapewnienia długotrwałej i niezawodnej pracy systemu.

Pytanie 26

Czym są zrębki?

A. rozdrobnione pnie i gałęzie drzew
B. odpady powstałe podczas pielęgnacji drzew
C. wióry z obróbki drewna
D. mieszanina trocin i kleju
Wszystkie alternatywne odpowiedzi podane w pytaniu zawierają błędne definicje, które nie oddają charakterystyki zrębków. Mieszanina kleju i trocin, opisana w pierwszej odpowiedzi, jest pojęciem zupełnie obcym dla zrębków, które są wyłącznie produktem naturalnym uzyskanym z drewna. Trociny są drobnymi wiórami powstającymi w trakcie obróbki drewna, ale nie można ich uznać za zrębki, które są większymi kawałkami materiału drzewnego. Odpady po pielęgnacji drzewa, jak sugeruje kolejna odpowiedź, odnoszą się do różnych rodzajów resztek po pracach ogrodniczych, które mogą obejmować nie tylko gałęzie, ale również liście, korę i inne organiczne pozostałości, co nie jest zgodne z definicją zrębków. Ostatnia opcja, dotycząca rozdrobnionych pni i gałęzi, jest najbliższa prawidłowej definicji, jednak termin „rozdrobnione” nie oddaje w pełni procesu przetwarzania, jakim jest shredding. Zrozumienie definicji zrębków wymaga znajomości procesów przetwórstwa drewna oraz ich zastosowań w przemyśle, co jest kluczowe w kontekście gospodarki o obiegu zamkniętym oraz odnawialnych źródeł energii.

Pytanie 27

W którym kosztorysie realizacji budowy elektrowni wiatrowej zawarte są przewidywane wydatki na materiały, wyposażenie oraz prace, a także narzuty?

A. Powykonawczym
B. Ślepym
C. Inwestorskim
D. Dodatkowym
Kosztorys inwestorski to mega ważny dokument w budowlance. Określa, ile wszystko będzie kosztować, zarówno materiały, jak i robocizna czy sprzęt. Dzięki niemu inwestor ma jasny obraz wydatków związanych z projektem, co jest super istotne, żeby dobrze zarządzać budżetem. Przed rozpoczęciem budowy, na etapie planowania, ten kosztorys jest sporządzany i stanowi bazę do dalszych działań. Na przykład, przy budowie elektrowni wiatrowej, taki kosztorys mógłby zawierać analizy wydatków na turbiny, instalację elektryczną i prace montażowe. Warto też pamiętać, że ceny materiałów mogą różnić się w czasie, dlatego dobrze jest to uwzględniać w kosztorysie. Z mojego doświadczenia, umiejętność tworzenia takich dokumentów jest kluczowa, bo może uratować projekt przed nieprzyjemnymi niespodziankami.

Pytanie 28

Elektrownie wodne, które czerpią energię z ruchu wody, nazywamy elektrowniami

A. przepływowymi
B. cieplnymi
C. regulacyjnymi
D. szczytowo-pompowymi
Elektrownie wodne przepływowe są kluczowym elementem systemów energetycznych, wykorzystując naturalny przepływ wody w rzekach do generowania energii elektrycznej. Działają na zasadzie zainstalowania turbin w miejscach, gdzie woda porusza się z odpowiednią prędkością, co pozwala na bezpośrednie przekształcenie energii kinetycznej w energię elektryczną. Przykłady takich elektrowni obejmują elektrownie usytuowane na rzekach, gdzie nie ma potrzeby budowy dużych zbiorników, co zmniejsza wpływ na środowisko i pozwala na minimalizację kosztów budowy i eksploatacji. Przepływowe elektrownie wodne są często preferowane, gdyż ich działanie nie wymaga skomplikowanych systemów magazynowania wody, a generowana energia jest bardziej stabilna w porównaniu do innych typów elektrowni, co jest zgodne z najlepszymi praktykami w branży energetycznej, takimi jak zrównoważony rozwój i efektywność energetyczna.

Pytanie 29

Zasobnik w kotle na biomasę ma pojemność 250 kg peletów. Kocioł uzupełniany jest co 3 dni. Jaki jest całkowity koszt paliwa zużywanego w ciągu 30 dni, jeśli cena 1 kg peletu wynosi 1,10 zł?

A. 2 750 zł
B. 825 zł
C. 275 zł
D. 8 250 zł
Aby obliczyć koszt paliwa zużywanego w ciągu 30 dni, należy najpierw określić, ile razy kocioł zostanie napełniony w tym czasie. Zasobnik kotła na biomasę ma pojemność 250 kg peletu, a kocioł napełniany jest co 3 dni. W ciągu 30 dni kocioł będzie napełniany 10 razy (30 dni / 3 dni = 10 napełnień). Ponieważ każde napełnienie wymaga 250 kg peletu, łączna ilość peletów zużytych w ciągu 30 dni wynosi 250 kg x 10 = 2500 kg. Koszt 1 kg peletu wynosi 1,10 zł, więc całkowity koszt paliwa wyniesie 2500 kg x 1,10 zł = 2750 zł. Takie obliczenia są standardem w zarządzaniu kosztami energii w systemach ogrzewania, szczególnie przy stosowaniu biomasy jako odnawialnego źródła energii. Zrozumienie tego procesu pozwala na efektywne planowanie wydatków oraz optymalizację zużycia paliwa w instalacjach grzewczych, co jest kluczowe dla zrównoważonego rozwoju i ograniczenia emisji CO2.

Pytanie 30

Paliwo uzyskane z kompresji trocin, które są generowane podczas obróbki drewna oraz innych procesów związanych z jego przetwarzaniem, to

A. zrębki
B. ziarno
C. ekogroszek
D. pelet
Pelet to paliwo stałe, które powstaje poprzez sprasowanie trocin, wiórów oraz innych odpadów drzewnych. Jest to produkt ściśle związany z wykorzystaniem surowców drzewnych w sposób efektywny i ekologiczny. Pelet charakteryzuje się wysoką gęstością energetyczną, co sprawia, że jest chętnie stosowany w piecach i kotłach na biomasę. Dzięki odpowiedniej technologii produkcji, pelet cechuje się niską wilgotnością oraz stałą wielkością, co ułatwia jego transport i magazynowanie. Zastosowanie peletu w systemach grzewczych przyczynia się do redukcji emisji spalin oraz wykorzystania odnawialnych źródeł energii. Warto również zauważyć, że pelet podlega różnym normom jakościowym, co zapewnia jego wysoką efektywność spalania oraz minimalizację osadów popiołu, co jest istotne w kontekście ochrony środowiska. Pelet może być wykorzystywany w domach jednorodzinnych, a także w przemyśle, gdzie coraz częściej zastępuje tradycyjne paliwa kopalne.

Pytanie 31

Podczas wyboru miejsca należy brać pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. turbiny wodnej
B. pompy ciepła
C. biogazowni
D. elektrowni wiatrowej
Wytwarzanie infradźwięków, które występuje w zakresie poniżej 20 Hz, jest szczególnie istotnym zagadnieniem przy wyborze lokalizacji dla elektrowni wiatrowych. Elektrownie wiatrowe generują hałas w postaci infradźwięków, który może wpływać na otoczenie, w tym na zdrowie ludzi i zwierząt. Właściwe zaplanowanie lokalizacji elektrowni wiatrowej powinno uwzględniać nie tylko aspekty techniczne, takie jak dostępność wiatru, ale również potencjalny wpływ na środowisko. Przykładowo, w wielu krajach, takich jak Niemcy czy Dania, wprowadzono wytyczne dotyczące minimalnych odległości elektrowni wiatrowych od siedzib ludzkich, aby zminimalizować negatywne skutki akustyczne. Ponadto, stosowanie technologii redukcji hałasu oraz odpowiedni dobór lokalizacji, z daleka od gęsto zaludnionych obszarów, pozwala na zachowanie standardów ochrony środowiska, takich jak normy ISO 9613 dotyczące akustyki. Dlatego odpowiedni dobór lokalizacji jest kluczowy dla zminimalizowania wpływu infradźwięków na otoczenie.

Pytanie 32

Rozmieszczenie podłączeń urządzeń oraz armatury w instalacji ilustrują rysunki

A. dokładnych
B. przybliżonych
C. schematycznych
D. lokalnych
Odpowiedź "schematycznych" jest prawidłowa, ponieważ schematy instalacji przedstawiają ogólny układ i połączenia pomiędzy urządzeniami w instalacjach budowlanych, takich jak instalacje elektryczne, wodociągowe czy grzewcze. Schematy te są kluczowe dla inżynierów i techników, ponieważ ułatwiają zrozumienie zasady działania systemu oraz kolejności podłączeń. W praktyce, schematyczne rysunki stosowane są podczas projektowania i instalacji, co pozwala na szybsze lokalizowanie problemów oraz planowanie serwisów. W branży budowlanej istnieją standardy, takie jak normy ISO i PN, które regulują sposób tworzenia takich schematów, co zapewnia ich jednolitość i zrozumiałość dla wszystkich użytkowników. Przykładem może być schemat instalacji elektrycznej, który ilustruje rozmieszczenie gniazdek, włączników oraz źródeł światła, co jest niezbędne do poprawnego wykonania instalacji oraz późniejszego jej użytkowania.

Pytanie 33

Hot spoty są poważnym zagrożeniem dla instalacji paneli fotowoltaicznych i powstają w wyniku

A. warunków pogodowych
B. przewodzenia prądu
C. występowania mikrouszkodzeń
D. korozji modułów
Z tego, co wiem, warunki atmosferyczne raczej same w sobie nie są przyczyną hot spotów, chociaż na pewno wpływają na wydajność systemu. Jak temperatura, opady czy nasłonecznienie, są ważne, ale to nie one tworzą mikrouszkodzenia. Przewodność elektryczna jest ważna dla całego układu, ale sama w sobie nie sprawia, że hot spoty się pojawiają. Problemy z przewodnością mogą wyniknąć z błędów montażowych czy uszkodzeń, ale to nie jest ich bezpośrednia przyczyna. Korozja jest bardziej problemem z trwałością materiałów w dłuższym czasie, a nie z ich wydajnością, jeśli mówimy o hot spotach. Często myślimy, że wszystkie problemy z panelami są ze sobą powiązane, a to nieprawda, bo każdy z tych czynników wymaga osobnego spojrzenia. Żeby skutecznie zarządzać instalacją fotowoltaiczną, trzeba zrozumieć, że hot spoty wynikają z konkretnych uszkodzeń mechanicznych, a diagnostyka i konserwacja muszą być przemyślane.

Pytanie 34

Aby podłączyć wylot zimnego powietrza z parownika monoblokowej pompy ciepła typu powietrze-woda o współczynniku COP = 3,5, która podgrzewa wodę o mocy 7 kW, należy zastosować

A. rury PVC o średnicy 125 mm
B. rury miedzianej o średnicy 25 mm
C. rury PVC o średnicy 20 mm
D. rury stalowej o średnicy 125 mm
Rura PVC o średnicy 125 mm to całkiem dobry wybór do podłączenia wylotu zimnego powietrza z parownika w monoblokowej pompie ciepła powietrze-woda. Gdy projektujemy systemy HVAC, ważne, żeby materiały, które używamy, były zgodne z wymaganiami dotyczącymi przepływu powietrza i odporności na różne warunki atmosferyczne, a rura PVC właśnie takie właściwości ma. Średnica 125 mm powinna zapewnić odpowiedni przepływ powietrza, co jest kluczowe dla efektywności pompy ciepła, szczególnie gdy ma ona współczynnik COP na poziomie 3,5 i moc 7 kW. Warto pamiętać, żeby przy doborze materiałów do instalacji HVAC sprawdzić normy branżowe, jak PN-EN 1452, które precyzują wymagania dla rur w systemach hydraulicznych. Rury PVC są naprawdę niezawodne, łatwe do zamontowania i dobrze znoszą korozję. Przykładem ich zastosowania mogą być instalacje wentylacyjne czy klimatyzacyjne, gdzie odpowiedni przepływ powietrza przekłada się na komfort użytkowników i efektywność energetyczną całego systemu.

Pytanie 35

Z informacji zawartych w dokumentacji wynika, że roczne wydatki na energię elektryczną w obiekcie użyteczności publicznej wynoszą 6000 zł. Inwestor postanowił zamontować na dachu budynku system paneli fotowoltaicznych, aby obniżyć te wydatki. Dzięki temu koszty zużycia energii elektrycznej będą niższe o 75%. Jaką kwotę będzie płacił za energię elektryczną po przeprowadzeniu tej inwestycji?

A. 5925 zł
B. 5975 zł
C. 4500 zł
D. 1500 zł
Poprawna odpowiedź to 1500 zł, ponieważ inwestor decydując się na montaż paneli fotowoltaicznych, zmniejsza swoje roczne koszty energii elektrycznej o 75%. To oznacza, że po wdrożeniu systemu będzie płacił jedynie 25% pierwotnej kwoty rachunków. Wyliczenie jest proste: 25% z 6000 zł to 1500 zł (6000 zł x 0,25 = 1500 zł). Instalacja paneli fotowoltaicznych to nie tylko sposób na redukcję kosztów, ale również na zredukowanie śladu węglowego budynku, co jest zgodne z trendami zrównoważonego rozwoju i efektywności energetycznej. Panele fotowoltaiczne przekształcają energię słoneczną w energię elektryczną, co może znacząco obniżyć zależność od zewnętrznych dostawców energii. Przed podjęciem decyzji o inwestycji warto przeprowadzić analizę techniczną i ekonomiczną, aby oszacować potencjalne oszczędności oraz czas zwrotu z inwestycji, co jest kluczowe w kontekście długoterminowego planowania finansowego budynków użyteczności publicznej.

Pytanie 36

Czym jest pelet?

A. słomą w pakach
B. osadem pochodzącym z oczyszczania ścieków
C. paliwem otrzymywanym z przetworzonego drewna
D. paliwem wytwarzanym z węgla brunatnego
Pelet to materiał energetyczny w postaci małych, sprasowanych granulek, który powstaje w wyniku przetwarzania surowców drzewnych, takich jak trociny, wióry czy zrębki. Proces produkcji peletów obejmuje ich suszenie, a następnie prasowanie pod wysokim ciśnieniem, co pozwala na uzyskanie zwartej struktury oraz zwiększenie gęstości energetycznej. Pelet jest uznawany za paliwo ekologiczne, ponieważ jego spalanie generuje znacznie mniejsze ilości dwutlenku węgla w porównaniu z paliwami kopalnymi. W praktyce, pelet jest wykorzystywany w piecach na pelet, kotłach i piecach kominkowych, co sprawia, że stanowi alternatywę dla gazu, oleju opałowego czy węgla. Warto również zauważyć, że produkcja peletów musi spełniać określone normy jakościowe, takie jak ENplus lub DINplus, które zapewniają odpowiednią kaloryczność oraz niską zawartość popiołu, co jest kluczowe dla efektywności energetycznej i ochrony środowiska.

Pytanie 37

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
B. co dwa lata
C. przynajmniej dwa razy w roku
D. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 38

Aby skręcić rury o dużych średnicach w trudno dostępnych miejscach, należy zastosować klucz

A. nastawny
B. uniwersalny
C. szwedzki
D. łańcuchowy
Klucz łańcuchowy jest specjalistycznym narzędziem przeznaczonym do skręcania i odkręcania rur dużych średnic, szczególnie w miejscach o ograniczonym dostępie. Jego konstrukcja pozwala na pewne chwytanie rur, dzięki czemu minimalizuje ryzyko ich uszkodzenia. Klucz łańcuchowy działa na zasadzie owinięcia łańcucha wokół rury, co umożliwia jego pewne obracanie i jednocześnie zapewnia dużą siłę chwytu. W praktyce, zastosowanie klucza łańcuchowego jest niezwykle istotne w branżach takich jak hydraulika czy instalacje przemysłowe, gdzie często spotyka się rury o dużych średnicach. W takich przypadkach tradycyjne klucze, takie jak klucze nastawne czy szwedzkie, mogą okazać się nieefektywne lub wręcz niemożliwe do użycia ze względu na ograniczoną przestrzeń roboczą. Użycie klucza łańcuchowego jest zgodne z dobrą praktyką, ponieważ pozwala na zachowanie bezpieczeństwa pracy oraz efektywności wykonywanych działań. Warto pamiętać, że prawidłowe użycie tego narzędzia wymaga również znajomości technik ich stosowania oraz odpowiednich procedur BHP, co dodatkowo zwiększa efektywność całego procesu.

Pytanie 39

Aby zamontować poziomy wymiennik gruntowy, na początku należy

A. przygotować wykop
B. usunąć wierzchnią warstwę gleby
C. wytyczyć miejsce ułożenia wymiennika
D. określić lokalizację montażu pompy ciepła
Wytyczenie miejsca ułożenia wymiennika gruntowego poziomego jest kluczowym pierwszym krokiem w procesie instalacji. Ten etap pozwala na precyzyjne określenie lokalizacji, w której wymiennik będzie zainstalowany, biorąc pod uwagę czynniki takie jak dostępność terenu, warunki glebowe oraz odległość od budynku. Właściwe wytyczenie miejsca ma wpływ na efektywność działania pompy ciepła oraz na późniejsze prace budowlane. Przykładowo, jeśli wymiennik nie zostanie odpowiednio wytyczony, może to prowadzić do trudności w montażu oraz do ewentualnych problemów z wymianą ciepła, co obniża efektywność systemu. Zgodnie z dobrymi praktykami w branży, przed rozpoczęciem jakichkolwiek prac ziemnych, warto wykonać dokładne pomiary oraz, jeśli to możliwe, skonsultować się z geodetą, aby uniknąć problemów związanych z ułożeniem rur w niewłaściwych warunkach glebowych lub w pobliżu innych instalacji podziemnych.

Pytanie 40

W czasie zimowym można wykorzystać odwrócony cykl cieczy roboczej w systemie solarnym do eliminacji śniegu oraz rozmrażania lodu na powierzchni kolektorów słonecznych?

A. próżniowo-rurowych
B. płaskich próżniowych
C. rurowych heat-pipe
D. płaskich cieczowych
Odpowiedzi takie jak "rurowych heat-pipe", "płaskich próżniowych" oraz "próżniowo-rurowych" nie są odpowiednie w kontekście usuwania śniegu i rozmrażania lodu z powierzchni kolektorów słonecznych. Kolektory rurowe heat-pipe działają na zupełnie innej zasadzie; ich konstrukcja opiera się na wykorzystaniu rur wypełnionych cieczą, która odparowuje i skrapla się, ale nie zapewniają one możliwości aktywnego podgrzewania powierzchni w celu usunięcia zalegających zanieczyszczeń. Dodatkowo, kolektory płaskie próżniowe charakteryzują się izolacją, która może utrudniać transfer ciepła do środowiska zewnętrznego, co czyni je mniej efektywnymi w kontekście odśnieżania. Próżniowo-rurowe systemy, mimo że oferują wysoką efektywność w zbieraniu energii słonecznej, również nie są zaprojektowane do aktywnego podgrzewania powierzchni kolektorów, co ogranicza ich funkcjonalność w zimowych warunkach. Typowym błędem myślowym jest przypuszczenie, że wszystkie typy kolektorów mogą być używane w tych samych warunkach; wybór odpowiedniego rodzaju systemu słonecznego powinien być dostosowany do specyficznych potrzeb oraz warunków lokalnych, co jest kluczowe dla zapewnienia efektywności energetycznej i trwałości instalacji.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły