Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 2 czerwca 2025 00:02
  • Data zakończenia: 2 czerwca 2025 00:18

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgodnie z numeracją określoną przez producenta, pierwszy cylinder w silniku rzędowym czterosuwowym

A. jest zawsze z prawej strony pojazdu
B. może być umiejscowiony od strony koła zamachowego
C. może być symetrycznie ulokowany pomiędzy innymi cylindrami
D. znajduje się zawsze z przodu auta
Pierwszy cylinder w czterosuwowym silniku rzędowym może być umiejscowiony od strony koła zamachowego, co jest zgodne z praktykami stosowanymi w wielu konstrukcjach silnikowych. To ulokowanie cylindrów ma znaczenie w kontekście równowagi silnika oraz efektywności pracy. W niektórych silnikach, zwłaszcza tych zaprojektowanych do zastosowań w motoryzacji, pierwszy cylinder często znajduje się zgodnie z konwencjami producentów, co wpływa na sposób, w jaki silnik jest zaprojektowany, montowany i serwisowany. Przykładem mogą być silniki marki Ford, gdzie mechanicy często muszą uwzględniać to umiejscowienie przy pracach związanych z naprawą układu zapłonowego. Dodatkowo, umiejscowienie cylindrów ma wpływ na sposób, w jaki silnik generuje moc oraz moment obrotowy, co ma kluczowe znaczenie dla osiągów pojazdów. W literaturze technicznej oraz w dokumentacjach producentów można znaleźć wytyczne dotyczące tego, jak interpretować umiejscowienie cylindrów w kontekście ich numeracji, co jest istotne dla prawidłowego zrozumienia struktury silnika oraz jego funkcjonowania.

Pytanie 2

Jakie jest główne przeznaczenie odpowietrzenia skrzyni korbowej silnika?

A. zmniejszenia ciśnienia w skrzyni korbowej
B. usunięcia nadmiaru oleju z skrzyni korbowej
C. ochrony przed przedostawaniem się paliwa do oleju
D. sterowania ciśnieniem w systemie smarowania silnika
Odpowietrzenie skrzyni korbowej silnika ma kluczowe znaczenie dla zachowania optymalnych warunków pracy silnika. Głównym celem tego procesu jest obniżenie ciśnienia w skrzyni korbowej, co zapobiega nieszczelności uszczelek oraz wyciekom oleju. Wysokie ciśnienie może prowadzić do zjawiska znanego jako "smołowatość", gdzie olej staje się gęstszy i mniej skuteczny w smarowaniu. Odpowietrzenie umożliwia właściwy przepływ oleju, co zapewnia jego efektywne smarowanie i chłodzenie elementów silnika. W praktyce, odpowiednie wentylowanie skrzyni korbowej jest realizowane poprzez specjalne otwory i zawory, które usuwają nadmiar ciśnienia, a także zanieczyszczenia. Przykładowo, w silnikach spalinowych wykorzystywane są systemy PCV (Positive Crankcase Ventilation), które nie tylko odprowadzają nadmiar ciśnienia, ale także recyrkulują opary paliwa, co zmniejsza emisję spalin i wspomaga ochronę środowiska. Zgodnie z najlepszymi praktykami branżowymi, regularne sprawdzanie i konserwacja systemu odpowietrzania są kluczowe dla długowieczności silnika oraz jego optymalnej wydajności.

Pytanie 3

W samochodzie zauważono nierówną pracę silnika przy wyższych obrotach. Na początku należy zweryfikować

A. opory w układzie napędowym
B. drożność filtra paliwa
C. szczelność układu chłodzenia
D. ciśnienie w układzie smarowania
Zarządzanie problemami związanymi z pracą silnika wymaga systematycznego podejścia do diagnostyki. Odpowiedzi, które koncentrują się na oporach w układzie napędowym, ciśnieniu w układzie smarowania oraz szczelności układu chłodzenia, mogą nie być właściwym kierunkiem rozwiązywania problemu z nierówną pracą silnika przy wyższych prędkościach obrotowych. Oprócz tego, układ napędowy, choć ma znaczenie dla całej dynamiki pojazdu, nie jest bezpośrednio odpowiedzialny za dostarczanie paliwa i jego efektywne spalanie, co jest kluczowe dla stabilności pracy silnika. Oporami w układzie napędowym mogą być wpływy związane z zużyciem mechanizmów przeniesienia napędu, które nie manifestują się w formie nierówności pracy silnika, lecz raczej w odczuciu szarpania czy problemach z przyspieszeniem. Ponadto, ciśnienie w układzie smarowania wpływa głównie na odpowiednie smarowanie elementów silnika, co jest istotne, ale niewystarczające dla analizy problemów z dostarczaniem paliwa. Z kolei szczelność układu chłodzenia jest kluczowa dla uniknięcia przegrzewania silnika, lecz sama w sobie nie ma wpływu na jego pracę, gdyż nie dotyczy bezpośrednio układu paliwowego. Oparte na niepoprawnych przesłankach diagnozowanie problemów silnikowych może prowadzić do błędnych decyzji serwisowych i niepotrzebnych kosztów. Aby skutecznie zarządzać problemami silnika, istotne jest zrozumienie, że priorytetowe jest zbadanie układu paliwowego, co w praktyce może znacznie ułatwić proces naprawy.

Pytanie 4

Podczas holowania uszkodzonego samochodu z automatyczną skrzynią biegów należy

A. odłączyć system sterowania skrzynią biegów
B. unosić oś napędzaną pojazdu
C. ustawić dźwignię zmiany biegów w pozycji D (jazda)
D. spuścić olej ze skrzyni biegów
Podczas holowania uszkodzonego pojazdu wyposażonego w automatyczną skrzynię biegów kluczowe jest uniesienie osi napędzanej, co zapobiega uszkodzeniu skrzyni biegów. Automatyczne skrzynie biegów są zaprojektowane do pracy w ruchu i ich elementy, takie jak pompa olejowa, wymagają ruchu, aby prawidłowo smarować wewnętrzne części. Jeśli pojazd jest holowany w sposób, który nie unosi osi napędzanej, istnieje ryzyko, że olej smarujący nie będzie krążył, co może prowadzić do przegrzania lub uszkodzenia skrzyni biegów. Przykładem prawidłowego postępowania jest użycie platformy holowniczej, która unosi cały przód lub tył pojazdu, co zapewnia, że skrzynia biegów pozostaje w bezpiecznej i odpowiedniej pozycji. W branży motoryzacyjnej standardowym podejściem jest unikanie holowania pojazdów z automatycznymi skrzyniami biegów na kołach napędzanych, co może być zgodne z wytycznymi producentów pojazdów. Warto także zapoznać się z instrukcją obsługi pojazdu, gdzie często znajdziemy informacje dotyczące holowania.

Pytanie 5

Kierowca ma problem z uruchomieniem pojazdu. Wał korbowy się obraca, jednak silnik nie startuje. Zanim przeprowadzisz diagnozę układu zapłonowego, powinieneś najpierw zbadać układ

A. elektryczny alternatora
B. napędowy
C. zasilania paliwem
D. wydechowy
Diagnozowanie układu napędowego jako pierwszego kroku w sytuacji, gdy silnik nie uruchamia się, jest błędnym podejściem. Układ napędowy, który obejmuje m.in. skrzynię biegów i elementy przeniesienia napędu, ma na celu przekazywanie mocy z silnika na koła. W przypadku, gdy wał korbowy obraca się, oznacza to, że silnik jest mechanicznie sprawny i zdolny do generowania mocy, co wskazuje, że układ napędowy nie jest źródłem problemu. Sprawdzanie układu wydechowego również nie jest priorytetowe, gdyż jego funkcja polega na odprowadzaniu spalin z silnika, a nie na dostarczeniu energii do uruchomienia silnika. Z kolei diagnozowanie układu elektrycznego alternatora, przeznaczonego do ładowania akumulatora i zasilania systemów elektrycznych, nie powinno być pierwszym krokiem, chyba że podejrzewamy problemy z zasilaniem elektrycznym. Właściwe podejście diagnostyczne powinno zaczynać się od układu zasilania paliwem, ponieważ to on jest odpowiedzialny za dostarczenie niezbędnej mieszanki paliwowo-powietrznej do cylindrów, co jest kluczowe dla procesu spalania i uruchomienia silnika. Niewłaściwe podejścia mogą prowadzić do nieefektywnej diagnostyki i marnowania czasu, dlatego istotne jest zrozumienie zasady działania poszczególnych układów w silniku oraz ich wzajemnych interakcji.

Pytanie 6

Złączenie elementów składowych podłogi w samochodzie osobowym zazwyczaj realizuje się poprzez

A. klejenie
B. kręcenie
C. zgrzewanie
D. lutowanie
Zgrzewanie to chyba jedna z najfajniejszych metod, gdy chodzi o łączenie elementów podłogi w samochodach. Dlaczego? Bo jest naprawdę skuteczne i ma do tego świetne rozwiązania technologiczne. Cały proces polega na tym, że najpierw podgrzewamy krawędzie elementów, a potem je wyginamy, żeby stworzyć mocne połączenie. To ważne, zwłaszcza w przypadku podłóg, bo muszą one spełniać wysokie normy bezpieczeństwa i wytrzymałości. Dzięki zgrzewaniu, samochody są odporne na różne obciążenia, zarówno te związane z ruchem, jak i zmiany temperatury. Na dodatek, w nowoczesnych autach, gdzie liczy się lekkość i oszczędność materiałów, zgrzewanie idealnie się sprawdza. Dzięki temu możemy zmniejszyć wagę pojazdu, co przekłada się na lepsze osiągi i mniejsze zużycie paliwa. Warto też wspomnieć o zgrzewaniu ultradźwiękowym, które jest ekstra, bo pozwala na dokładne łączenie cienkowarstwowych części bez ryzyka ich uszkodzenia. Nie bez powodu w branży motoryzacyjnej zgrzewanie jest tak popularne - to kluczowa technika, która naprawdę ma znaczenie w produkcji.

Pytanie 7

Metaliczne stuki z obszaru głowicy silnika mogą być spowodowane

A. nieszczelną uszczelką pod głowicą
B. niskim ciśnieniem sprężania
C. nieszczelnością zaworów
D. zbyt dużym luzem zaworowym
Zbyt duży luz zaworowy jest jedną z częstszych przyczyn metalicznych stuków w silniku. Gdy luz zaworowy jest zbyt duży, zawory nie zamykają się prawidłowo, co prowadzi do nieprawidłowego cyklu pracy silnika. Taki stan rzeczy może powodować, że zawory nie są w stanie wygenerować wystarczającej siły do zamknięcia, co skutkuje uderzeniami metalowymi. Oprócz hałasu, może to prowadzić do poważnych uszkodzeń w układzie rozrządu i górnej części silnika. Przykładowo, niewłaściwe ustawienie luzu zaworowego może skutkować ich nadmiernym zużyciem, co z kolei prowadzi do nieprawidłowej pracy silnika. W praktyce, mechanicy często zalecają regularne kontrolowanie i regulację luzu zaworowego zgodnie z instrukcjami producenta, co jest kluczowym elementem konserwacji silnika. Pomiar luzu zaworowego powinien być dokonywany za pomocą specjalistycznych narzędzi, takich jak feeler gauge, a odpowiednie wartości luzu są zazwyczaj podane w dokumentacji technicznej pojazdu. Przestrzeganie tych standardów pomoże zapobiec problemom z hałasem i zwiększy żywotność silnika."

Pytanie 8

Na desce rozdzielczej samochodu zaświeciła się lampka ostrzegawcza ciśnienia oleju. W pierwszej kolejności powinno się

A. zweryfikować wydajność pompy olejowej
B. ocenić funkcjonowanie czujnika oleju
C. dokonać pomiaru ciśnienia oleju
D. sprawdzić poziom oleju
Reagowanie na zapalenie się kontrolki ciśnienia oleju poprzez pomiar ciśnienia oleju czy sprawdzanie wydajności pompy oleju, zanim zostanie skontrolowany poziom oleju, jest mylnym podejściem. Ciśnienie oleju w układzie smarowania jest zależne od kilku czynników, a najważniejszym z nich jest poziom oleju. Pomiar ciśnienia oleju może być niewłaściwy, jeśli olej jest na niskim poziomie, co może prowadzić do błędnych wniosków i niepotrzebnych wydatków na naprawy. Zamiast tego, bezpośrednie sprawdzenie poziomu oleju dostarczy natychmiastowej informacji o stanie smarowania silnika. Dodatkowo, sprawdzanie wydajności pompy oleju lub działania czujnika oleju bez wcześniejszej weryfikacji poziomu oleju wprowadza w błąd, ponieważ te elementy mogą działać poprawnie, a problemem może być jedynie brak oleju. W kontekście dobrych praktyk, zawsze należy zaczynać od najprostszej i najczęstszej przyczyny problemu, co w tym przypadku oznacza kontrolę poziomu oleju. Ignorowanie tego kroku zwiększa ryzyko poważnych uszkodzeń silnika, które mogą wyniknąć z niewłaściwego smarowania, co w dłuższej perspektywie prowadzi do wysokich kosztów napraw.

Pytanie 9

Co należy zrobić w przypadku wykrycia nieszczelności w układzie wydechowym?

A. Zwiększyć ciśnienie w układzie
B. Wymienić uszkodzone elementy układu
C. Zastosować taśmę uszczelniającą
D. Zmniejszyć obroty silnika
W przypadku wykrycia nieszczelności w układzie wydechowym, najlepszym rozwiązaniem jest wymiana uszkodzonych elementów układu. Układ wydechowy odgrywa kluczową rolę w odprowadzaniu spalin z silnika, a nieszczelności mogą prowadzić do wycieku spalin, zwiększonego hałasu i nieprawidłowej pracy silnika. Wymiana uszkodzonych elementów, takich jak tłumik, rury czy uszczelki, zapewnia, że układ będzie funkcjonował prawidłowo i efektywnie. Praktyczne przykłady pokazują, że ignorowanie nieszczelności może prowadzić do poważniejszych problemów, takich jak uszkodzenie katalizatora czy pogorszenie osiągów silnika. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola i konserwacja układu wydechowego jest kluczowa dla utrzymania samochodu w dobrym stanie technicznym. Wymiana niesprawnych części na nowe, zgodne ze specyfikacją producenta, jest najlepszym sposobem na zapewnienie bezpieczeństwa i długowieczności pojazdu.

Pytanie 10

Czujniki magnetoindukcyjne wykorzystywane w systemach zapłonowych silników ZI zlikwidowały

A. przerywacz
B. czujnik położenia wału korbowego silnika
C. rozdzielacz zapłonu
D. cewkę zapłonową
Czujniki magnetoindukcyjne, stosowane w układach zapłonowych silników z zapłonem iskrowym (ZI), pełnią kluczową rolę w precyzyjnym określaniu momentu zapłonu mieszanki paliwowo-powietrznej. Dzięki zastosowaniu tych czujników, możliwe stało się wyeliminowanie przerywacza, który dawniej był elementem odpowiedzialnym za przerywanie obwodu w celu generowania impulsu zapłonowego. Przerywacz, jako mechaniczny element, był podatny na zużycie oraz wymagał regularnej konserwacji, co wpływało na niezawodność całego układu zapłonowego. Współczesne czujniki magnetoindukcyjne, działające na zasadzie indukcji elektromagnetycznej, umożliwiają bezpośrednie generowanie sygnałów elektrycznych w odpowiednich momentach, co zwiększa efektywność i dokładność zapłonu. Zastosowanie tych czujników nie tylko upraszcza konstrukcję układu zapłonowego, ale także przyczynia się do zmniejszenia emisji spalin oraz poprawy osiągów silnika. W branży motoryzacyjnej dąży się do minimalizacji liczby elementów mechanicznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 11

Reperacja tarcz hamulcowych w sytuacji, gdy nie są nadmiernie zdeformowane oraz mają właściwą grubość, polega na ich

A. metalizacji
B. galwanizacji
C. przetoczeniu
D. napawaniu
Przetoczenie tarcz hamulcowych to naprawdę ważna sprawa, bo dzięki temu można przywrócić im pierwotną funkcjonalność. Oczywiście, musi być tak, że tarcze nie są mocno zużyte ani zdeformowane. Cały ten proces polega na tym, że mechanicznie usuwamy warstwę materiału z powierzchni tarczy. Dzięki temu pozbywamy się wszelkich nierówności i mamy gładką powierzchnię, która dobrze współpracuje z klockami hamulcowymi. W praktyce, przetoczenie robi się na specjalnych obrabiarkach numerycznych, co gwarantuje, że wszystko jest dokładnie zrobione. Jak tarcze są dobrze przetoczone, to mogą działać dłużej, co jest korzystne nie tylko dla portfela, ale też dla bezpieczeństwa na drodze. Warto pamiętać, że są normy, które mówią, jaką minimalną grubość muszą mieć tarcze po przetoczeniu, żeby nadal dobrze hamowały i były trwałe. Jak są poniżej tych wartości, to może być niebezpiecznie, bo układ hamulcowy może nie działać jak trzeba.

Pytanie 12

Podczas diagnostyki elektrycznej układu zapłonowego wykryto, że silnik nie uruchamia się z powodu braku iskry. Jaka może być przyczyna tego problemu?

A. Zbyt niskie napięcie akumulatora
B. Uszkodzona cewka zapłonowa
C. Niewłaściwe ciśnienie wtrysku paliwa
D. Zatkany filtr powietrza
Brak iskry w układzie zapłonowym jest najczęściej spowodowany problemem z cewką zapłonową. Cewka zapłonowa ma kluczowe znaczenie, ponieważ zamienia niskie napięcie z akumulatora na wysokie napięcie potrzebne do wytworzenia iskry w świecy zapłonowej. Gdy cewka jest uszkodzona, nie jest w stanie wytworzyć wymaganego napięcia, co prowadzi do braku iskry i uniemożliwia uruchomienie silnika. W praktyce, diagnoza uszkodzonej cewki zapłonowej może obejmować pomiar oporności uzwojeń cewki za pomocą multimetru oraz sprawdzenie fizycznego stanu cewki, takiego jak pęknięcia czy ślady przepaleń. Z mojego doświadczenia wynika, że dobrze jest również sprawdzić połączenia elektryczne i upewnić się, że nie ma korozji czy przerw. Wymiana uszkodzonej cewki zapłonowej jest standardową praktyką w naprawach układów zapłonowych i jest zgodna z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 13

Za utrzymanie trakcji w pojeździe poruszającym się odpowiada system

A. EPS
B. ESP
C. OBD
D. ENI
ESP, czyli Electronic Stability Program, to zaawansowany system elektroniczny, który ma na celu poprawę stabilności i kontroli trakcji pojazdu w trakcie jazdy. Działa poprzez monitorowanie prędkości kół, kątów skrętu oraz przyspieszenia, a w przypadku wykrycia utraty trakcji, automatycznie dostosowuje siłę hamowania oraz moc silnika, aby zapobiec poślizgowi. Przykładowo, podczas jazdy na śliskiej nawierzchni, system ESP może interweniować, zmniejszając moc silnika lub hamując konkretne koła, co pomaga zachować kontrolę nad pojazdem. Zgodnie z normami bezpieczeństwa motoryzacyjnego, takie systemy są obowiązkowe w nowych samochodach w wielu krajach, co podkreśla ich kluczowe znaczenie w zapobieganiu wypadkom. Dobre praktyki w dziedzinie inżynierii motoryzacyjnej nakładają na producentów obowiązek testowania i optymalizacji systemów ESP, aby zapewnić ich niezawodność w różnych warunkach drogowych.

Pytanie 14

Refraktometr nie jest przeznaczony do diagnozowania

A. czynnika chłodzącego do napełnienia klimatyzacji
B. płynu do spryskiwaczy
C. płynu chłodzącego
D. elektrolitu używanego w akumulatorach samochodowych
Stosowanie refraktometru do diagnozowania czynników chłodzących do klimatyzacji może wynikać z niepełnego zrozumienia ról, jakie te substancje pełnią w różnych systemach. Refraktometr jest doskonałym narzędziem do analizy płynów, jednak jego zastosowanie ogranicza się do sytuacji, w których istotne są właściwości optyczne substancji. Płyny chłodzące w klimatyzacji zawierają różne związki chemiczne, które nie zawsze mogą być odpowiednio ocenione przez refraktometr. W praktyce, analiza tych płynów wymaga szczegółowych badań jakościowych i ilościowych, które powinny obejmować metody takie jak chromatografia gazowa czy spektroskopia. W przypadku płynów chłodzących, najważniejsze parametry to ciśnienie i temperatura, które mają wpływ na efektywność systemu klimatyzacji. Wybór niewłaściwego narzędzia do analizy może prowadzić do błędnych wniosków, co z kolei może wpłynąć na wydajność systemu. Podobnie, pomiar elektrolitu w akumulatorach, chociaż można wykonać za pomocą refraktometru, wymaga zrozumienia, że istotne jest nie tylko stężenie, ale także poziom naładowania, co jest bardziej kompleksowym procesem. Dlatego, aby skutecznie diagnozować i monitorować różne płyny w pojazdach, ważne jest korzystanie z odpowiednich narzędzi i metod, dostosowanych do specyfiki analizowanej substancji.

Pytanie 15

Do elementów mechanizmu kierowniczego w zawieszeniu samochodu z sztywną osią przednią zaliczamy

A. drążek podłużny
B. koło kierownicy
C. przekładnię kierowniczą
D. koła pojazdu
Drążek podłużny jest kluczowym elementem mechanizmu zwrotniczego w zawieszeniu pojazdu ze sztywną przednią osią. Jego główną funkcją jest przenoszenie sił i momentów z układu kierowniczego na koła pojazdu, co umożliwia precyzyjne sterowanie. Drążki podłużne są projektowane w taki sposób, aby zapewnić stabilność i kontrolę nad pojazdem, szczególnie w trudnych warunkach drogowych. W praktyce zastosowanie drążków podłużnych obejmuje pojazdy osobowe, ciężarowe oraz terenowe, gdzie istotna jest niezawodność i precyzja działania. Zgodnie z normami branżowymi, drążki podłużne powinny być wykonane z materiałów o wysokiej wytrzymałości, aby wytrzymały dynamiczne obciążenia i wibracje. Właściwe ustawienie drążków podłużnych ma kluczowe znaczenie dla geometrii zawieszenia, co wpływa na komfort jazdy oraz bezpieczeństwo. Ich regularna kontrola i serwisowanie są rekomendowane w celu zminimalizowania zużycia i zapewnienia optymalnej wydajności układu kierowniczego.

Pytanie 16

Co może być przyczyną nadmiernego zużycia zewnętrznych krawędzi bieżnika jednej z opon?

A. Nieprawidłowa zbieżność kół
B. Nieodpowiedni kąt nachylenia koła
C. Zbyt niskie ciśnienie w oponie
D. Zbyt wysokie ciśnienie w oponie
Niewłaściwa zbieżność, niewłaściwy kąt pochylenia koła oraz zbyt wysokie ciśnienie w oponie to kwestie, które mogą wpłynąć na zużycie opon, ale nie są one bezpośrednimi przyczynami nadmiernego zużycia bieżnika na zewnętrznych krawędziach. Zbieżność, czyli ustawienie kół w odpowiedniej linii względem osi pojazdu, ma kluczowe znaczenie dla równomiernego zużycia opon. Błędna zbieżność może prowadzić do asymetrycznego zużycia, jednak niekoniecznie ogranicza się jedynie do zewnętrznych krawędzi. Również kąt pochylenia koła, który powinien być dostosowany do specyfikacji producenta, wpływa na kontakt opony z nawierzchnią. Niewłaściwy kąt może spowodować nierównomierne zużycie, ale niekoniecznie odbędzie się to w formie nadmiernego zużycia wyłącznie na zewnętrznych stronach. Z kolei zbyt wysokie ciśnienie w oponie prowadzi do szybszego zużycia środkowej części bieżnika, co jest odwrotnością sytuacji przy zbyt niskim ciśnieniu. Typowe błędy myślowe w analizie zużycia opon obejmują uproszczenia i pomijanie złożoności wpływu różnych parametrów na stan ogumienia. Utrzymanie odpowiednich ciśnień oraz regularne sprawdzanie geometrii kół są kluczowe dla zapewnienia długowieczności opon oraz bezpieczeństwa na drodze.

Pytanie 17

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. wykrycia deformacji oraz bicia tarcz hamulcowych
B. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
C. oceny stopnia zużycia elementów ciernych
D. wykrycia owalizacji bębnów hamulcowych
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 18

Koszt jednego zaworu do silnika samochodu osobowego wynosi 25 zł. Jaką kwotę będzie trzeba wydać na wymianę kompletu zaworów w silniku z oznaczeniem 1.8 16V?

A. 400 zł
B. 300 zł
C. 100 zł
D. 200 zł
Koszt wymiany kompletu zaworów w silniku o oznaczeniu 1.8 16V wyniesie 400 zł, ponieważ w tym silniku znajduje się 16 zaworów (8 na cylinder w silniku z 4 cylindrami). Przy cenie jednego zaworu wynoszącej 25 zł, całkowity koszt wymiany można obliczyć mnożąc liczbę zaworów przez ich cenę. Zatem: 16 zaworów x 25 zł = 400 zł. Tego typu kalkulacje są istotne w przypadku serwisowania pojazdów, gdzie precyzyjne oszacowanie kosztów naprawy jest kluczowe dla zarządzania budżetem. Zrozumienie kosztów części zamiennych oraz robocizny wpływa na decyzje związane z konserwacją i naprawą pojazdów, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Właściciele pojazdów powinni być świadomi, że regularne serwisowanie i wymiana zużytych części, takich jak zawory, może znacząco wpłynąć na wydajność silnika i jego długowieczność.

Pytanie 19

Aby wykryć luzy w układzie zawieszenia pojazdu, konieczne jest wykonanie kontroli na stanowisku

A. rolkowym
B. szarpakowym
C. do badań metodą EUSAMA
D. do geometrii kół
Odpowiedź "szarpakowym" jest poprawna, ponieważ badanie luzów w zawieszeniu pojazdu za pomocą szarpaka jest standardową metodą diagnostyczną stosowaną w warsztatach samochodowych. Szarpak pozwala na symulację warunków drogowych, co umożliwia ocenić zachowanie zawieszenia i zidentyfikować ewentualne luzy. Podczas testu, pojazd jest poddawany dynamicznym obciążeniom, co umożliwia wykrycie nawet niewielkich luzów, które mogą prowadzić do nieprawidłowej pracy zawieszenia oraz zwiększonego zużycia opon i innych komponentów. Przykłady zastosowania tej metody można zobaczyć w badaniach diagnostycznych w serwisach zajmujących się naprawą układów jezdnych, gdzie precyzyjna ocena stanu technicznego pojazdu jest niezbędna do zapewnienia bezpieczeństwa i komfortu jazdy. Warto również zaznaczyć, że zgodnie z obowiązującymi normami, regularne sprawdzanie luzów w zawieszeniu jest kluczowym elementem utrzymania pojazdu w dobrym stanie technicznym.

Pytanie 20

Jak długo trwa całkowita regulacja zbieżności przedniej osi na urządzeniu czterogłowicowym, jeśli kompensacja bicia jednego koła zajmuje 5 minut, a regulacja zbieżności kół przednich 10 minut?

A. 35 minut
B. 30 minut
C. 40 minut
D. 20 minut
Odpowiedź 30 minut jest prawidłowa, ponieważ wymaga ona zsumowania czasu potrzebnego na kompensację bicia jednego koła oraz regulację zbieżności kół przednich. Kompensacja bicia jednego koła trwa 5 minut, a regulacja zbieżności 10 minut. Na urządzeniu czterogłowicowym, które pozwala na jednoczesną pracę na wszystkich czterech kołach, proces ten jest bardziej efektywny. Licząc czas całkowity, należy uwzględnić zarówno czas na kompensację bicia, jak i regulację zbieżności, co daje 5 minut na jedno koło oraz 10 minut na regulację, co razem wynosi 30 minut. Zgodnie z najlepszymi praktykami w branży, precyzyjna regulacja zbieżności kół jest kluczowa dla bezpieczeństwa i komfortu jazdy, a także dla równomiernego zużycia opon. W praktyce, regularne wykonywanie takich regulacji jest zalecane co najmniej raz w roku, aby zapewnić optymalne osiągi pojazdu.

Pytanie 21

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. cierną.
B. ślimakową.
C. walcową.
D. hipoidalną.
Przekładnie hipoidalne są najczęściej stosowane w przekładniach głównych mostów napędowych ze względu na ich unikalne właściwości. Ich konstrukcja pozwala na efektywne przenoszenie momentu obrotowego przy jednoczesnym zapewnieniu kompaktowych rozmiarów. Przekładnie te charakteryzują się zębatkami, które są ustawione pod kątem, co umożliwia większy kąt zębatki w porównaniu do przekładni walcowych. Dzięki temu, hipoidalne przekładnie oferują lepsze właściwości w zakresie redukcji hałasu oraz zmniejszenia wibracji. W praktyce, wykorzystywane są w pojazdach osobowych, ciężarowych oraz w maszynach przemysłowych, gdzie wymagana jest wysoka wydajność przeniesienia mocy. Te przekładnie są zgodne z normami branżowymi, co zapewnia ich niezawodność i trwałość. Dodatkowo, ich projektowanie opiera się na doskonałych praktykach inżynieryjnych, które pozwalają na optymalizację osiągów i ekonomii eksploatacji.

Pytanie 22

Do technik defektoskopowych wykorzystywanych w ocenie komponentów nie zalicza się techniki

A. objętościowej
B. ultradźwiękowej
C. rentgenowskiej
D. magnetycznej
Zastosowanie metod defektoskopowych w weryfikacji części jest kluczowe w zapewnieniu jakości i bezpieczeństwa produktów przemysłowych. Odpowiedzi, które wskazują na metody magnetyczną, rentgenowską oraz ultradźwiękową, są jednym z najczęściej stosowanych podejść w przemyśle, co może wprowadzać w błąd osoby, które nie są zaznajomione z pełnym zakresem metod badań. Metoda magnetyczna, bazująca na właściwościach ferromagnetycznych materiałów, wykorzystuje pole magnetyczne do wykrywania wad powierzchniowych i podpowierzchniowych. Z kolei badania rentgenowskie wykorzystują promieniowanie elektromagnetyczne do analizy strukturalnej materiałów, co pozwala na identyfikację wewnętrznych nieciągłości. Metoda ultradźwiękowa, która polega na wysyłaniu fal dźwiękowych o wysokiej częstotliwości, umożliwia detekcję defektów w materiałach o różnej gęstości i strukturze. Wybór odpowiedniej metody jest kluczowy w zależności od rodzaju materiału oraz charakterystyki wad, co wymaga zrozumienia ich właściwości oraz zastosowania w praktyce. Wybierając nieprawidłową odpowiedź, można wpaść w pułapkę myślenia, że każda metoda defektoskopowa jest równoznaczna w kontekście badań różnych materiałów, co jest dalekie od prawdy. Kluczowe jest zatem świadome podejście do analizy, które uwzględnia specyfikę każdego z podejść oraz ich zastosowanie w praktyce, co jest niezbędne dla zapewnienia skutecznej detekcji wad.

Pytanie 23

Jakie jest wykończenie powierzchni cylindrów w silnikach spalinowych?

A. skrobanie
B. szlifowanie
C. honowanie
D. polerowanie
Szlifowanie jest procesem, który polega na usuwaniu materiału z powierzchni poprzez ścieranie za pomocą narzędzi z diamentowymi lub węglikowymi nasypami. Choć może być stosowane w obróbce cylindrów, nie jest to najbardziej odpowiednia metoda do osiągnięcia wymaganej jakości powierzchni. Szlifowanie może prowadzić do zbytniego usunięcia materiału, co w efekcie może zniekształcić geometrię cylindra oraz negatywnie wpłynąć na jego właściwości użytkowe. Skrobanie z kolei to technika, która polega na ręcznym lub mechanicznym usuwaniu nadmiaru materiału z powierzchni. Nie jest to metoda optymalna dla cylindrów silników, ponieważ nie zapewnia odpowiedniej precyzji oraz nie jest w stanie uzyskać pożądanej chropowatości. Polerowanie, choć skuteczne w uzyskiwaniu gładkich powierzchni, nie pozwala na usunięcie wnętrza cylindrów w sposób potrzebny do ich obróbki wykończeniowej. Użytkownicy często mylą te techniki, co prowadzi do wyboru niewłaściwych metod obróbczych, które mogą skutkować nieprawidłowym działaniem silników oraz ich przedwczesnym zużyciem. Zrozumienie różnic między tymi metodami jest kluczowe dla zapewnienia trwałości i efektywności pracy silników spalinowych.

Pytanie 24

Podczas naprawy układu zawieszenia wymieniono amortyzatory. Jakie mogą być konsekwencje ich nieprawidłowego montażu?

A. Skrócony czas pracy akumulatora
B. Zmniejszenie mocy silnika
C. Zwiększone drgania i niestabilność pojazdu
D. Zmniejszenie efektywności układu hamulcowego
Amortyzatory są kluczowym elementem układu zawieszenia, który odpowiada za tłumienie drgań i utrzymanie stabilności pojazdu podczas jazdy. Prawidłowy montaż amortyzatorów jest niezbędny, aby zapewnić odpowiednie właściwości jezdne samochodu. Jeżeli amortyzatory są zamontowane nieprawidłowo, mogą powodować zwiększone drgania pojazdu, co prowadzi do obniżenia komfortu jazdy i zmniejszenia kontroli nad pojazdem. Z mojego doświadczenia, nieprawidłowo zamontowane amortyzatory mogą również prowadzić do nadmiernego zużycia innych komponentów układu zawieszenia, takich jak tuleje czy łożyska, przez co pojazd staje się bardziej podatny na awarie. Dodatkowo, nieprawidłowy montaż może prowadzić do nierównomiernego zużycia opon, co jest szczególnie niebezpieczne podczas jazdy na śliskiej nawierzchni. W praktyce, aby tego uniknąć, zaleca się zawsze stosować się do instrukcji producenta i używać odpowiednich narzędzi do montażu.

Pytanie 25

Sonda Lambda dokonuje pomiaru ilości

A. tlenu
B. sadzy
C. azotu
D. węgla
Sonda Lambda, znana również jako sonda tlenowa, jest kluczowym elementem systemu zarządzania silnikiem w pojazdach spalinowych. Jej głównym zadaniem jest pomiar stężenia tlenu w spalinach, co pozwala na optymalizację procesu spalania w silniku. Prawidłowy poziom tlenu w spalinach jest niezbędny do osiągnięcia efektywności energetycznej oraz redukcji emisji szkodliwych substancji. Na przykład, w silnikach z systemem wtrysku paliwa, sonda Lambda umożliwia dostosowanie wskazania mieszanki paliwowo-powietrznej do aktualnych warunków pracy silnika, co przekłada się na lepszą wydajność paliwową oraz mniejsze zanieczyszczenie środowiska. W praktyce oznacza to, że jeśli sonda wykryje zbyt niskie stężenie tlenu, system komputerowy silnika zwiększy ilość paliwa, a zbyt wysokie stężenie spowoduje jego redukcję. Dzięki tym działaniom, pojazdy spełniają normy emisji spalin, takie jak Euro 6, co jest istotne w kontekście ochrony środowiska i przepisów prawnych.

Pytanie 26

Numer VIN (Vehicle Identification Number) pojazdu jest zbudowany

A. z 17 znaków
B. z 10 znaków
C. z 18 znaków
D. z 14 znaków
Numer identyfikacyjny pojazdu VIN (Vehicle Identification Number) rzeczywiście składa się z 17 znaków. Jest to międzynarodowy standard, który został wprowadzony w 1981 roku, aby umożliwić jednoznaczną identyfikację pojazdów. Struktura VIN zawiera różnorodne informacje, takie jak producent, typ pojazdu, miejsce produkcji, rok produkcji oraz unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN przedstawiają WMI (World Manufacturer Identifier), który identyfikuje producenta i jego lokalizację. Kolejne pięć znaków to VDS (Vehicle Descriptor Section), który określa cechy pojazdu, takie jak jego model, silnik oraz inne parametry techniczne. Ostatnie dziewięć znaków to VIS (Vehicle Identifier Section), który jest unikalnym numerem pojazdu. Dzięki tej standaryzacji możliwe jest łatwe śledzenie historii pojazdów, co jest kluczowe w kontekście wymiany informacji pomiędzy producentami, dealerami oraz organami rejestracyjnymi.

Pytanie 27

Reperacja uszkodzonego elastycznego elementu gumowego w zawieszeniu układu wydechowego polega na jego

A. spajaniu
B. wymianie
C. klejeniu
D. zakręceniu
Wymiana uszkodzonego gumowego elastycznego elementu zawieszenia układu wydechowego jest kluczowym procesem w utrzymaniu prawidłowego działania systemu wydechowego pojazdu. Gumowe elementy, takie jak poduszki, są projektowane w celu absorpcji wibracji oraz ułatwienia ruchu podzespołów, co wzmacnia ich trwałość. W przypadku uszkodzenia, na przykład pęknięcia lub utraty elastyczności, ich wymiana staje się niezbędna, ponieważ naprawy takie jak klejenie czy spajanie mogą nie zapewnić odpowiedniego poziomu bezpieczeństwa oraz wydajności. Wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta pojazdu, co obejmuje wykorzystanie oryginalnych części zamiennych lub ich wysokiej jakości odpowiedników. Przykładem zastosowania tej praktyki może być wymiana poduszki zawieszenia w samochodzie osobowym, co zapobiega przenoszeniu niepożądanych drgań do kabiny pasażerskiej, a także minimalizuje ryzyko uszkodzeń innych elementów układu wydechowego. Warto również zwrócić uwagę na regularne przeglądy tych elementów, co może zwiększyć ich żywotność oraz zredukować koszty napraw.

Pytanie 28

Wymianę pasa napędowego sprzętu silnika należy zrealizować

A. po określonym przebiegu i stopniu zużycia
B. w trakcie przymusowego badania technicznego
C. przy wymianie pompy wodnej
D. podczas wymiany rozrządu
Wymiana paska napędowego w silniku to naprawdę ważna rzecz, o której nie można zapominać. Trzeba to robić w odpowiednich momentach, na przykład po przejechaniu określonej liczby kilometrów lub gdy zauważymy, że coś z nim nie tak. Zazwyczaj znajdziesz te informacje w instrukcji obsługi pojazdu albo w materiałach od producenta. W wielu przynajmniej autach mówi się, żeby wymieniać ten pasek co 60 000 - 100 000 kilometrów, ale to nie jest reguła, bo każda jazda to coś innego. Na przykład, jak jeździsz w trudnych warunkach albo agresywnie, ten pasek może wymagać wymiany wcześniej. Regularne sprawdzanie stanu paska, na przykład jego napięcia czy wyglądu, to świetny sposób na uniknięcie poważniejszych problemów, jak awaria silnika. Dbanie o pasek to też dobra praktyka, która przekłada się na to, że auto działa lepiej i jest bezpieczniejsze. Poza tym, wymieniając go na czas, możesz uniknąć kosztownych napraw w przyszłości.

Pytanie 29

Termin DOHC odnosi się do układu

A. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
B. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
C. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
D. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
Odpowiedź, że DOHC oznacza górnozaworowy układ z dwoma wałkami rozrządu w głowicy, jest prawidłowa. Skrót DOHC pochodzi od angielskiego 'Dual Overhead Camshaft', co dosłownie oznacza 'podwójny wałek rozrządu w górze'. Taki układ rozrządu pozwala na bardziej precyzyjne sterowanie procesem otwierania i zamykania zaworów, co wpływa na lepsze osiągi silnika, zarówno w zakresie mocy, jak i efektywności paliwowej. Zastosowanie dwóch wałków rozrządu umożliwia jednoczesne działanie na zawory dolotowe i wydechowe, co zwiększa przepływ powietrza do komory spalania oraz poprawia odprowadzanie spalin. Przykładem zastosowania DOHC są silniki w samochodach sportowych i wyższej klasy, gdzie optymalizacja osiągów silnika jest kluczowa. W branży motoryzacyjnej standardem staje się także wzbogacenie układów rozrządu o systemy zmiennych faz rozrządu, co further enhances the performance of DOHC engines in practical applications, emphasizing their growing importance in modern automotive engineering.

Pytanie 30

W hydraulicznym oraz pneumatycznym amortyzatorze jednorurowym wysokociśnieniowym używa się oleju oraz

A. azotu
B. tlenu
C. powietrza
D. acetylenu
Wykorzystanie powietrza w wysokociśnieniowych amortyzatorach hydraulicznych nie jest zalecane, ponieważ jest to mieszanka gazów, która zawiera wilgoć i zanieczyszczenia. Wilgoć w układzie może prowadzić do korozji, a zanieczyszczenia mogą wpłynąć na działanie tłoka i innych elementów. Ponadto, powietrze jest bardziej podatne na zmiany objętości przy zmianach temperatury i ciśnienia, co może prowadzić do niestabilności pracy amortyzatora. Zastosowanie acetylenów czy tlenu w tym kontekście jest jeszcze bardziej niebezpieczne. Acetylen to gaz palny, który w połączeniu z powietrzem może tworzyć wybuchowe mieszaniny, co stanowi poważne zagrożenie w układach hydraulicznych. Tlen, z kolei, w wysokim ciśnieniu może powodować łatwiejsze utlenianie materiałów, co może prowadzić do uszkodzenia uszczelnień i innych elementów konstrukcyjnych. Niewłaściwe dobieranie gazów do amortyzatorów opartych na hydraulice prowadzi do poważnych usterek, a w skrajnych przypadkach do awarii całego systemu. Dlatego ważne jest, aby stosować azot, który nie tylko zwiększa efektywność, ale także bezpieczeństwo pracy amortyzatora w różnych warunkach eksploatacyjnych.

Pytanie 31

W trakcie prowadzenia pojazdu zaświeciła się kontrolka ładowania. Jakie mogą być tego powody?

A. uszkodzony przekaźnik kontrolki
B. wadliwy akumulator
C. zerwanie paska napędowego alternatora
D. zbyt wysokie napięcie podczas ładowania
Uszkodzony akumulator, zbyt wysokie napięcie ładowania oraz uszkodzony przekaźnik lampki to koncepcje, które mogą być mylące w kontekście problemu z lampką kontrolną ładowania. Uszkodzony akumulator może rzeczywiście przyczynić się do problemów z ładowaniem, ale jego uszkodzenie zazwyczaj prowadzi do innych objawów, takich jak trudności z uruchomieniem silnika czy spadek mocy akumulatora. W przypadku zapalenia się lampki kontrolnej, akumulator może być w dobrym stanie, ale nie otrzymuje energii, ponieważ alternator nie działa z powodu zerwanego paska. Zbyt wysokie napięcie ładowania może powodować uszkodzenia elektroniki, ale zazwyczaj objawia się innymi symptomami, takimi jak intensywne nagrzewanie się akumulatora czy awaria diod prostowniczych w alternatorze, a niekoniecznie zapaleniem lampki kontrolnej. Jeżeli chodzi o uszkodzony przekaźnik lampki, to taka usterka mogłaby prowadzić do nieprawidłowych sygnałów, jednak nie jest to bezpośrednia przyczyna zapalenia lampki kontrolnej ładowania. Właściwe podejście do diagnostyki problemów elektrycznych w samochodzie wymaga zrozumienia, że każdy element układu ładowania ma swoje specyficzne funkcje, a ich awaria wpływa na działanie całości. Dlatego kluczowe jest, aby diagnostyka była dokładna i oparta na rzeczywistych objawach, a nie na przypuszczeniach.

Pytanie 32

Jeśli wymiar czopów głównych wału korbowego przekracza ostatni wymiar naprawczy, jakie działania należy podjąć w stosunku do tych czopów?

A. regeneracji poprzez metalizację natryskową
B. szlifowaniu na wymiar naprawczy
C. regeneracji poprzez chromowanie elektrolityczne
D. regeneracji poprzez napawanie wibrostykowe
Wybór opcji szlifowania na wymiar naprawczy jest właściwy, ponieważ jest to standardowa praktyka w przypadku uszkodzenia czopów głównych wału korbowego, gdy ich wymiar przekracza ostatni wymiar naprawczy. Szlifowanie polega na usunięciu warstwy materiału z powierzchni czopów, co pozwala przywrócić ich odpowiednie wymiary oraz gładkość. Tak przeprowadzone procesy są zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie precyzyjnego wykonania oraz kontroli jakości w procesach regeneracji części. Praktycznym przykładem może być silnik, w którym czopy wału korbowego uległy zużyciu wskutek długotrwałej eksploatacji; ich szlifowanie pozwala na dalsze użytkowanie silnika, co jest korzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. Szlifowanie na wymiar naprawczy zwiększa żywotność komponentów, minimalizując ryzyko ich awarii, oraz jest stosunkowo szybkim i efektywnym sposobem naprawy wałów korbowych.

Pytanie 33

Wybór zamienników świec zapłonowych do silnika z zapłonem iskrowym, oprócz podstawowych wymiarów gwintów, uwzględnia także istotny parametr, którym jest

A. rezystancja wewnętrzna
B. liczba elektrod
C. kształt elektrod
D. wartość cieplna
Kształt elektrod, liczba elektrod oraz rezystancja wewnętrzna to parametry, które mogą być istotne w kontekście ogólnego działania świec zapłonowych, jednak nie są kluczowe przy doborze zamienników. Kształt elektrod ma wpływ na proces zapłonu mieszanki paliwowo-powietrznej. Świece z różnymi kształtami elektrod mogą mieć różne właściwości zapłonowe, ale zmiana kształtu nie powinna być głównym czynnikiem przy doborze zamiennika, gdyż bardzo często standardowy kształt zapewnia wystarczające parametry pracy. Liczba elektrod również może wpływać na efektywność zapłonu, jednak w przypadku silników o określonych wymaganiach, nie jest to krytyczny parametr, gdyż najczęściej stosuje się standardowe świecy z jedną elektrodą. Rezystancja wewnętrzna świecy zapłonowej dotyczy głównie redukcji zakłóceń elektromagnetycznych w systemach zapłonowych, co jest szczególnie istotne w nowoczesnych pojazdach z bardziej złożonymi systemami elektronicznymi. Jednakże, w kontekście ogólnego działania silnika i jego efektywności, wartość cieplna pozostaje najważniejszym czynnikiem. Typowym błędem jest zatem koncentrowanie się na parametrach, które są mniej istotne w kontekście działania silnika, zamiast na kluczowej wartości cieplnej, która decyduje o prawidłowym funkcjonowaniu świec zapłonowych w danym silniku.

Pytanie 34

Podsterowności pojazdu określa się jako skłonność do

A. pomniejszania promienia skrętu
B. powiększania promienia skrętu
C. ślizgu kół osi kierowanej
D. ślizgu kół osi napędzanej
Zrozumienie podsterowności pojazdu wymaga znajomości podstawowych zasad dynamiki jazdy. Na przykład, zmniejszanie promienia skrętu, co sugeruje jedna z odpowiedzi, w rzeczywistości odnosi się do zjawiska nadsterowności, w którym pojazd traci przyczepność tylnej osi, przez co przód pojazdu skręca bardziej, niż zamierzono. Ta sytuacja często prowadzi do obrotów pojazdu, co jest całkowicie przeciwieństwem podsterowności. Kolejna odpowiedź sugerująca poślizg kół osi kierowanej myli dwa różne zjawiska - podsterowność dotyczy głównie przedniego zestawu kół, które tracą przyczepność, a nie samego poślizgu. W przypadku podsterowności, przednie koła nie mogą utrzymać właściwego kierunku, co skutkuje koniecznością zwiększenia promienia skrętu. Z kolei poślizg kół osi napędzanej jest zjawiskiem, które występuje, gdy tylne koła nie mogą przenieść wystarczającej mocy napędowej na nawierzchnię, co jest zjawiskiem bardziej typowym dla nadsterowności. Błędne zrozumienie tych zjawisk może prowadzić do niewłaściwych reakcji kierowcy w sytuacjach awaryjnych, co z kolei zwiększa ryzyko wypadków. Kluczowe jest więc, aby kierowcy znali różnice między tymi zjawiskami, aby mogli skutecznie reagować i unikać sytuacji niebezpiecznych na drodze.

Pytanie 35

Aby rozmontować półosie napędowe z obudowy tylnego mostu napędowego, należy zastosować ściągacz

A. do łożysk
B. 3-ramienny
C. 2-ramienny
D. bezwładnościowy
Wybór niewłaściwego typu ściągacza, takiego jak 3-ramienny lub 2-ramienny, może prowadzić do wielu problemów podczas demontażu półosi napędowych z pochwy tylnego mostu napędowego. 3-ramienne ściągacze są zazwyczaj używane do demontażu elementów o bardziej okrągłych kształtach lub tam, gdzie siły rozkładają się równomiernie, co nie jest odpowiednie w przypadku półosi, gdzie często występują nieprzewidywalne naprężenia. Z kolei 2-ramienny ściągacz, mimo że ma zastosowanie w wielu sytuacjach, również nie zapewnia wystarczającej stabilności i równomierności siły, co może prowadzić do uszkodzeń elementu lub położenia montażowego. W przypadku demontażu z przyczyn technicznych i osadzenia elementów, ściągacze tego typu mogą nie być w stanie skutecznie wykonać zadania, powodując dodatkowe problemy i wydłużając czas pracy. Dodatkowo, zastosowanie ściągaczy bezwładnościowych jest zgodne z najlepszymi praktykami w branży, co podkreśla ich skuteczność i bezpieczeństwo. Niewłaściwy dobór narzędzi może skutkować nie tylko uszkodzeniem półosi, ale także zagrożeniem dla bezpieczeństwa osoby wykonującej pracę. Dlatego kluczowe jest, aby dobrze zrozumieć specyfikę demontażu i korzystać z odpowiednich narzędzi, które są zgodne z zaleceniami producentów i normami branżowymi.

Pytanie 36

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. białym
B. czerwonym
C. niebieskim
D. czarnym
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.

Pytanie 37

Substancja eksploatacyjna oznaczona symbolem 10W/40 to

A. ciecz chłodząca silnik.
B. ciecz hamulcowa.
C. ciecz do spryskiwaczy.
D. olej silnikowy
Odpowiedź "olej silnikowy" jest poprawna, ponieważ oznaczenie 10W/40 odnosi się do klasyfikacji olejów silnikowych według normy SAE (Society of Automotive Engineers). Liczba przed literą 'W' (winter) oznacza lepkość oleju w niskich temperaturach, co jest istotne podczas uruchamiania silnika w zimie. W tym przypadku '10' wskazuje, że olej ma odpowiednią lepkość w temperaturach poniżej zera. Druga liczba, '40', określa lepkość oleju w wysokich temperaturach pracy silnika, co jest kluczowe dla zapewnienia odpowiedniej ochrony silnika w czasie jego eksploatacji. Oleje 10W/40 są powszechnie stosowane w silnikach benzynowych i diesla, oferując dobrą ochronę przy różnych warunkach temperaturowych. Zastosowanie takiego oleju wspiera właściwą pracę silnika, zapewniając jego smarowanie, a także redukując tarcie i zużycie części silnika. Używanie oleju o niewłaściwej specyfikacji może prowadzić do nadmiernego zużycia silnika oraz zwiększonego ryzyka awarii.

Pytanie 38

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. prostopadłość
B. równoległość
C. płaskość
D. szczelność
Weryfikacja kadłuba i głowicy silnika wymaga precyzyjnych pomiarów, a odpowiedzi związane z innymi parametrami, takimi jak szczelność, równoległość czy prostopadłość, mogą wprowadzać w błąd. Szczelność odnosi się do zdolności komponentów do utrzymywania płynów i gazów, co jest ważne, ale nie związane bezpośrednio z pomiarami płaskości. W przypadku silnika, szczelność jest kontrolowana głównie poprzez uszczelki oraz odpowiednie dopasowanie części, nie przez pomiar z użyciem liniału krawędziowego. Równoległość dotyczy relacji między dwiema równoległymi powierzchniami, natomiast prostopadłość odnosi się do kątów prostych między powierzchniami. Choć te parametry są również istotne dla działania silnika, ich pomiar nie jest bezpośrednio związany z weryfikacją płaskości. Wykonywanie pomiarów równoległości lub prostopadłości może być mylone z pomiarem płaskości, co może prowadzić do błędnych wniosków o stanie komponentów silnika. Dlatego kluczowe jest, aby podczas oceny kadłuba i głowicy silnika skupić się na płaskości, jako podstawowym kryterium, a nie na innych parametrach, które mogą wydawać się atrakcyjne, ale nie są właściwe w tym kontekście. Zrozumienie różnicy między tymi pojęciami jest istotne dla skutecznego przeprowadzania analiz i zapewnienia właściwego funkcjonowania silników.

Pytanie 39

Jakie elementy są częścią układu chłodzenia silnika spalinowego?

A. Pompa wody, chłodnica, termostat
B. Gaźnik, filtr powietrza, kolektor dolotowy
C. Wał korbowy, tłoki, panewki
D. Alternator, rozrusznik, akumulator
Układ chłodzenia silnika spalinowego jest kluczowym elementem, który zapewnia właściwą temperaturę pracy silnika, co wpływa na jego wydajność i trwałość. W skład tego układu wchodzą elementy takie jak pompa wody, chłodnica i termostat. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego przez cały układ, co pomaga w odbieraniu nadmiaru ciepła z silnika. Chłodnica odgrywa rolę w oddawaniu tego ciepła do atmosfery, czyniąc to poprzez przepływ powietrza przez jej żebra. Termostat natomiast reguluje obieg płynu chłodzącego w zależności od temperatury silnika, co pozwala na szybsze osiągnięcie optymalnej temperatury roboczej. Dobrze działający układ chłodzenia zapobiega przegrzewaniu się silnika oraz minimalizuje ryzyko uszkodzenia jego części, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Ważne jest, aby regularnie kontrolować stan płynu chłodzącego i sprawność poszczególnych komponentów układu chłodzenia, co zapewnia długą i bezawaryjną pracę silnika.

Pytanie 40

Jakie urządzenie powinno być zastosowane do pomiaru siły hamowania w serwisie samochodowym?

A. opóźnieniomierza
B. manometru
C. wakuometru
D. urządzenia rolkowego
Wakuometr, opóźnieniomierz i manometr to urządzenia, które mają swoje specyficzne zastosowania, ale nie nadają się do pomiaru siły hamowania w pojazdach. Wakuometr jest narzędziem służącym do pomiaru ciśnienia względnego w układach, co ma zastosowanie w różnych dziedzinach, takich jak medycyna czy meteorologia, ale nie w kontekście oceny efektywności hamulców. Opóźnieniomierz jest wykorzystywany do pomiaru czasu reakcji lub opóźnienia, co jest istotne w analizie dynamiki pojazdów, jednak nie dostarcza danych na temat siły hamowania. Manometr z kolei mierzy ciśnienie w gazach lub cieczy, co również nie ma związku z bezpośrednim ocenianiem siły hamowania. Często mylnie uważa się, że te urządzenia mogą zastąpić urządzenie rolkowe, co prowadzi do nieprawidłowych wniosków i błędnych pomiarów. Właściwe podejście do testowania układu hamulcowego powinno opierać się na dedykowanych narzędziach, które dostarczają wiarygodnych i dokładnych wyników, a pomiar siły hamowania wymaga odpowiedniego sprzętu, aby zapewnić dokładność i bezpieczeństwo w użytkowaniu pojazdów.