Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 12:18
  • Data zakończenia: 25 maja 2025 12:27

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. SUB
B. MOVE
C. DIV
D. ADD
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aby ustalić, czy system sprężonego powietrza jest dostatecznie szczelny, należy przeprowadzić kontrolę

A. spadku ciśnienia w układzie pneumatycznym
B. stanu izolacji termicznej rur pneumatycznych wychodzących poza budynki
C. szczelności zaworów odwadniających zbiorniki pneumatyczne
D. stanu zewnętrznej powłoki rur pneumatycznych
Spadek ciśnienia w instalacji pneumatycznej jest kluczowym wskaźnikiem, który pozwala ocenić szczelność systemu sprężonego powietrza. W praktyce, gdy ciśnienie w instalacji spada, oznacza to, że powietrze może uchodzić przez nieszczelności. Takie nieszczelności mogą występować w różnych miejscach, na przykład w połączeniach przewodów, zaworach czy złączkach. Regularne monitorowanie ciśnienia jest nie tylko zgodne z najlepszymi praktykami inżynieryjnymi, ale również przyczynia się do efektywności energetycznej systemu. Zmniejszenie ciśnienia powoduje, że sprężarki muszą pracować intensywniej, co zwiększa koszty operacyjne. Dlatego, aby zapewnić optymalną wydajność, zaleca się stosowanie manometrów oraz systemów monitorujących, które automatycznie informują o spadkach ciśnienia. Istotne jest również przeprowadzanie regularnych przeglądów, które mogą wykrywać wczesne oznaki nieszczelności oraz stosowanie materiałów wysokiej jakości w instalacji, co ogranicza ryzyko problemów z ciśnieniem.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Podczas szacowania czasu potrzebnego na realizację zadania, na początku uwzględnia się

A. innowacyjność metod pracy
B. normy czasochłonności wykonania zadania
C. ponadnormatywne przerwy w pracy
D. warunki przydzielania urlopu wypoczynkowego
Normy czasochłonności wykonania zadania są kluczowym elementem w procesie szacowania czasu realizacji zadań w projektach. W pierwszej kolejności uwzględnia się te normy, ponieważ zapewniają one obiektywne dane oparte na wcześniejszych doświadczeniach i analizach. Przykładowo, w branży produkcyjnej normy te mogą obejmować czas potrzebny na wykonanie konkretnej operacji, co pozwala na efektywne planowanie produkcji oraz alokację zasobów. W praktyce, korzystanie z norm czasochłonności umożliwia menedżerom projektów dokładniejsze prognozowanie terminów i lepsze zarządzanie ryzykiem. Warto również zaznaczyć, że normy te są zazwyczaj standaryzowane w danej branży, co pozwala na porównywanie wydajności między różnymi projektami i organizacjami, a tym samym na ciągłe doskonalenie procesów. Przykłady dobrych praktyk obejmują stosowanie norm czasochłonności w harmonogramowaniu zadań w metodzie Agile, gdzie szybkie i efektywne szacowanie czasu jest kluczowe dla sukcesu projektu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie urządzenie pneumatyczne ma następujące cechy: napięcie 230 V, moc 1,1 kW, ciśnienie 8 bar, wydajność ssawna 200 l/min, wydajność wyjściowa 115 l/min, pojemność zbiornika 24 l, liczba cylindrów 1, prędkość obrotowa 2850 obr/min?

A. Sprężarka tłokowa
B. Silnik tłokowy
C. Siłownik obrotowy
D. Zbiornik ciśnieniowy
Sprężarka tłokowa wyróżnia się parametrami, które zostały podane w pytaniu. Napięcie 230 V i moc 1,1 kW są typowe dla sprężarek, które często są zasilane z sieci jednofazowej, co czyni je łatwymi do zastosowania w różnych środowiskach, od warsztatów po małe zakłady przemysłowe. Ciśnienie robocze 8 bar jest standardowe dla sprężarek tłokowych, które są szeroko wykorzystywane do zasilania narzędzi pneumatycznych, takich jak wkrętarki czy młoty udarowe. Wydajność ssawna 200 l/min oraz wydajność wyjściowa 115 l/min wskazują na efektywność pracy sprężarki, co jest kluczowe w zastosowaniach wymagających ciągłego dostarczania sprężonego powietrza. Dodatkowo, pojemność zbiornika 24 l pozwala na akumulację sprężonego powietrza, co poprawia stabilność ciśnienia w systemie. Prędkość obrotowa 2850 obr/min jest standardowa dla sprężarek tłokowych, co podkreśla ich wydajność i zdolność do szybkiego generowania ciśnienia. Sprężarki tłokowe są na ogół preferowane w zastosowaniach, gdzie wymagana jest duża moc i wydajność, co czyni je niezastąpionymi w wielu branżach."

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką czynność projektową nie jest możliwe zrealizowanie w oprogramowaniu CAM?

A. Wykonywania symulacji obróbki obiektu w środowisku wirtualnym
B. Przygotowania dokumentacji technologicznej produktu
C. Generowania kodu dla obrabiarki CNC
D. Przygotowania instrukcji (G-CODE) dla maszyn typu Rapid Prototyping
Odpowiedź 'Opracowania dokumentacji technologicznej wyrobu' jest prawidłowa, ponieważ oprogramowanie CAM (Computer-Aided Manufacturing) koncentruje się na wsparciu procesów produkcyjnych, takich jak generowanie kodu G dla maszyn CNC, symulacja obróbki oraz wsparcie w procesie rapid prototyping. W przypadku dokumentacji technologicznej, która obejmuje szczegółowe rysunki techniczne, specyfikacje materiałowe czy normy jakościowe, kluczową rolę odgrywa oprogramowanie CAD (Computer-Aided Design). Oprogramowanie CAM nie posiada funkcji umożliwiających tworzenie tego typu dokumentacji, ponieważ jego głównym celem jest przekształcanie modeli 3D i planów produkcyjnych na instrukcje operacyjne, które mogą być zrozumiane przez maszyny. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokumentacji technologicznej w zapewnieniu jakości i efektywności produkcji, co czyni współpracę między oprogramowaniem CAD a CAM niezbędną dla skutecznego procesu wytwórczego. Przykładowo, w branży lotniczej, dokumentacja technologiczna musi być zgodna z rygorystycznymi normami, których CAM nie jest w stanie w pełni zrealizować bez wcześniejszego opracowania odpowiednich schematów w CAD.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem B
B. Symbolem T
C. Symbolem A
D. Symbolem P
Odpowiedź "Symbolem P" jest poprawna, ponieważ w schematach układów hydraulicznych standardowe oznaczenia literowe mają kluczowe znaczenie dla prawidłowego montażu i serwisowania. Symbol P oznacza przyłącze przewodu tłocznego, co jest istotne, ponieważ to właśnie przez ten przewód płyn hydrauliczny jest dostarczany do systemu pod wysokim ciśnieniem. Oznaczenie to wywodzi się od angielskiego słowa "Pressure", co podkreśla jego związek z ciśnieniem. W praktyce, zrozumienie i poprawne odczytywanie tych symboli jest niezbędne, aby uniknąć błędów, które mogą prowadzić do awarii systemu hydraulicznego. Na przykład, nieprawidłowe podłączenie przewodów tłocznych może skutkować wyciekiem płynów, co z kolei wpłynie na efektywność układu oraz może prowadzić do kosztownych napraw. Dlatego znajomość standardów i dobrych praktyk dotyczących oznaczeń hydraulicznych jest kluczowa dla inżynierów i techników w tej dziedzinie, a symbol P stanowi fundament w rozumieniu schematów hydraulicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Najwyższą precyzję pomiaru rezystancji uzwojenia silnika elektrycznego zapewnia metoda

A. pomiaru bezpośredniego omomierzem cyfrowym
B. mostkowa przy zastosowaniu mostka Wheatstone'a lub Thomsona
C. pośrednia przy użyciu woltomierza oraz amperomierza
D. pomiaru bezpośredniego omomierzem analogowym
Metoda mostkowa, wykorzystująca mostek Wheatstone'a lub Thomsona, zapewnia najwyższą dokładność pomiaru rezystancji uzwojeń silnika elektrycznego. Dzięki tej metodzie możliwe jest efektywne zniwelowanie wpływu oporności przewodów pomiarowych oraz błędów systematycznych, które mogą zaburzać wyniki pomiarów. Mostek Wheatstone'a, na przykład, działa na zasadzie równoważenia dwóch gałęzi obwodu, co pozwala na precyzyjne określenie rezystancji nieznanej poprzez porównanie jej z rezystancjami znanymi. W praktyce, metoda ta jest szczególnie przydatna w laboratoriach badawczych oraz w serwisach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Standardy takie jak IEC 60364 i IEC 61557 podkreślają znaczenie precyzyjnych pomiarów w kontekście bezpieczeństwa i efektywności urządzeń elektrycznych. Użycie mostków pomiarowych w takich zastosowaniach jest zgodne z najlepszymi praktykami inżynieryjnymi, co dokumentuje ich szerokie zastosowanie w branży. Dlatego właśnie metoda mostkowa jest uznawana za najlepszy wybór w kontekście pomiaru rezystancji uzwojeń silnika elektrycznego.

Pytanie 24

Który rodzaj oprogramowania komputerowego monitoruje przebieg procesu oraz dysponuje funkcjami w zakresie m.in. gromadzenia, wizualizacji i archiwizacji danych oraz kontrolowania i alarmowania?

A. CAD
B. SCADA
C. CAM
D. CAE
Odpowiedź 'SCADA' jest prawidłowa, ponieważ systemy SCADA (Supervisory Control And Data Acquisition) pełnią kluczową rolę w monitorowaniu i kontrolowaniu procesów przemysłowych oraz infrastruktury. SCADA pozwala na zbieranie danych w czasie rzeczywistym z różnych źródeł, takich jak czujniki, urządzenia pomiarowe czy automatyka przemysłowa. Dzięki zaawansowanym funkcjom wizualizacji, operatorzy mogą na bieżąco śledzić stan procesów za pomocą interfejsów graficznych, co znacząco zwiększa efektywność zarządzania. Systemy SCADA umożliwiają również archiwizację danych, co jest istotne dla analizy trendów i optymalizacji procesów. Przykładem praktycznego zastosowania SCADA jest monitorowanie sieci energetycznych, gdzie system ten pozwala na detekcję awarii oraz zarządzanie obciążeniem w czasie rzeczywistym, zgodnie z najlepszymi praktykami branżowymi, takimi jak standardy IEC 61850 dla komunikacji w systemach automatyki. W skrócie, SCADA to kluczowy element w strategiach zarządzania procesami, który przyczynia się do zwiększenia bezpieczeństwa i efektywności operacyjnej.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD%I0.1
AND%I0.2
STN%Q0.1

A. XOR
B. NAND
C. NOR
D. OR
Program napisany w języku listy instrukcji realizuje funkcję NAND, co oznacza, że najpierw łączy dwa sygnały wejściowe za pomocą bramki AND, a następnie neguje wynik tej operacji. Funkcja NAND jest jedną z podstawowych funkcji logicznych, która jest niezwykle użyteczna w projektowaniu systemów cyfrowych. Przykładem zastosowania funkcji NAND jest implementacja układów pamięci oraz różnych rodzajów flip-flopów, które są kluczowe w architekturze komputerów. W praktyce, zarówno w projektowaniu sprzętu, jak i w programowaniu, znajomość funkcji logicznych, w tym NAND, jest niezbędna do efektywnego tworzenia algorytmów i struktur danych. Użycie NAND umożliwia implementację wszystkich innych funkcji logicznych, co czyni ją uniwersalnym narzędziem w inżynierii cyfrowej. Warto również zauważyć, że w kontekście standardów branżowych, takich jak IEEE, projektanci układów cyfrowych często korzystają z funkcji NAND, aby uprościć skomplikowane logiki, co jest zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Konwersja programu napisanego w języku LD na kod maszynowy, który jest zrozumiały dla jednostki centralnej PLC, odbywa się w środowisku narzędziowym PLC przy użyciu polecenia

A. compile
B. upload
C. download
D. save as
Odpowiedź 'compile' jest trafna, bo kompilacja to istotny proces, który zamienia kod źródłowy w języku LD (Ladder Diagram) na kod maszynowy. Tylko maszyna rozumie ten kod, więc jest to kluczowe, żeby program mógł działać. W praktyce, gdy korzystamy z narzędzi PLC, komenda 'compile' uruchamia kompilator, który sprawdza, czy składnia i logika programu są właściwe, a potem generuje ten niezbędny kod maszynowy. Zrozumienie tego wszystkiego jest mega ważne dla inżynierów automatyki, bo pozwala im optymalizować programy i znajdywać błędy zanim jeszcze wrzucą kod do PLC. W branży automatyki mamy też standardy jak IEC 61131-3, które mówią o językach programowania PLC, a kompilacja to kluczowy element, żeby wdrożenia były jakościowo na dobrym poziomie. Przykładowo, przed uruchomieniem programu, inżynierowie często sprawdzają wyniki kompilacji, by przekonać się, że wszystko działa jak trzeba i nie ma błędów, co mogłoby wpłynąć na bezpieczeństwo lub działanie systemu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Uszkodzenie izolacji kabla zasilającego urządzenie
B. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
C. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
D. Uszkodzenie przewodu ochronnego PE
W przypadku awarii urządzenia II klasy ochronności, niektóre odpowiedzi mogą wydawać się logiczne, ale w rzeczywistości nie uwzględniają kluczowych aspektów ochrony przed porażeniem elektrycznym. Przepalenie uzwojeń silnika, mimo że może prowadzić do awarii, nie stwarza bezpośredniego zagrożenia porażenia prądem. W rzeczywistości, urządzenia te są projektowane tak, aby wytrzymały pewne obciążenia i przestarzałe uzwojenia zwykle powodują jedynie spadek efektywności. Z kolei przepalenie bezpiecznika wewnątrz urządzenia również nie jest bezpośrednim zagrożeniem, ponieważ jego funkcją jest ochrona przed przeciążeniem i zwarciem, co w rzeczywistości zapobiega potencjalnym uszkodzeniom. Uszkodzenie przewodu ochronnego PE, chociaż niebezpieczne, w urządzeniach klasy II nie jest tak krytyczne jak uszkodzenie izolacji przewodu zasilającego. W urządzeniach tej klasy, przewód PE jest zwykle zbędny, ponieważ ochrona przed porażeniem opiera się na podwójnej izolacji. Kluczowym błędem myślowym jest niedocenianie znaczenia izolacji oraz mylenie różnych rodzajów awarii. Zrozumienie, że izolacja stanowi pierwszą linię obrony przed porażeniem, jest krytyczne w przestrzeganiu standardów bezpieczeństwa, takich jak PN-EN 61140.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jak często należy wykonywać przeglądy techniczne w urządzeniach i systemach mechatronicznych?

A. Minimum raz do roku
B. Raz na pięć lat
C. Co trzy lata
D. Co dwa lata
Odpowiedź "Co najmniej raz w roku" jest zgodna z obowiązującymi przepisami prawa oraz najlepszymi praktykami w zarządzaniu urządzeniami i systemami mechatronicznymi. Regularne przeglądy techniczne, przeprowadzane co najmniej raz w roku, mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników oraz niezawodności operacyjnej urządzeń. Takie przeglądy pozwalają na wczesne wykrycie potencjalnych usterek, co w konsekwencji minimalizuje ryzyko awarii. Przykładem może być systemy automatyki przemysłowej, w których regularne inspekcje komponentów, takich jak czujniki czy siłowniki, mogą zapobiec kosztownym przestojom produkcyjnym. Ponadto, zgodnie z normą PN-EN ISO 13849-1, regularne przeglądy są niezbędne do zapewnienia zgodności systemów z wymaganiami bezpieczeństwa. Wiedza na temat częstotliwości przeglądów jest kluczowa dla inżynierów i techników, którzy odpowiadają za operacyjną gotowość i bezpieczeństwo systemów mechatronicznych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Która z wymienionych metod jest stosowana podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 20%
B. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 100%
C. Automatyczne odtwarzanie ruchów, z prędkością ruchu ustawioną na 20%
D. Automatyczne odtwarzanie ruchów z prędkością ruchu ustawioną na 100%
Automatyczne odtwarzanie ruchów z prędkością ustawioną na 100% nie jest zalecanym sposobem testowania w początkowej fazie programowania robota przemysłowego. Tego rodzaju testowanie, mimo że może wydawać się efektywne ze względu na szybkość, wiąże się z wysokim ryzykiem niekontrolowanego zachowania robota. Szybkie ruchy mogą znacznie utrudnić identyfikację błędów, ponieważ wszelkie nieprawidłowości są trudniejsze do zauważenia w dużych prędkościach. Ponadto, w przypadku wystąpienia awarii lub nieprawidłowego działania, konsekwencje mogą być poważne, zarówno dla robota, jak i dla otoczenia. Wysokie prędkości mogą prowadzić do uszkodzenia elementów robota lub narzędzi, co zwiększa koszty napraw oraz przestojów w produkcji. Ręczne odtwarzanie z prędkością 100% jest również problematyczne, ponieważ nie daje inżynierom czasu na analizę i modyfikację programu w odpowiedzi na zauważone błędy. W ten sposób można łatwo wpaść w pułapkę zautomatyzowanego testowania, które nie uwzględnia krytycznych aspektów bezpieczeństwa i ergonomii, co jest kluczowe podczas projektowania systemów robotycznych. Z tych względów zaleca się przestrzeganie 20% prędkości w testach manualnych, co pozwala na dokładną analizę oraz eliminację wszelkich nieprawidłowości.