Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 08:49
  • Data zakończenia: 1 kwietnia 2025 09:11

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zweryfikować ciągłość instalacji, należy użyć

A. omomierza
B. woltomierza
C. watmierz
D. amperomierza
Amperomierz, watomierz i woltomierz to urządzenia pomiarowe o różnych zastosowaniach, które nie są odpowiednie do sprawdzania ciągłości instalacji elektrycznej. Amperomierz jest używany do pomiaru natężenia prądu w obwodzie, co pozwala na ocenę, ile prądu przepływa przez dany element. W przypadku sprawdzania ciągłości instalacji, mierzenie natężenia nie dostarcza informacji na temat istnienia przerw w obwodzie. Z kolei watomierz mierzy moc elektryczną (w watach) i jest przydatny w ocenie efektywności urządzeń, ale również nie ma zastosowania w kontekście ciągłości przewodów. Woltomierz, który mierzy napięcie, również nie jest odpowiedni, ponieważ nie może wykryć, czy przewód jest ciągły - może jedynie wskazać, czy w danym momencie na przewodzie jest obecne napięcie. Typowe błędy myślowe prowadzące do wyboru tych urządzeń związane są z myleniem pojęć związanych z pomiarem prądu, mocy oraz napięcia z błędami w obwodzie. W praktyce, do sprawdzania ciągłości instalacji konieczne jest użycie omomierza, który dostarcza dokładnych informacji o rezystancji, a tym samym o ewentualnych przerwach w obwodzie. Nieodpowiednie dobieranie narzędzi pomiarowych może prowadzić do poważnych błędów w ocenie stanu instalacji, co w konsekwencji grozi awariami lub zagrożeniem dla bezpieczeństwa użytkowników.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. filtr z regulowaną indukcyjnością
B. kondensatorem dostrojczym
C. potencjometrem
D. cewką regulowaną
Potencjometr, cewka regulowana i filtr z regulowaną indukcyjnością to terminy, które często są mylone z kondensatorem dostrojczym, ale mają zupełnie inne właściwości i zastosowania. Potencjometr to element pasywny, który pozwala na regulację oporu w obwodzie elektrycznym, co jest przydatne w aplikacjach takich jak regulacja głośności w audio czy w kontrolerach jasności. Choć potencjometry mogą wpływać na sygnał elektryczny, nie są one używane do dostrajania częstotliwości, ponieważ nie zmieniają pojemności ani nie mają związku z obwodami rezonansowymi. Cewka regulowana, z kolei, to element indukcyjny, którego indukcyjność można modyfikować, ale nie jest to odpowiednik kondensatora dostrojczego. Cewki regulowane są stosowane w aplikacjach, gdzie zmiana indukcyjności jest kluczowa, jak w transformatorach czy filtrach, jednak same w sobie nie służą do regulacji pojemności. Filtr z regulowaną indukcyjnością również ma swoje specyficzne zastosowanie w filtracji sygnałów, ale nie zmienia pojemności obwodu w taki sposób, aby dostroić go do konkretnej częstotliwości. Typowym błędem w takich rozważaniach jest mylenie funkcji i zastosowań tych elementów; każdy z nich pełni inną rolę w obwodach elektronicznych, co jest kluczowe dla ich prawidłowego działania. Aby uzyskać pełne zrozumienie pojęć związanych z elektroniką, ważne jest, aby dokładnie poznawać właściwości i zastosowanie każdego z tych elementów.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. odbiornika TV
B. rejestratora DVR
C. nadajnika TV
D. odtwarzacza DVD
Wybór nadajnika TV, odbiornika TV lub odtwarzacza DVD jako odpowiedzi wydaje się zrozumiały, jednak opiera się na pewnych mylnych założeniach dotyczących funkcji i zastosowania tych urządzeń. Nadajniki TV i odbiorniki TV są elementami systemów telewizyjnych, których główną rolą jest przechwytywanie i przesyłanie sygnału wideo oraz audio. Nadajniki koncentrują się na emisji sygnału, natomiast odbiorniki na dekodowaniu i wyświetlaniu go. Dla użytkowników, którzy poszukują informacji o monitoringu, funkcje te nie są wystarczające. Odtwarzacze DVD z kolei służą do odtwarzania filmów i programów zapisanych na nośnikach optycznych, a ich techniczne parametry są zupełnie inne niż te związane z rejestratorami DVR. W kontekście systemów nadzoru wideo, istotne jest zrozumienie, że rejestratory DVR są zaprojektowane do rejestrowania i przechowywania obrazu z kamer, co nie ma związku z funkcjami ani specyfikacjami urządzeń telewizyjnych. Praktyczne podejście do tematu monitoringu wymaga znajomości takich parametrów jak rozdzielczość, kompresja, sposób przechowywania danych, czy możliwości analizy wideo, co nie jest charakterystyczne dla żadnego z wymienionych urządzeń. Błędne odpowiedzi mogą wynikać z pomylenia roli różnych urządzeń w systemach wideo, co podkreśla znaczenie precyzyjnego zrozumienia ich funkcji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie oznaczenie literowe ma przewód wykorzystywany w połączeniach elementów systemów alarmowych?

A. YTDY
B. F/UTP
C. SMY
D. LGY
Odpowiedzi F/UTP, SMY i LGY niestety nie pasują do kontekstu, gdy chodzi o przewody do systemów alarmowych. F/UTP, mimo że ma ekran, jest bardziej używany w sieciach komputerowych niż do alarmów. Jego budowa sprawia, że to kabel idealny do sieci Ethernet, ale niekoniecznie w temacie bezpieczeństwa. Co do SMY, to jest stosunkowo typowy w telekomunikacji, ale dla systemów alarmowych to raczej nie jest to odpowiedni wybór. A kabel LGY, chociaż używany w różnych instalacjach elektrycznych, nie jest pierwszym, który bym wskazał w kontekście zabezpieczeń. Wybór tych odpowiedzi bywa często wynikiem mylenia zastosowań kabli w różnych branżach i braku znajomości specyfikacji, które są ważne dla systemów alarmowych. Kluczowe, aby wybierać odpowiednie kable, jak YTDY, które zostały zaprojektowane z myślą o tym konkretnym zastosowaniu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Na podstawie dołączonej tabeli określ, ile powinno wynosić natężenie oświetlenia na stanowisku pracy przy wykonywaniu precyzyjnych czynności montażowych układów mikroelektronicznych.

Działalność przemysłowa i rzemieślnicza –
Przemysł elektrotechniczny i elektroniczny
Typ obszaru, zadanie lub działalnośćWymagane natężenie oświetlenia, lx
Produkcja kabli i przewodów300
Uzwojenie:
– duże cewki
– średnie cewki
– małe cewki

300
500
750
Impregnacja cewek300
Galwanizowanie300
Montaż:
– zgrubny, np. duże transformatory,
– średni, np. tablice rozdzielcze
– dokładny, np. telefony, radia, sprzęt IT (komputery)
– precyzyjny, np. sprzęt pomiarowy, płytki obwodów drukowanych

300
500
750
1000
Warsztaty elektroniczne, sprawdzanie, regulacja1500

A. 750 lx
B. 1000 lx
C. 1500 lx
D. 500 lx
Wybór innych wartości natężenia oświetlenia, jak 750 lx, 1500 lx czy 500 lx, wskazuje na niepełne zrozumienie wymagań dotyczących oświetlenia w kontekście precyzyjnych prac montażowych. Natężenie 750 lx jest niewystarczające dla zadań wymagających wysokiej dokładności, ponieważ standardy wskazują, że dla takich czynności, jak montaż układów mikroelektronicznych, wymagane jest oświetlenie o natężeniu co najmniej 1000 lx. Przy tej wartości możliwe jest lepsze rozróżnianie szczegółów, co jest kluczowe w kontekście montażu delikatnych komponentów elektronicznych. Natomiast 1500 lx, choć na pierwszy rzut oka wydaje się być korzystne, może prowadzić do nadmiaru światła, co w konsekwencji zwiększa uczucie zmęczenia wzroku i może wpływać na komfort i wydajność pracy. Z kolei 500 lx jest zdecydowanie zbyt niskie, co może prowadzić do poważnych pomyłek i obniżenia jakości wykonania montażu. Aby efektywnie pracować przy precyzyjnych zadaniach, istotne jest przestrzeganie norm i standardów dotyczących oświetlenia, które nie tylko poprawiają bezpieczeństwo pracy, ale i jakość końcowego produktu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 200 V AC
B. 100 V DC
C. 750 V AC
D. 500 V DC
Wybór niewłaściwego zakresu pomiarowego może prowadzić do niepoprawnych wyników i uszkodzenia sprzętu. Odpowiedzi takie jak 100 V DC i 500 V DC są całkowicie nieodpowiednie do pomiaru napięcia przemiennego, ponieważ są one przeznaczone do pomiarów napięcia stałego. Napięcie stałe i przemienne mają różne właściwości, a użycie woltomierza ustawionego na DC do pomiarów AC może skutkować brakiem odczytu lub, co gorsza, uszkodzeniem urządzenia. Zakres 750 V AC, mimo że technicznie jest wystarczający, jest zbyt wysoki w porównaniu do oczekiwanego wyniku, co może prowadzić do obniżonej dokładności pomiaru. W pomiarach elektronicznych, optymalny dobór zakresu jest kluczowy dla uzyskania wiarygodnych wyników. Idealnym podejściem jest wybieranie zakresu, który jest blisko mierzonych wartości, ale nie mniejszy niż 20% większy od maksymalnego przewidywanego napięcia. To podejście gwarantuje zarówno bezpieczeństwo, jak i precyzję pomiaru, co jest zgodne z najlepszymi praktykami w branży. Prawidłowy wybór zakresu pomiarowego jest zatem fundamentem skutecznych pomiarów w inżynierii elektrycznej.

Pytanie 15

Skrót SNR odnosi się do

A. stosunku sygnału do szumu
B. bitowej stopy błędów
C. współczynnika błędów modulacji
D. współczynnika zniekształceń nieliniowych
Skrót SNR (Signal-to-Noise Ratio) oznacza stosunek sygnału do szumu, co jest kluczowym parametrem w wielu dziedzinach inżynierii, w tym telekomunikacji, przetwarzaniu sygnałów oraz audio. SNR mierzy, jak silny jest sygnał w porównaniu do poziomu szumu, który zawsze jest obecny w systemach komunikacyjnych. Wysoki SNR wskazuje na czystszy sygnał, co przekłada się na lepszą jakość transmisji danych. Przykładem zastosowania SNR jest analiza jakości połączeń w systemach bezprzewodowych, gdzie poprawny odbiór sygnału jest kluczowy dla zminimalizowania błędów transmisji. Zgodnie z najlepszymi praktykami, SNR powinien wynosić co najmniej 20 dB, aby zapewnić akceptowalny poziom jakości sygnału w aplikacjach audio. Wartości SNR można również obliczać w systemach wideo, gdzie wpływa to na jakość obrazu. Dobre praktyki obejmują monitoring SNR w czasie rzeczywistym, aby móc szybko reagować na problemy w transmisji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie jest zastosowanie symetryzatora antenowego?

A. do dopasowania impedancyjnego anteny i odbiornika
B. do przesyłania sygnałów z kilku anten do jednego odbiornika
C. aby zwiększyć zysk energetyczny anteny
D. w celu zmiany charakterystyki kierunkowej anteny
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. ich natychmiastowe działanie
B. ich umiejscowienie na suficie
C. to, że instalacja ma tylko jeden sygnalizator
D. to, że działają na tej samej częstotliwości
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. porażeniem prądem elektrycznym
B. wysoką temperaturą
C. niską wilgotnością
D. uszkodzeniami mechanicznymi
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 24

Jakie jest zadanie konwertera satelitarnego?

A. przesyłanie sygnału z odbiornika satelitarnego do satelity
B. dopasowywanie reaktancji anteny satelitarnej
C. przekazywanie sygnału z satelity do odbiornika satelitarnego
D. regulacja napięcia w obwodzie antenowym
Wybór odpowiedzi, która sugeruje, że konwerter satelitarny wyrównuje napięcie w obwodzie antenowym, jest nieprawidłowy, ponieważ konwerter nie jest odpowiedzialny za zarządzanie napięciem w antenie. Jego kluczową rolą jest konwersja sygnału, a nie regulacja parametrów elektrycznych. W rzeczywistości napięcie w obwodzie antenowym jest często optymalizowane przez inne komponenty, takie jak wzmacniacze sygnału lub zasilacze, które są odpowiedzialne za dostarczanie właściwego napięcia do elementów aktywnych systemu antenowego. Podobnie, sugestia, że konwerter dostarcza sygnał z odbiornika satelitarnego do satelity, jest błędna, ponieważ konwertery działają w kierunku przeciwnym, tj. z satelity do odbiornika. Odbiornik nie ma możliwości wysyłania sygnałów do satelity, gdyż to satelita jest odpowiedzialny za nadawanie sygnału do wielu odbiorców na Ziemi. Koncepcja dopasowania reaktancji anteny również nie odnosi się do funkcji konwertera. Odpowiednie dopasowanie reaktancji jest kwestią projektowania anteny i obwodów RF, które mają na celu minimalizację strat sygnału i zapewnienie maksymalnej efektywności odbioru. Wszelkie nieporozumienia wynikają najczęściej z pomylenia funkcji poszczególnych komponentów systemu satelitarnego oraz braku zrozumienia ich specyficznych zadań w całej infrastrukturze komunikacyjnej.

Pytanie 25

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Nadaje sygnały z satelity
B. Przekazuje informacje pomiędzy satelitami
C. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
D. Odbiera programy telewizyjne
W odpowiedziach, które nie są prawidłowe, widać pewne nieporozumienia dotyczące funkcji konwertera w systemie telewizji satelitarnej. Odbieranie programów telewizyjnych nie jest zadaniem konwertera, lecz odbiornika satelitarnego, który przetwarza sygnał po jego przekazaniu przez konwerter. Konwerter nie nadaje sygnałów z satelity, ponieważ jego rola ogranicza się wyłącznie do odbioru i przetwarzania sygnałów już nadawanych przez satelitę. Dodatkowo, konwerter nie przekazuje informacji między satelitami, co jest zadaniem systemów komunikacyjnych na satelitach oraz stacji naziemnych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych odpowiedzi, obejmują mylenie funkcji urządzeń w systemie telewizji satelitarnej oraz niedostateczne zrozumienie zasad działania konwertera w kontekście całego układu. Konwerter to kluczowy element, ale jego rola ogranicza się do przetwarzania sygnałów, a nie do aktywnego nadawania czy odbierania programów telewizyjnych samodzielnie.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. sygnalizacyjne YKSY
B. sygnalizacyjne YKSwXs
C. symetryczne (balanced)
D. niesymetryczne (unbalanced)
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. dyrektorami
B. dipolami
C. fiderami
D. symetryzatorami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 32

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Weryfikacja powiadamiania
B. Montaż manipulatora
C. Zamiana akumulatora
D. Sprawdzanie czujników
Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania, które są integralną częścią konserwacji instalacji alarmowych. Wymiana akumulatora jest kluczowa, ponieważ zapewnia zasilanie systemu w przypadku awarii zasilania głównego. Bez sprawnego akumulatora system alarmowy nie będzie mógł działać w sytuacjach kryzysowych, co zagraża bezpieczeństwu. Testowanie czujników jest równie istotne, ponieważ może ujawnić problemy z ich działaniem, takie jak zanieczyszczenia czy uszkodzenia mechaniczne. Regularne testy pozwalają również na weryfikację, czy czujniki reagują odpowiednio na bodźce, co jest kluczowe dla skuteczności systemu. Kontrola powiadamiania to także istotny aspekt, który zapewnia, że wszystkie elementy systemu komunikacyjnego działają prawidłowo, co jest kluczowe w sytuacjach alarmowych. Ignorowanie tych czynności konserwacyjnych może prowadzić do poważnych usterek systemu i osłabienia jego funkcji ochronnych. Zatem, mylne jest myślenie, że montaż manipulatora może być porównywany z tymi działaniami konserwacyjnymi, gdyż jest to czynność związana z instalacją, a nie z bieżącym utrzymaniem systemu w należytym stanie operacyjnym.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Na podstawie danych zamieszczonych w tabeli określ, w którym przypadku całkowity koszt wykonania zasilacza jest najniższy, jeśli koszt brutto roboczogodziny wynosi 10 zł?

Koszt materiałów bruttoCzas pracy
A.10 zł3,0 h
B.20 zł2,5 h
C.15 zł2,0 h
D.25 zł1,5 h

A. A.
B. B.
C. C.
D. D.
Wybór innej opcji może wynikać z błędnego zrozumienia mechanizmu obliczania całkowitych kosztów produkcji. Odpowiedzi A, B i D sugerują różne kombinacje kosztów materiałów oraz godzin pracy, które prowadzą do wyższych całkowitych wydatków. Na przykład, przyjmując opcję A, można zauważyć, że koszt materiałów jest wyższy, a czas pracy mniejszy, co może wprowadzać w błąd, sugerując, że niższy czas pracy zrekompensuje większe wydatki na materiały. Takie myślenie nie uwzględnia całkowitego obrazu kosztów, który powinien obejmować zarówno wydatki na materiały, jak i koszty robocizny. Typowym błędem jest także ignorowanie wpływu dłuższego czasu pracy na koszty całkowite w kontekście opłacalności projektu. Zrozumienie, że całkowity koszt jest sumą różnych elementów, jest kluczowe dla podjęcia właściwej decyzji. Dodatkowo w praktyce naukowej i inżynieryjnej, zawsze warto stosować analizy kosztów, aby podejmować świadome decyzje. Właściwa interpretacja tabel danych i umiejętność szybkiego przeliczenia kosztów mogą znacząco wpłynąć na sukces projektu, co ilustruje znaczenie dokładnych kalkulacji i analizy ekonomicznej w każdym procesie produkcyjnym.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Drzewa.
B. Gwiazdy.
C. Siatki.
D. Pierścienia.
Wybór innych topologii, takich jak drzewo, gwiazda czy pierścień, prowadzi do ograniczonej niezawodności w porównaniu z siatką. Topologia drzewa, mimo że jest uporządkowana i łatwa do rozbudowy, jest podatna na awarie głównego węzła, co może spowodować utratę komunikacji w całej gałęzi. W przypadku awarii jednego z węzłów w strukturze drzewiastej, inne urządzenia w tej samej gałęzi przestają działać, co jest znaczącym ograniczeniem w kontekście niezawodności. Topologia gwiazdy natomiast, choć łatwa do zarządzania, również cierpi na problem centralnego węzła; jeśli centralny przełącznik ulegnie awarii, cała sieć przestaje funkcjonować. Natomiast pierścień, choć oferuje równomierną dystrybucję danych, ma swoje ograniczenia związane z potrzeba przekazywania sygnału przez wszystkie węzły. Awaria jednego z węzłów może przerwać komunikację w całym pierścieniu, co czyni ją mało odporną na błędy. Wybór odpowiedniej topologii powinien być oparty na analizie wymagań systemowych i środowiskowych. W praktyce, projektanci sieci powinni dążyć do implementacji rozwiązań, które zapewniają wysoką dostępność i odporność na awarie, co czyni topologię siatki najkorzystniejszą opcją w wielu współczesnych zastosowaniach.

Pytanie 37

Termin "adres MAC" odnosi się do adresu

A. bramy domowej.
B. karty sieciowej przypisanego przez producenta urządzenia.
C. serwera DHCP.
D. komputera przydzielonego przez serwer DHCP.
Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego urządzenia, takiego jak karta sieciowa, przez producenta. Składa się z 48-bitowej liczby, zazwyczaj zapisywanej w postaci sześciu grup po dwa znaki szesnastkowe. Adresy MAC są używane w warstwie łącza danych modelu OSI do identyfikacji urządzeń w sieci lokalnej. Dzięki unikalności adresu MAC, urządzenia mogą komunikować się bez konfliktów. Przykładowo, router w sieci lokalnej używa adresów MAC do kierowania pakietów do właściwych odbiorców. Warto zauważyć, że adresy MAC są kluczowe w protokołach takich jak Ethernet i Wi-Fi, gdzie identyfikacja urządzeń jest niezbędna do prawidłowego funkcjonowania sieci. Standard IEEE 802.3 dla Ethernetu oraz IEEE 802.11 dla Wi-Fi jasno określają, jak adresy MAC są tworzone i używane. W praktyce, znajomość adresów MAC jest niezbędna przy konfigurowaniu zabezpieczeń w sieci, takich jak filtrowanie MAC, które pozwala administratorom na ograniczenie dostępu do sieci tylko do autoryzowanych urządzeń.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie urządzenie pozwala na łączenie się z Internetem poprzez sieć CATV?

A. switch
B. wzmacniacz
C. hub
D. modem
Modem jest urządzeniem, które konwertuje sygnały analogowe na cyfrowe i vice versa, umożliwiając tym samym komunikację komputerów z siecią Internet. W kontekście sieci CATV (Cable Television), modem kablowy jest niezbędnym elementem, który pozwala użytkownikom na dostęp do Internetu za pośrednictwem infrastruktury telewizyjnej. Dzięki zastosowaniu technologii DOCSIS (Data Over Cable Service Interface Specification), modemy kablowe zapewniają wysoką prędkość transferu danych oraz stabilne połączenie. Przykładem zastosowania modemu może być domowe połączenie z Internetem, gdzie użytkownik łączy modem z routerem, co umożliwia korzystanie z sieci na wielu urządzeniach jednocześnie. Warto również zaznaczyć, że dobór odpowiedniego modemu powinien być zgodny z wymaganiami dostawcy usług internetowych oraz z aktualnymi standardami branżowymi, co zapewnia optymalne parametry pracy i bezpieczeństwo połączenia.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.