Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 16 kwietnia 2025 11:50
  • Data zakończenia: 16 kwietnia 2025 12:03

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
B. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
C. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
D. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 2

Jak nazywa się jednostka mocy pozornej?

A. watogodzina.
B. war.
C. woltoamper.
D. wat.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 3

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. miernika z pomiarem MER
B. multimetru z pomiarem R
C. testera wytrzymałości dielektrycznej
D. analizatora sieci strukturalnych
Analizator sieci strukturalnych to zaawansowane narzędzie, które jest kluczowe do oceny poprawności instalacji sieci komputerowej. Dzięki zastosowaniu tego urządzenia, technicy mogą przeprowadzać kompleksową analizę parametrów, takich jak tłumienie, refleksja mocy oraz jakość sygnału w sieciach telekomunikacyjnych. Analizatory te są zgodne z normami branżowymi, takimi jak TIA/EIA-568, które określają wymagania dotyczące instalacji kabli strukturalnych. W praktyce, analizator pozwala na diagnostykę problemów, które mogą wystąpić w trakcie użytkowania sieci, co wpływa na jej wydajność i stabilność. Przykładowo, podczas instalacji sieci w biurze, technik może użyć analizatora do sprawdzenia, czy wszystkie kable są prawidłowo podłączone i czy nie występują straty sygnału, co mogłoby prowadzić do problemów z połączeniami internetowymi. Tego typu narzędzia są niezbędne dla zapewnienia wysokiej jakości usług oraz minimalizacji ryzyka awarii sieci.

Pytanie 4

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. naziemnej
B. kablowej
C. satelitarnej
D. dozorowej
DVB-C jest standardem stworzonym z myślą o telewizji kablowej, a więc odpowiedzi dotyczące dozoru, satelitarnej czy naziemnej są błędne i wynikają z nieporozumienia dotyczącego specyfiki i zastosowania różnych technologii transmisji. Telewizja dozorowa wykorzystuje inne systemy, które są bardziej skoncentrowane na monitorowaniu i rejestracji obrazu, a nie na przesyle sygnałów telewizyjnych w tradycyjnym rozumieniu. Przykładem mogą być systemy CCTV, które korzystają z technologii analogowej lub cyfrowej, ale nie są związane z DVB-C. W przypadku systemów satelitarnych, standard DVB-S jest odpowiedzialny za przesył sygnałów telewizyjnych za pośrednictwem satelitów, co jest całkowicie odrębne od technologii kablowej. Z kolei DVB-T dotyczy transmisji naziemnej, która jest używana do nadawania sygnału telewizyjnego z anten naziemnych, także nie mając związku z kablowym przesyłem sygnałów. Błędne rozumienie zastosowania tych standardów prowadzi do mylnego wniosku, że DVB-C mógłby być użyty w kontekście innych form transmisji, co jest niezgodne z jego projektowymi założeniami i praktycznym użyciem w branży telekomunikacyjnej.

Pytanie 5

Aby podłączyć czujkę kontaktronową w trybie NC do systemu alarmowego, należy użyć przewodu o co najmniej

A. sześciożyłowym z dwoma rezystorami
B. czteroparowym UTP z dwoma rezystorami
C. czterożyłowym z jednym rezystorem
D. dwużyłowym bez rezystorów
Odpowiedź dwużyłowego bez rezystorów jest poprawna w kontekście podłączenia czujki kontaktronowej do systemu alarmowego w konfiguracji NC (normalnie zamkniętej). Czujki kontaktronowe działają na zasadzie zamykania obwodu, gdy magnes zbliża się do czujnika, co aktywuje alarm. W tej konfiguracji nie jest wymagane stosowanie rezystorów, ponieważ czujki te mogą być bezpośrednio podłączone do centrali alarmowej. Zastosowanie dwużyłowego przewodu jest wystarczające do przesyłania sygnału z czujki do systemu, co czyni instalację prostszą i bardziej ekonomiczną. W praktyce, wykorzystanie dwużyłowego przewodu minimalizuje koszty materiałowe, a również czas potrzebny na instalację. Warto również pamiętać o zgodności z normami instalacyjnymi, które zalecają stosowanie odpowiednich przewodów w zależności od zastosowania, co w tym przypadku potwierdza wybór dwużyłowego przewodu bez rezystorów jako najodpowiedniejszego rozwiązania. Właściwe połączenie jest kluczowe dla prawidłowego funkcjonowania systemu alarmowego, a nieprawidłowe podłączenia mogą prowadzić do fałszywych alarmów lub błędów w działaniu systemu.

Pytanie 6

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. zwiększenie prędkości silnika
B. zmniejszenie prędkości silnika
C. wzrost prądu lasera
D. spadek prądu lasera
Zarówno zmniejszenie prądu lasera, jak i zmniejszenie obrotów silnika są konsekwencjami błędnych założeń dotyczących pracy odtwarzacza CD. Zmniejszenie prądu lasera nie jest objawem zużycia głowicy, lecz raczej może wskazywać na poprawne funkcjonowanie. Wysoka jakość odczytu danych przy niskim prądzie lasera jest pożądana, ponieważ zapobiega to przegrzewaniu się komponentów. W przypadku silnika, obroty jego nie powinny być zmniejszane w kontekście zużycia lasera, ponieważ są one z nim ściśle związane. Zwiększenie obrotów silnika jest zazwyczaj oznaką próby odczytu danych z płyty w trudniejszych warunkach, na przykład, gdy płyta jest porysowana lub brudna. W takiej sytuacji, silnik jest w stanie dostarczyć więcej energii, aby skompensować trudności w odczycie. Zmniejszenie obrotów silnika mogłoby spowodować, że napęd nie będzie w stanie poprawnie odczytać danych, co prowadziłoby do błędów. Często przyczyną takich nieporozumień jest brak wiedzy na temat mechanizmów działania urządzeń optycznych. Warto zrozumieć, że prawidłowe działanie układów optycznych, w tym głowicy laserowej i silnika, jest kluczowe dla utrzymania jakości odczytu, co z kolei jest kluczowe w kontekście długotrwałego użytkowania odtwarzacza CD.

Pytanie 7

Który z parametrów odnosi się do wartości 20 Mpx, podanej w specyfikacji cyfrowego aparatu fotograficznego?

A. Optyczne powiększenie obrazu
B. Czas reakcji migawki
C. Rozdzielczość matrycy światłoczułej
D. Cyfrowe powiększenie obrazu
Odpowiedzi związane z cyfrowym powiększeniem obrazu, optycznym powiększeniem oraz czasem reakcji migawki są mylące i nie oddają istoty pojęcia rozdzielczości matrycy. Cyfrowe powiększenie obrazu odnosi się do procesu, który zachodzi po zrobieniu zdjęcia, w którym obraz jest powiększany w programie graficznym. Powiększenie to nie wpływa na jakość samego zdjęcia, tak jak robi to rozdzielczość matrycy, która determinuje ilość informacji zarejestrowanych w momencie wykonania ujęcia. Optyczne powiększenie obrazu jest związane z użyciem obiektywu i jego zdolnością do zbliżania obiektów, co również nie ma bezpośredniego związku z liczba megapikseli. Czas reakcji migawki z kolei odnosi się do szybkości, z jaką aparat może rejestrować obraz po naciśnięciu spustu migawki. Jest to istotny parametr w kontekście uchwycenia ruchu, ale nie ma związku z rozdzielczością matrycy. Typowe błędy myślowe prowadzące do mylenia tych koncepcji polegają na nieznajomości różnic między parametrami technicznymi aparatu oraz ich wpływem na jakość obrazu. Zrozumienie, że rozdzielczość jest kluczowym czynnikiem dla jakości zdjęć, a inne parametry służą różnym celom, jest istotne dla prawidłowego doboru sprzętu fotograficznego.

Pytanie 8

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 30 V; 3 A; 0,5 mm2
B. 12 V; 9 A; 0,75 mm2
C. 30 V; 9 A; 0,75 mm2
D. 230 V; 1,25 A; 0,4 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 9

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. dyrektorami
B. dipolami
C. symetryzatorami
D. fiderami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 10

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
B. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
C. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
D. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci
Uszkodzenie urządzeń elektronicznych zasilanych z niezabezpieczonej sieci energetycznej jest wynikiem przepięć, które mogą wystąpić w takich systemach. Przepięcia mogą być spowodowane różnymi czynnikami, takimi jak wyładowania atmosferyczne, nagłe zmiany w obciążeniu sieci lub awarie w dostawie energii. Przykładowo, gdy piorun uderza w linię energetyczną, może dojść do chwilowego wzrostu napięcia, który przekracza dopuszczalne wartości dla podłączonych urządzeń. Takie przepięcia mogą prowadzić do zniszczenia komponentów elektronicznych, takich jak zasilacze, płyty główne czy inne układy scalone. Aby zminimalizować ryzyko uszkodzeń, zaleca się stosowanie urządzeń zabezpieczających, jak listwy antyprzepięciowe, które absorbują nadmiar energii. Kiedy mówimy o ochronie przed przepięciami, warto również pamiętać o standardach, takich jak IEC 61643, które definiują wymagania dla urządzeń zabezpieczających przed przepięciami (SPD). Wiedza na temat tych zagadnień jest istotna w kontekście projektowania i eksploatacji systemów elektrotechnicznych, aby zagwarantować bezpieczeństwo i długowieczność używanych urządzeń.

Pytanie 11

Jaką liczbę wyjść ma konwerter TWIN?

A. cztery wyjścia
B. jedno wyjście
C. osiem wyjść
D. dwa wyjścia
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 12

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. SN74151
B. Z80
C. UL7805
D. NE555
Wybór UL7805 jako generatora impulsów prostokątnych jest błędny, ponieważ ten układ scalony jest regulatorem napięcia, a nie generatorem sygnałów. UL7805 ma na celu stabilizację napięcia zasilającego, co czyni go fundamentalnym elementem w zarządzaniu zasilaniem w obwodach elektronicznych, ale nie jest zaprojektowany do generowania impulsów. Z kolei SN74151 to multiplekser/demultiplekser, który służy do przekazywania sygnałów, ale nie generuje impulsów prostokątnych. Jest to element bardziej przeznaczony do selekcji sygnałów niż ich produkcji. Co więcej, Z80 to mikroprocesor, który wykonuje instrukcje zapisane w programie, ale nie działa jako generator impulsów. Często mylone są funkcjonalności różnych układów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każdy układ scalony ma swoje specyficzne przeznaczenie, a ich zastosowanie powinno być dostosowane do wymagań projektowych. Typowe błędy myślowe polegają na braku analizy specyfikacji technicznych układów scalonych i ich rzeczywistych zastosowań, co może prowadzić do nieefektywnego projektowania obwodów oraz wyboru niewłaściwych komponentów, co z kolei wpływa na niezawodność i wydajność całego systemu elektronicznego.

Pytanie 13

Jakiego środka ochrony osobistej powinien użyć pracownik podczas kontroli naprawianego odtwarzacza DVD, gdy źródło lasera nie jest zabezpieczone?

A. Obuwie ochronne
B. Okulary z ciemnymi soczewkami oraz filtrem UV
C. Rękawice ochronne
D. Okulary z soczewkami, które nie przepuszczają fal o określonej długości
Wybór niewłaściwych środków ochrony osobistej może prowadzić do poważnych problemów zdrowotnych. Widzisz, okulary z ciemnymi soczewkami i filtrem UV mogą nie dawać odpowiedniej ochrony przed promieniowaniem laserowym. To trochę mylące, bo chociaż chronią przed UV, nie zabezpieczają nas przed długościami fal emitowanymi przez lasery, które często są w widzialnym zakresie. Rękawice ochronne są ważne, ale niestety nie pomogą nam w ochronie oczu, a obuwie ochronne, chociaż przydatne w wielu sytuacjach, też nie rozwiązuje problemu z laserami. Często ludzie koncentrują się na ogólnych środkach ochrony, a zapominają o tych specyficznych dla danego zagrożenia, co może prowadzić do tego, że nie są wystarczająco zabezpieczeni w sytuacjach z zagrożeniem laserowym. Dlatego w ocenie ryzyka warto zawsze brać pod uwagę, jakie zagrożenia występują i wybierać ochronę zgodnie z normami i zasadami BHP.

Pytanie 14

Podłączenie urządzenia elektronicznego klasy I do gniazda elektrycznego bez bolca ochronnego może prowadzić do

A. pojawienia się napięcia na obudowie
B. wzrostu temperatury pracy urządzenia
C. skrócenia okresu użytkowania
D. uszkodzenia urządzenia
Podłączenie urządzenia elektronicznego posiadającego I klasę ochronności do gniazdka instalacji elektrycznej bez bolca ochronnego stwarza ryzyko pojawienia się napięcia na obudowie. Urządzenia te są projektowane w taki sposób, aby ich obudowy były uziemione, co zapobiega przypadkowemu porażeniu prądem w sytuacji awaryjnej. W przypadku, gdy bolca ochronnego brakuje, obudowa nie jest uziemiona, co oznacza, że w przypadku awarii lub zwarcia, napięcie może pojawić się na obudowie urządzenia. Przykładem zastosowania tej zasady jest użycie urządzeń takich jak pralki, lodówki, czy komputery, które powinny być podłączane do gniazdek z uziemieniem, aby zapewnić bezpieczeństwo użytkowników. Normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 61140, podkreślają znaczenie poprawnego uziemienia dla ochrony przed ryzykiem porażenia prądem. Dobre praktyki w zakresie instalacji elektrycznych nakazują, aby każde urządzenie klasy I było zawsze podłączane do gniazdka z bolcem ochronnym, co minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji.

Pytanie 15

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. utraty danych w pamięci wewnętrznej
B. zmniejszenia pojemności kondensatorów
C. uszkodzenia obwodów drukowanych
D. spadku efektywności zasilacza
Podczas analizy problemu narażenia urządzeń elektronicznych na wibracje, należy zrozumieć, że nie wszystkie efekty są jednakowo istotne. Zmniejszenie wydajności zasilacza jest powiązane z różnymi czynnikami, takimi jak obciążenie czy jakość komponentów, ale nie jest bezpośrednio związane z wibracjami. Choć wibracje mogą powodować awarie zasilaczy, głównie poprzez uszkodzenie elementów pasywnych, to nie są one głównym czynnikiem wpływającym na ich wydajność. Utrata pojemności kondensatorów może wystąpić w wyniku długotrwałego narażenia na wysokie temperatury lub niewłaściwych warunków użytkowania, ale sama w sobie nie jest bezpośrednio spowodowana wibracjami. Kondensatory mogą tracić pojemność z różnych powodów, w tym z powodu starzenia się materiałów dielektrycznych, a niekoniecznie wskutek drgań. Utrata danych pamięci wewnętrznej, chociaż poważnym problemem, nie jest typowym skutkiem wibracji, lecz raczej błędów w zasilaniu lub uszkodzeń fizycznych nośnika. Ponadto, w przypadku nowoczesnych urządzeń, wiele z nich wyposażonych jest w mechanizmy zabezpieczające przed utratą danych, co dodatkowo minimalizuje ryzyko. Zrozumienie tych aspektów i precyzyjne określenie przyczyn problemów technicznych jest kluczowe w inżynierii elektronicznej, co pozwala na podejmowanie właściwych działań prewencyjnych i diagnostycznych.

Pytanie 16

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. modem.
B. bramkę.
C. switch.
D. router.
Wybór routera jako urządzenia do łączenia segmentów sieci LAN jest błędny, ponieważ routery pełnią inną rolę w architekturze sieci. Router jest odpowiedzialny za kierowanie pakietami danych między różnymi sieciami, a nie za zarządzanie komunikacją wewnątrz jednego segmentu. Działa on na trzeciej warstwie modelu OSI i wykorzystuje adresy IP do podejmowania decyzji dotyczących trasowania. Korzystanie z routera do łączenia urządzeń w sieci LAN wprowadza dodatkową złożoność i opóźnienia, które są niepotrzebne w takim kontekście. Modem z kolei jest urządzeniem stosowanym do łączenia lokalnej sieci z internetem, konwertując sygnały cyfrowe na analogowe i odwrotnie. Nie służy on do wewnętrznego zarządzania komunikacją pomiędzy urządzeniami w sieci LAN, co czyni go niewłaściwym wyborem w tym przypadku. Bramki, będące mostem między różnymi protokołami, również nie są odpowiednie do łączenia segmentów LAN, ponieważ ich podstawowym zadaniem jest konwersja protokołów. Tego rodzaju błędne podejścia wynikają często z pomylenia ról poszczególnych urządzeń sieciowych oraz braku zrozumienia, jak działają różne warstwy modelu OSI. Ważne jest, aby rozróżniać te urządzenia i ich funkcje, aby efektywnie zarządzać siecią i zapewnić odpowiednią wydajność oraz bezpieczeństwo.

Pytanie 17

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 3 m2
B. 1 m2
C. 4 m2
D. 2 m2
W kontekście aranżacji przestrzeni biurowej, minimalna powierzchnia 2 m2 przypadająca na jednego pracownika jest zgodna z normami i zaleceniami dotyczącymi ergonomii oraz zdrowia w miejscu pracy. Zgodnie z wytycznymi, takimi jak normy PN-EN 15251 oraz wytyczne BHP, zapewnienie odpowiedniej przestrzeni osobistej jest kluczowe dla komfortu i efektywności pracy. Pracownicy, mający do dyspozycji nie tylko biurko, ale także przestrzeń na poruszanie się, ograniczają uczucie przytłoczenia i zwiększają swoją wydajność. Przykładem zastosowania tej zasady mogą być biura typu open space, gdzie mimo otwartej przestrzeni, odpowiednie rozmieszczenie stanowisk pracy oraz zapewnienie przynajmniej 2 m2 na osobę sprzyja lepszej koncentracji i mniejszemu stresowi. Warto również zauważyć, że w przypadku organizacji biura, większa przestrzeń wpływa na poprawę komunikacji między pracownikami oraz umożliwia lepsze funkcjonowanie zespołów, co jest szczególnie ważne w kontekście współczesnych modeli pracy zespołowej.

Pytanie 18

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. odłączenia układu od zasilania
B. usunęcia kondensatora filtrującego
C. zwarcia wejścia układu
D. podłączenia obciążenia sztucznego
Wymontowanie kondensatora filtrującego przed wymianą tranzystora może wydawać się logiczne, jednak jest to podejście niezgodne z najlepszymi praktykami w dziedzinie elektroniki. Kondensatory filtrujące mają za zadanie stabilizować napięcie i eliminować zakłócenia w obwodach. W przypadku ich demontażu, układ może nie działać poprawnie lub może wystąpić niepożądane zjawisko oscylacji, co może prowadzić do dalszych uszkodzeń. Podłączenie sztucznego obciążenia jako sposób na wymianę tranzystora również jest niewłaściwe, gdyż wprowadza dodatkowe ryzyko uszkodzenia innych komponentów. Sztuczne obciążenie nie ma zastosowania w kontekście wymiany uszkodzonego tranzystora, a jego użycie może prowadzić do nieodpowiednich warunków pracy, które mogą wprowadzić dodatkowe problemy. Natomiast zwarcie wejścia układu jest skrajnym i niebezpiecznym zachowaniem, które może prowadzić do uszkodzeń zarówno tranzystora, jak i samej przetwornicy. Takie działanie nie tylko naraża komponenty na uszkodzenia, ale także stwarza potencjalne zagrożenie dla użytkownika. W elektronice kluczowe jest przestrzeganie zasad bezpieczeństwa oraz procedur, co oznacza, że przed wymianą jakichkolwiek komponentów konieczne jest zapewnienie, że układ jest całkowicie odłączony od zasilania.

Pytanie 19

Odbiornik satelitarny, który pozwala na nagrywanie innego programu niż ten aktualnie oglądany, to model

A. COMBO
B. TWIN
C. FTA
D. DUO
Odpowiedzi DUO, FTA i COMBO są błędne z różnych powodów. Tuner DUO, mimo że często mylony z modelem TWIN, zazwyczaj odnosi się do odbiorników, które mogą obsługiwać dwa źródła sygnału, ale niekoniecznie pozwalają na równoczesne nagrywanie i odbieranie dwóch różnych programów. FTA (Free To Air) odnosi się do odbiorników telewizyjnych, które mogą odbierać darmowe sygnały satelitarne, ale nie mają wbudowanej funkcji nagrywania. Takie urządzenia są ograniczone w możliwościach, ponieważ nie mogą zapisywać programów na dysku twardym. Z kolei COMBO to urządzenie, które łączy funkcje tunera satelitarnego i telewizyjnego, jednak niekoniecznie oferuje podwójne nagrywanie. Wybór takiego tunera może prowadzić do frustracji w użytkowaniu, ponieważ ogranicza możliwość jednoczesnego odbioru i nagrywania, co jest kluczowe dla wielu użytkowników. Zrozumienie tych różnic jest istotne, aby uniknąć zakupów, które nie spełniają oczekiwań, oraz by dobrze dostosować urządzenie do indywidualnych potrzeb użytkownika. Warto zwrócić uwagę na specyfikacje techniczne i funkcjonalności, które są dostosowane do współczesnych standardów telewizyjnych oraz potrzeb użytkowników.

Pytanie 20

Podaj właściwą sekwencję przejścia sygnału satelitarnego do telewizora.

A. Odbiornik satelitarny, antena satelitarna, konwerter, odbiornik telewizyjny
B. Antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny
C. Konwerter, antena satelitarna, odbiornik satelitarny, odbiornik telewizyjny
D. Antena satelitarna, odbiornik satelitarny, konwerter, odbiornik telewizyjny
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka kluczowych błędów w zrozumieniu procesu odbioru sygnału satelitarnego. Na przykład, w niektórych odpowiedziach zakłada się, że odbiornik satelitarny powinien znajdować się przed konwerterem, co jest technicznie niepoprawne. Odbiornik satelitarny jest urządzeniem odpowiedzialnym za dekodowanie sygnału, który już przeszedł przez konwerter. Konwerter pełni kluczową rolę w przetwarzaniu sygnału, dlatego musi znajdować się bezpośrednio po antenie satelitarnej, a przed odbiornikiem satelitarnym. Innym typowym błędem jest ignorowanie znaczenia anteny satelitarnej, która jest pierwszym punktem kontaktu z sygnałem radiowym. Niepoprawna kolejność może prowadzić do braku sygnału lub znacznego pogorszenia jakości obrazu. Takie nieporozumienia często wynikają z braku wiedzy na temat funkcji poszczególnych komponentów systemu. Standardy branżowe określają, że właściwe ustawienie i konfiguracja systemu są kluczowe dla uzyskania najlepszego odbioru. Niezrozumienie tego procesu nie tylko może skutkować nieodpowiednim działaniem systemu, ale również ogranicza możliwości użytkownika w zakresie wykorzystania pełni potencjału technologii satelitarnej.

Pytanie 21

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na plecach i poluzowanie odzieży na szyi
B. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
C. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
D. Położenie jej na brzuchu i odchylenie głowy w bok
Ułożenie osoby porażonej prądem elektrycznym w pozycji na boku jest kluczowe, ponieważ ta pozycja, znana jako pozycja bezpieczna, zapobiega aspiracji treści pokarmowych oraz umożliwia swobodne oddychanie. Rozluźnienie ubrania wokół szyi pomoże zminimalizować ewentualne duszenie lub ucisk na drogi oddechowe. Ważne jest, aby nie przemieszczać osoby, chyba że istnieje bezpośrednie zagrożenie dla jej życia, takie jak pożar czy dalsze porażenie prądem. W sytuacji takiej, priorytetem jest zapewnienie bezpieczeństwa osobie poszkodowanej oraz wezwanie służb ratunkowych. Postępowanie według tych zasad jest zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takich jak Europejska Rada Resuscytacji. Dodatkowo, warto znać techniki resuscytacyjne, aby móc szybko zareagować, gdyby osoba straciła przytomność lub nie oddychała. Wyjątkowo istotne jest także monitorowanie stanu poszkodowanego do momentu przybycia służb medycznych.

Pytanie 22

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. wzrost obrotów silnika
B. spadek obrotów silnika
C. wzrost prądu lasera
D. obniżenie prądu lasera
Zmniejszenie obrotów silnika, zmniejszenie prądu lasera oraz zwiększenie obrotów silnika są mylnymi interpretacjami symptomów związanych z zużyciem głowicy laserowej. Zmniejszenie obrotów silnika w odtwarzaczu CD zwykle jest związane z problemami z mechaniką napędu lub zasilaniem, a nie bezpośrednio z głowicą laserową. Gdy silnik nie może osiągnąć odpowiednich obrotów, może to wpłynąć na jakość odczytu, jednak nie jest to objaw zużycia głowicy. Z kolei zmniejszenie prądu lasera wskazuje na problem z jego wydajnością, co może oznaczać, że laser nie jest w stanie poprawnie skanować płyty, ale nie jest to symptom zużycia, a raczej efekt ewentualnej awarii. Zwiększenie obrotów silnika również nie jest powiązane z zużyciem lasera; może to sugerować, że napęd próbuje nadrobić straty wynikające z niewłaściwego odczytu, co jest symptomem problemów mechanicznych. Do typowych błędów myślowych prowadzących do takich niepoprawnych wniosków należy sądzenie, że wszystkie zmiany w parametrach pracy urządzenia są bezpośrednio związane z głowicą laserową. Kluczowe jest zrozumienie, że wiele komponentów urządzeń elektronicznych współpracuje ze sobą i zmiana jednego z parametrów może wynikać z różnych przyczyn, dlatego diagnostyka powinna być kompleksowa.

Pytanie 23

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. SATA
B. LAN
C. HDMI
D. USB
Wybór błędnych złączy, takich jak HDMI, USB czy LAN, wskazuje na niepełne zrozumienie ich funkcji oraz ograniczeń w kontekście archiwizacji danych. Złącze HDMI (High-Definition Multimedia Interface) służy głównie do przesyłania sygnału wideo i audio między urządzeniami, ale nie jest przeznaczone do transferu danych do lokalnego przechowywania. Używanie HDMI do archiwizacji materiału wideo byłoby błędne, ponieważ złącze to nie wspiera bezpośredniego dostępu do pamięci masowej. USB (Universal Serial Bus) jest wszechstronnym złączem, które umożliwia transfer danych, jednak jego zastosowanie w profesjonalnych systemach archiwizacji wideo może być ograniczone przez niższą wydajność w porównaniu do SATA. USB 3.0, na przykład, osiąga prędkości do 5 Gbps, co w przypadku dużych plików wideo może okazać się niewystarczające, zwłaszcza w sytuacjach wymagających ciągłego zapisu, jak podczas nagrywania na żywo. Z kolei złącze LAN (Local Area Network) jest używane do komunikacji sieciowej i nie służy do podłączania dysków twardych w sposób umożliwiający ich bezpośrednie użycie w rejestratorze. Choć LAN może być wykorzystywane do zdalnego dostępu do materiału wideo lub do przesyłania danych między urządzeniami, nie zastępuje fizycznego połączenia z dyskiem. Właściwe zrozumienie różnorodnych interfejsów i ich zastosowań jest kluczowe dla efektywnego zarządzania infrastrukturą przechowywania danych oraz zapewnienia optymalnej wydajności systemu.

Pytanie 24

Jakie substancje stosuje się do wytrawiania płytek PCB?

A. nadsiarczan sodowy
B. pasta lutownicza
C. alkohol izopropylowy
D. topnik
Pasta lutownicza to materiał stosowany w procesie lutowania, a nie wytrawiania. Jej głównym zadaniem jest ułatwienie połączeń między elementami elektronicznymi a płytkami PCB poprzez obniżenie temperatury topnienia lutowia. Zastosowanie pasty lutowniczej w kontekście wytrawiania jest mylne, ponieważ nie ma ona właściwości chemicznych, które umożliwiałyby efektywne usunięcie warstwy miedzi. Topnik również nie jest odpowiednim środkiem do wytrawiania. Jest on stosowany w lutowaniu w celu poprawy przyczepności lutowia do powierzchni, jednak nie ma on zdolności do rozpuszczania miedzi. Natomiast alkohol izopropylowy jest stosowany głównie do czyszczenia elementów elektronicznych, usuwania zanieczyszczeń lub kalafonii po lutowaniu, a nie do procesu wytrawiania. Często zdarza się, że nieprecyzyjne rozumienie ról różnych substancji prowadzi do błędnych wniosków, co jest typowe wśród osób dopiero uczących się technologii PCB. Ważne jest, aby podczas nauki zagłębiać się w specyfikę zastosowań chemikaliów oraz procesów technologicznych, aby uniknąć mylenia ich funkcji oraz zapewnić zgodność z najlepszymi praktykami w branży elektroniki.

Pytanie 25

Wyładowania elektryczne w atmosferze mogą prowadzić do powstawania niepożądanych napięć, które oddziałują na parametry anteny, skutkując

A. obniżeniem rezystancji promieniowania
B. zniekształceniem charakterystyki kierunkowej
C. zmniejszeniem impedancji wejściowej
D. zmianą długości oraz powierzchni efektywnej
Odpowiedzi sugerujące zmniejszenie rezystancji promieniowania, zmniejszenie impedancji wejściowej czy zmianę długości i powierzchni skutecznej anteny opierają się na błędnych założeniach dotyczących wpływu wyładowań atmosferycznych na parametry anteny. Zmniejszenie rezystancji promieniowania nie jest związane z działaniem piorunów, ponieważ rezystancja ta jest właściwością anteny i opisuje jej zdolność do efektywnego promieniowania energii. Zmiany te są bardziej związane z konstrukcją anteny niż z wpływem zewnętrznych zakłóceń. Podobnie, zmniejszenie impedancji wejściowej nie jest bezpośrednio efektem działania wyładowania atmosferycznego. Impedancja wejściowa anteny jest determinowana przez jej geometrię i materiał, z którego jest wykonana, a nie przez indukowane napięcia. Co więcej, zmiana długości i powierzchni skutecznej anteny także nie następuje w wyniku zjawisk atmosferycznych, ale raczej w wyniku mechanicznych lub elektrycznych modyfikacji samej anteny. Dlatego kluczowe jest zrozumienie, że wyładowania atmosferyczne mają bardziej wpływ na dynamiczne zniekształcenia charakterystyki anteny, a nie na jej podstawowe parametry fizyczne. W kontekście ochrony anten przed wyładowaniami wskazane jest, aby stosować odpowiednie metody i technologie zapobiegające uszkodzeniom, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie telekomunikacji.

Pytanie 26

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. omomierza
B. oscyloskopu i zasilacza
C. woltomierza
D. oscyloskopu i generatora funkcyjnego
Omomierz to narzędzie, które umożliwia pomiar rezystancji, co jest kluczowe w diagnozowaniu tranzystorów. W przypadku tranzystorów, omomierz pozwala na sprawdzenie połączeń wewnętrznych i ich stan, co jest niezbędne do oceny sprawności komponentu. Możliwe pomiary obejmują zarówno sprawdzenie złączy bazy, emitera i kolektora, jak i wykrycie ewentualnych zwarć. Przykładowo, w tranzystorach bipolarnych (BJT) można zmierzyć rezystancję między bazą a emiterem oraz między bazą a kolektorem w różnych konfiguracjach. Dobrą praktyką jest pomiar rezystancji w obu kierunkach, aby upewnić się, że tranzystor nie jest uszkodzony. Należy również zwrócić uwagę na to, że wartości rezystancji różnią się w zależności od typu tranzystora, co powinno być brane pod uwagę podczas analizy wyników. Warto zaznaczyć, że omomierz jest szybki i łatwy w użyciu, co czyni go idealnym narzędziem do pierwszej diagnostyki komponentów elektronicznych.

Pytanie 27

Jakie urządzenie pozwala na podłączenie anteny o impedancji falowej 300 Ω do odbiornika, który ma gniazdo antenowe o impedancji 75 Ω?

A. symetryzator
B. zwrotnica
C. rozdzielacz
D. konwerter
Rozgałęźnik, przemiennik oraz zwrotnica to urządzenia, które mają inne funkcje i nie są odpowiednie do konwersji impedancji w tej konkretnej sytuacji. Rozgałęźnik służy do dzielenia sygnału na wiele wyjść, co może prowadzić do osłabienia sygnału, jednak nie jest w stanie dostosować impedancji sygnału, co jest kluczowe w przypadku podłączania anteny o różnych impedancjach. Przemiennik z kolei zmienia częstotliwość sygnału, ale nie wpływa na jego impedancję, co sprawia, że nie nadaje się do zastosowań związanych z dopasowaniem impedancji anten. Znalezienie odpowiedniego dopasowania impedancji jest istotne dla osiągnięcia wysokiej efektywności energetycznej i uniknięcia strat sygnałowych. Zwrotnica, chociaż jest użytecznym urządzeniem w systemach audio i radiowych, ma za zadanie kierowanie sygnałów do właściwych torów, ale nie ma funkcji przystosowania impedancji. Typowym błędem myślowym jest mylenie tych urządzeń z symetryzatorem, co prowadzi do niewłaściwego doboru sprzętu i w efekcie do pogorszenia jakości sygnału lub całkowitych problemów z odbiorem. W kontekście standardów branżowych, każda z tych funkcji wymaga odrębnych podejść i rozwiązań, dlatego kluczowe jest zrozumienie właściwego zastosowania danego urządzenia w systemie transmisji sygnałów.

Pytanie 28

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. omomierza
B. amperomierza
C. częstotliwościomierza
D. woltomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 29

Termin "licznik mikrorozkazów" odnosi się do

A. systemu mikroprocesorowego
B. manipulatora
C. oscyloskopu cyfrowego
D. pętli PLL
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 30

Stabilność systemu automatycznej regulacji to umiejętność systemu do

A. działania pod dużymi obciążeniami
B. działania w skrajnie niskich lub skrajnie wysokich temperaturach
C. utrzymywania stabilnych parametrów obiektu po ustaniu sygnału zakłócającego
D. minimalizowania zakłóceń wpływających na obiekt regulacji
Stabilność w układach automatycznej regulacji to kluczowa sprawa. Chodzi o to, że system musi umieć wrócić do ustawionej wartości, nawet jak coś nieprzewidzianego się wydarzy. Weźmy na przykład systemy HVAC – dzięki stabilności możemy mieć pewność, że temperatura w pomieszczeniu będzie utrzymana, nawet jeśli na zewnątrz nagle zrobi się zimniej. Jak wiadomo, standardy jak ISO 9001 kładą duży nacisk na monitorowanie i kontrolowanie procesów, żeby wszystko działało sprawnie. Dobrze zaprojektowane układy regulacji, na przykład z użyciem regulatorów PID, szybko i precyzyjnie odpowiadają na różne zakłócenia. Moim zdaniem, zrozumienie stabilności układów regulacji jest niezbędne, jeśli chcemy budować systemy, które poradzą sobie z różnymi zmianami w otoczeniu.

Pytanie 31

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. w płaszczu polietylenowym (PE)
B. w płaszczu PCV
C. z oplotem miedzianym
D. z linką nośną
Wybór odpowiedzi niezwiązanych z płaszczem polietylenowym może prowadzić do poważnych problemów w kontekście instalacji antenowych. Odpowiedź "z oplotem miedzianym" sugeruje, że miedź zapewnia ochronę przed wilgocią i zmiennymi temperaturami, co jest mylnym założeniem. Miedź, choć doskonała w przewodnictwie elektrycznym, jest podatna na korozję w warunkach wilgotnych, co może prowadzić do degradacji przewodów i utraty jakości sygnału. Odpowiedź "z linką nośną" odnosi się do aspektu konstrukcyjnego, ale nie dotyczy materiału izolacyjnego, co w kontekście ochrony przed wilgocią oraz temperaturą jest kluczowe. Linka nośna może pomóc w utrzymaniu przewodu w odpowiedniej pozycji, ale nie zapewnia odpowiedniej ochrony przed czynnikami zewnętrznymi. Z kolei opcja "w płaszczu PCV" jest nieodpowiednia, ponieważ chociaż PCV jest materiałem odpornym na starzenie, może nie wytrzymać ekstremalnych warunków temperaturowych i wysokiej wilgotności, co prowadzi do pęknięć i utraty elastyczności. Wybierając przewody do systemów antenowych, kluczowe jest kierowanie się nie tylko ich właściwościami elektrycznymi, ale również odpornością na warunki środowiskowe, co jest istotnym błędem, który należy unikać.

Pytanie 32

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
B. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
C. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
D. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 33

Multiswitch zainstalowany w systemie antenowym, mający 5 wejść, w tym jedno dla telewizji naziemnej, umożliwia odbiór wszystkich kanałów u każdego abonenta?

A. z 1 satelity
B. z 2 satelitów
C. z 5 satelitów
D. z 4 satelitów
Odpowiedzi wskazujące na możliwość odbioru sygnału z dwóch, czterech czy pięciu satelitów są nieprawidłowe i opierają się na błędnych założeniach dotyczących działania multiswitcha. Multiswitch, w zależności od swojego typu i ilości wejść, umożliwia podział sygnału pochodzącego z jednego źródła satelitarnego, a nie z wielu jednocześnie. Istnieje technologia, która pozwala na odbiór sygnału z kilku satelitów, jednak wymaga to zastosowania specjalnych konwerterów typu quad lub octo oraz dodatkowego sprzętu, co nie jest zgodne z założeniami tego pytania. Typowym błędem w myśleniu jest założenie, że multiswitch automatycznie może obsługiwać więcej niż jeden sygnał satelitarny, co jest nieprawda. W rzeczywistości, każdy multiswitch ma określoną liczbę wejść, które są przystosowane do jednego konkretnego sygnału, a ich ilość nie oznacza liczby satelitów, z których można odbierać sygnał. Przykładowo, maksymalna liczba sygnałów, które można obsługiwać, jest ograniczona przez konwertery oraz ich konfigurację, a nie przez multiswitch. Dlatego odpowiedzi sugerujące możliwość odbioru z dwóch, czterech czy pięciu satelitów są wynikiem nieporozumienia dotyczącego architektury systemów antenowych oraz funkcji, jakie pełni multiswitch w takim systemie.

Pytanie 34

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 6
B. kategorii 5e
C. kategorii 7
D. kategorii 3
Odpowiedź o kategorii 5e jest poprawna, ponieważ w instalacjach sieciowych zastosowane komponenty definiują maksymalną kategorię, jaka może być osiągnięta w danej sieci. W tym przykładzie użyto panelu krosowego kategorii 7, który jest urządzeniem pozwalającym na organizację i zarządzanie połączeniami, jednak jego wydajność nie może przewyższać najniższej kategorii w instalacji - w tym przypadku gniazd abonenckich kategorii 5e. Przewody S/FTP kategorii 6 również wspierają wyższe prędkości transferu, ale ich zastosowanie w instalacji z gniazdami 5e obniża całkowitą kategorię do 5e, co oznacza maksymalną prędkość przesyłu danych do 1 Gb/s. Ważne jest, aby przy planowaniu sieci komputerowej stosować komponenty zgodne z wybraną kategorią, tak aby zapewnić optymalną wydajność i uniknąć problemów z kompatybilnością, co jest zgodne z normami ANSI/TIA-568.

Pytanie 35

Jakim skrótem opisuje się modulację szerokości impulsów?

A. FSK
B. QAM
C. PWM
D. PSK
Istnieją różne techniki modulacji, które różnią się między sobą w zależności od zastosowania i charakterystyki sygnałów. PSK (Phase Shift Keying) to metoda, która polega na modulacji fazy sygnału nośnego, co jest szczególnie przydatne w komunikacji cyfrowej, gdzie dane są przesyłane w formie bitów. W tym przypadku zmiana fazy sygnału odzwierciedla zmiany w danych, co czyni PSK efektywnym sposobem na przesyłanie informacji, ale nie ma bezpośredniego związku z modulacją szerokości impulsów. FSK (Frequency Shift Keying) to kolejna technika, w której informacje są przesyłane poprzez zmianę częstotliwości nośnej. Podobnie jak w przypadku PSK, FSK jest używane w systemach komunikacyjnych, ale nie dotyczy modulacji szerokości impulsów. QAM (Quadrature Amplitude Modulation) łączy różne amplitudy i fazy sygnału w celu przesyłania danych, co jest stosowane w telekomunikacji, ale także nie odnosi się bezpośrednio do PWM. Często mylące jest to, że wszystkie te techniki dotyczą modulacji sygnałów, jednak każda z nich ma swoje specyficzne zastosowanie i właściwości. Zrozumienie różnic między tymi metodami jest kluczowe, aby uniknąć błędnych wniosków w kontekście wyboru odpowiedniej techniki do konkretnego zastosowania.

Pytanie 36

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. symetryzatorów
B. linii nierezonansowych typu delta
C. linii rezonansowych równoległych
D. falowodów
Wybór falowodów jako metody połączenia anteny telewizyjnej lub odbiornika TV o wejściu symetrycznym jest nietrafiony, ponieważ falowody są stosowane głównie w wysokich częstotliwościach i wymagają specyficznych warunków do prawidłowego funkcjonowania. Falowody są skuteczne w przypadku komunikacji mikrofalowej i nie są przeznaczone do aplikacji niskoczęstotliwościowych, jak większość systemów telewizyjnych. Dodatkowo, linie rezonansowe równoległe oraz linie nierezonansowe typu delta również nie są odpowiednie do tego typu zastosowań. Linie rezonansowe są projektowane do pracy na określonych częstotliwościach rezonansowych, co w praktyce nie jest zgodne z wymaganiami dla sygnałów telewizyjnych, które muszą być odbierane w szerokim zakresie częstotliwości. Linie nierezonansowe typu delta z kolei są bardziej skomplikowane i mogą wprowadzać dodatkowe straty sygnału, co jest niepożądane w kontekście jakości odbioru telewizyjnego. Wybór niewłaściwych rozwiązań technologicznych może prowadzić do problemów z jakością sygnału, a także do zwiększenia kosztów instalacji, dlatego kluczowe jest zrozumienie i zastosowanie odpowiednich komponentów, takich jak symetryzatory, które są dostosowane do specyfiki systemów telewizyjnych.

Pytanie 37

Programowanie mikrokontrolera bez konieczności jego wylutowania z obwodu jest realizowane za pomocą metody

A. USB
B. RS 238
C. RS 485
D. ISP
Programowanie mikrokontrolera bez jego wylutowywania z układu jest możliwe dzięki technice ISP, co oznacza In-System Programming. Ta metoda pozwala na programowanie mikrokontrolera bezpośrednio na płytce PCB, co znacząco ułatwia proces rozwoju i testowania projektów elektronicznych. ISP umożliwia ładowanie oprogramowania, a także aktualizację już istniejącego, co jest nieocenione podczas iteracyjnego procesu projektowania. Dzięki temu inżynierowie mogą szybko wprowadzać zmiany w kodzie, testować je w czasie rzeczywistym i minimalizować ryzyko uszkodzenia mikrokontrolera, które mogłoby wystąpić przy wylutowywaniu. W praktyce, technika ISP jest stosunkowo powszechnie wykorzystywana w aplikacjach opartych na mikrokontrolerach AVR, PIC oraz ARM, gdzie dostęp do pinów programujących jest bezpośrednio zrealizowany na złączach. Zastosowanie ISP jest zgodne z dobrymi praktykami inżynieryjnymi w zakresie testowania i prototypowania, co czyni tę metodę kluczowym narzędziem w aspektach projektowania i rozwoju elektroniki.

Pytanie 38

Jakie urządzenie sieciowe działa w trzeciej warstwie modelu OSI, pełni rolę węzła w sieci komunikacyjnej i odpowiada za proces zarządzania ruchem?

A. hub.
B. ruter.
C. gniazdo RJ-45.
D. repeater.
Wybór hubu, repeatera lub gniazda RJ-45 jako urządzenia pełniącego funkcję kierowania ruchem w sieci prowadzi do nieporozumień dotyczących rol i funkcji, jakie pełnią te urządzenia. Hub, będący urządzeniem pracującym na pierwszej warstwie modelu OSI, działa jako prosty rozdzielacz sygnału, który nie podejmuje żadnych decyzji dotyczących trasowania danych. Hub przesyła pakiety do wszystkich portów, co może prowadzić do zwiększenia ruchu w sieci i kolizji danych, a tym samym do obniżenia wydajności. Z kolei repeater, również funkcjonujący na pierwszej warstwie, ma za zadanie jedynie wzmacnianie sygnału, umożliwiając transmisję na większe odległości bez analizy czy kierowania ruchem. Gniazdo RJ-45 to złącze, które służy do fizycznego połączenia urządzeń w sieci, a nie do ich kierowania. Zrozumienie różnic między tymi urządzeniami jest kluczowe dla projektowania i zarządzania sieciami komputerowymi. W kontekście branżowych standardów, warto pamiętać, że stosowanie odpowiednich urządzeń do odpowiednich warstw modelu OSI jest fundamentem dobrych praktyk w inżynierii sieciowej. Zastosowanie rutera jest niezbędne do efektywnego zarządzania ruchem w sieci, w przeciwieństwie do urządzeń działających na niższych warstwach, które nie są przystosowane do tej funkcji.

Pytanie 39

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
B. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
C. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
D. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
Jak nie wyłączysz zasilania przed demontażem kamery, to wpadniesz w duże kłopoty. Gdy odłączasz przewód sygnałowy, a zasilanie wciąż działa, możesz uszkodzić kamerę albo cały system. Zasilanie powinno być odłączone w pierwszej kolejności, bo jak tego nie zrobisz, to może dojść do zwarcia, a nawet pożaru. Jak najpierw odłączysz przewody zasilające, to możesz mieć nieprzyjemne wyładowania energii. A jeśli zdemontujesz kamerę bez rozłączenia wszystkiego, to możesz ją uszkodzić. Dlatego każdy technik musi pamiętać, żeby najpierw wyłączyć zasilanie. Ignorowanie tego to główny błąd, który może skończyć się naprawdę źle.

Pytanie 40

Jakie dodatkowe funkcje może pełnić rejestrator w systemach nadzoru?

A. Sterowanie dodatkowymi źródłami światła dla kamer
B. Kontrola kamer z obrotnicą PTZ
C. Rozpoznawanie twarzy
D. Zasilanie kamer za pomocą BNC
Wielu użytkowników może mylnie sądzić, że rejestrator w systemach monitoringu pełni funkcje takie jak zasilanie kamer przez BNC, sterowanie dodatkowym oświetleniem kamer lub wykrywanie twarzy. Zasilanie kamer przez BNC nie jest możliwe, ponieważ ten typ złącza służy głównie do przesyłania sygnału wideo, a nie do zasilania. Kamery zazwyczaj są zasilane przez osobne złącza, takie jak złącze DC lub PoE (Power over Ethernet), co jest standardową praktyką w branży, zapewniającą odpowiednią moc bezprzewodowego przesyłania danych i zasilania. Jeśli chodzi o sterowanie oświetleniem, wiele kamer wyposażonych jest w funkcje nocnego widzenia, które automatycznie dostosowują się do warunków oświetleniowych, co czyni dodatkowe oświetlenie niepotrzebnym. Wykrywanie twarzy jest zaawansowaną funkcją, która zazwyczaj zależy od algorytmów w kamerach, a nie od rejestratora. Źle zrozumiane funkcje rejestratora mogą prowadzić do nieefektywnego wykorzystania systemów monitoringu, dlatego ważne jest, aby operatorzy posiadali rzetelną wiedzę na temat możliwości oraz ograniczeń sprzętu, którego używają.