Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 kwietnia 2025 16:08
  • Data zakończenia: 8 kwietnia 2025 16:40

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką kwotę będzie trzeba zapłacić za wymianę karty graficznej w komputerze, jeżeli jej koszt wynosi 250zł, czas wymiany to 80 minut, a każda rozpoczęta roboczogodzina to 50zł?

A. 250zł
B. 400zł
C. 300zł
D. 350zł
Koszt wymiany karty graficznej w komputerze składa się z dwóch głównych elementów: ceny samej karty oraz kosztu robocizny. W tym przypadku karta graficzna kosztuje 250zł. Czas wymiany wynosi 80 minut, co przelicza się na 1 godzinę i 20 minut. W przypadku kosztów robocizny, każda rozpoczęta roboczogodzina kosztuje 50zł, co oznacza, że za 80 minut pracy należy zapłacić za pełną godzinę, czyli 50zł. Zatem całkowity koszt wymiany karty graficznej wynosi 250zł (cena karty) + 50zł (koszt robocizny) = 300zł. Jednak, ponieważ za każdą rozpoczętą roboczogodzinę płacimy pełną stawkę, należy doliczyć dodatkowe 50zł, co daje 350zł. Praktycznym zastosowaniem tej wiedzy jest umiejętność dokładnego oszacowania kosztów związanych z serwisowaniem sprzętu komputerowego, co jest kluczowe dla osób prowadzących działalność gospodarczą oraz dla użytkowników indywidualnych planujących modernizację swojego sprzętu. Wiedza ta jest również dobrze przyjęta w standardach branżowych, gdzie precyzyjne szacowanie kosztów serwisowych jest nieodzowną praktyką.

Pytanie 2

Na których urządzeniach do przechowywania danych uszkodzenia mechaniczne są najczęściej spotykane?

A. W kartach pamięci SD
B. W dyskach SSD
C. W dyskach HDD
D. W pamięciach Flash
Dyski twarde (HDD) są najbardziej narażone na uszkodzenia mechaniczne ze względu na ich konstrukcję. Wyposażone są w wirujące talerze oraz ruchome głowice, które odczytują i zapisują dane. Ta mechanika sprawia, że nawet niewielkie wstrząsy czy upadki mogą prowadzić do fizycznych uszkodzeń, takich jak zatarcie głowicy czy zgięcie talerzy. W praktyce oznacza to, że użytkownicy, którzy często transportują swoje urządzenia, powinni być szczególnie ostrożni z dyskami HDD. Warto zauważyć, że w przypadku zastosowań, gdzie mobilność jest kluczowa, np. w laptopach czy urządzeniach przenośnych, wiele osób decyduje się na dyski SSD, które nie mają ruchomych części, a więc są bardziej odporne na uszkodzenia mechaniczne. To podejście jest zgodne z branżowymi standardami bezpieczeństwa danych, które zalecają wybór odpowiednich nośników pamięci w zależności od warunków użytkowania.

Pytanie 3

W komunikacie błędu systemowego informacja prezentowana w formacie szesnastkowym oznacza

A. odnośnik do dokumentacji
B. definicję problemu
C. nazwę kontrolera
D. kod błędu
W komunikatach o błędach systemowych, informacja wyświetlana w postaci heksadecymalnej faktycznie odnosi się do kodu błędu. Kody błędów są kluczowymi elementami w diagnostyce problemów w systemach komputerowych i aplikacjach. Umożliwiają one programistom i administratorom systemów szybkie identyfikowanie i lokalizowanie źródła problemu. Heksadecymalna reprezentacja kodu błędu jest powszechnie stosowana, ponieważ pozwala na bardziej zwięzłe przedstawienie dużych liczb, które często są używane w kontekście identyfikatorów błędów. Na przykład, system operacyjny Windows używa kodów błędów w formacie 0x0000007B, co oznacza specyficzny problem dotyczący krytycznych błędów systemowych. Praktyka stosowania heksadecymalnych kodów błędów jest zgodna z najlepszymi praktykami branżowymi, co ułatwia wymianę informacji i szybsze diagnozowanie problemów. Zrozumienie tych kodów jest niezbędne dla efektywnej analizy błędów w systemach IT.

Pytanie 4

Wskaż urządzenie, które powinno być użyte do połączenia dwóch komputerów z siecią Internet poprzez lokalną sieć Ethernet, gdy dysponujemy jedynie jednym adresem IP

A. Router LAN
B. Splitter ADSL
C. Modem ISDN
D. Switch LAN
Router LAN to urządzenie, które pełni kluczową rolę w zarządzaniu ruchem sieciowym i umożliwia podłączenie wielu urządzeń do jednego adresu IP w sieci lokalnej. Dzięki technologii NAT (Network Address Translation) router może przypisywać unikalne adresy IP dla każdego z podłączonych komputerów, a jednocześnie umożliwić im korzystanie z jednego zewnętrznego adresu IP do komunikacji z Internetem. Przykładowo, w biurach czy domach, gdzie często korzysta się z wielu urządzeń, router zapewnia stabilne połączenie i efektywne zarządzanie pasmem. Dobrą praktyką w branży jest regularne aktualizowanie oprogramowania routera, aby zabezpieczyć sieć przed potencjalnymi zagrożeniami. Dodatkowo, wiele routerów oferuje zaawansowane funkcje, takie jak QoS (Quality of Service), co pozwala na priorytetyzację ruchu sieciowego, co jest nieocenione podczas jednoczesnego korzystania z różnych aplikacji wymagających dużej przepustowości. Warto również zwrócić uwagę na zabezpieczenia, takie jak WPA3, aby chronić sieć przed nieautoryzowanym dostępem.

Pytanie 5

W przypadku planowania wykorzystania przestrzeni dyskowej komputera do przechowywania oraz udostępniania danych, takich jak pliki oraz aplikacje dostępne w internecie, a także ich zarządzania, komputer powinien być skonfigurowany jako

A. serwer terminali
B. serwer DHCP
C. serwer plików
D. serwer aplikacji
Serwer plików to dedykowane urządzenie lub oprogramowanie, które umożliwia przechowywanie, zarządzanie i udostępnianie plików w sieci. Jego główną funkcją jest archiwizacja i udostępnianie danych, co czyni go kluczowym elementem w wielu organizacjach. Użytkownicy mogą z łatwością uzyskiwać dostęp do plików z różnych urządzeń. Typowym przykładem zastosowania serwera plików jest przechowywanie dokumentów, zdjęć czy multimediów w centralnej lokalizacji, z której mogą one być udostępniane wielu użytkownikom jednocześnie. W praktyce, konfigurując serwer plików, można korzystać z protokołów takich jak SMB (Server Message Block) lub NFS (Network File System), które są standardami w branży. Dobre praktyki obejmują regularne tworzenie kopii zapasowych danych, aby zapobiec ich utracie, oraz stosowanie systemów uprawnień, które kontrolują, kto ma dostęp do określonych plików. Serwery plików są również często implementowane w architekturze NAS (Network-Attached Storage), co zwiększa ich dostępność w sieci.

Pytanie 6

Badanie danych przedstawionych przez program umożliwia dojście do wniosku, że

Ilustracja do pytania
A. partycja rozszerzona ma pojemność 24,79 GiB
B. partycja wymiany ma rozmiar 2 GiB
C. jeden dysk twardy podzielono na 6 partycji podstawowych
D. zainstalowano trzy dyski twarde oznaczone jako sda1, sda2 oraz sda3
No więc, ta partycja wymiany, znana też jako swap, to naprawdę ważny element, jeśli mówimy o zarządzaniu pamięcią w systemach operacyjnych, zwłaszcza w Linuxie. Jej głównym zadaniem jest wspomaganie pamięci RAM, kiedy brakuje zasobów. Swap działa jak dodatkowa pamięć, przechowując dane, które nie mieszczą się w pamięci fizycznej. W tym przypadku mamy partycję /dev/sda6 o rozmiarze 2.00 GiB, która jest typowa dla linux-swap. To oznacza, że została ustawiona, żeby działać jako partycja wymiany. 2 GiB to standardowy rozmiar, szczególnie jeśli RAM jest ograniczony, a użytkownik chce mieć pewność, że aplikacje, które potrzebują więcej pamięci, działają stabilnie. Dobór rozmiaru swapu zależy od tego, ile pamięci RAM się ma i co się na tym komputerze robi. W maszynach z dużą ilością RAM swap może nie być tak bardzo potrzebny, ale w tych, gdzie pamięci jest mało, jest nieoceniony, bo zapobiega problemom z pamięcią. W branży mówi się, że dobrze jest dostosować rozmiar swapu do tego, jak używasz systemu, niezależnie czy to serwer, czy komputer osobisty.

Pytanie 7

Do serwisu komputerowego przyniesiono laptopa, którego matryca wyświetla obraz w bardzo słabej jakości. Dodatkowo obraz jest znacząco ciemny i widoczny jedynie z niewielkiej odległości. Co może być przyczyną tej usterki?

A. rozbita matryca
B. uszkodzone gniazdo HDMI
C. uszkodzone łącze między procesorem a matrycą
D. uszkodzony inwerter
Uszkodzony inwerter jest najczęstszą przyczyną problemów z wyświetlaniem obrazu w laptopach, szczególnie gdy obraz jest ciemny i widoczny tylko z bliska. Inwerter jest odpowiedzialny za zasilanie podświetlenia matrycy, co w przypadku laptopów LCD odbywa się najczęściej poprzez zasilanie lampy CCFL. Kiedy inwerter ulega uszkodzeniu, nie dostarcza odpowiedniej mocy do podświetlenia, co efektywnie prowadzi do ciemności obrazu. W praktyce, użytkownicy mogą zauważyć, że obraz jest widoczny tylko przy dużym kontraście lub w jasnym otoczeniu, co wskazuje na problemy z oświetleniem. Naprawa lub wymiana uszkodzonego inwertera przywraca właściwe działanie matrycy, co jest zgodne z dobrymi praktykami w serwisie komputerowym. Zrozumienie działania inwertera oraz jego roli w systemie wyświetlania jest kluczowe dla efektywnej diagnostyki i naprawy problemów z wyświetlaniem w laptopach, co jest standardem w branży serwisowej.

Pytanie 8

Planowana sieć należy do kategorii C. Została ona podzielona na 4 podsieci, z których każda obsługuje 62 urządzenia. Która z poniższych masek będzie odpowiednia do tego zadania?

A. 255.255.255.240
B. 255.255.255.224
C. 255.255.255.128
D. 255.255.255.192
Maski 255.255.255.128, 255.255.255.224 oraz 255.255.255.240 są niewłaściwe dla podziału sieci klasy C na cztery podsieci z 62 urządzeniami w każdej. Maska 255.255.255.128, odpowiadająca /25, pozwala na utworzenie dwóch podsieci, z maksymalnie 126 hostami w każdej, co jest znacznie więcej niż potrzebne, a tym samym nieefektywne. Z kolei maska 255.255.255.224, reprezentująca /27, umożliwia jedynie utworzenie ośmiu podsieci, ale zaledwie 30 dostępnych adresów w każdej, co nie spełnia wymaganego kryterium 62 urządzeń. Ostatecznie, maska 255.255.255.240, przyporządkowana /28, pozwala na stworzenie 16 podsieci, z zaledwie 14 hostami w każdej, co czyni ją absolutnie niewłaściwą do tego planu. Właściwy dobór maski sieciowej jest kluczowy dla efektywnej organizacji adresacji w sieciach IP, a błędne rozumienie podstawowych zasad podziału na podsieci może prowadzić do niedoboru adresów IP lub ich nieefektywnego wykorzystania. Prawidłowe zrozumienie przydzielania adresów IP oraz zastosowań masek podsieciowych jest istotne dla administratorów sieci, aby zapewnić ich odpowiednią konfigurację i działanie zgodnie z normami i praktykami branżowymi.

Pytanie 9

Adres IP (ang. Internet Protocol Address) to

A. adres logiczny komputera
B. indywidualny numer seryjny urządzenia
C. adres fizyczny komputera
D. unikalna nazwa symboliczna dla urządzenia
Adres IP (Internet Protocol Address) to unikatowy adres logiczny przypisywany urządzeniom w sieci komputerowej, pozwalający na ich identyfikację oraz komunikację. Adresy IP są kluczowe w architekturze Internetu, ponieważ umożliwiają przesyłanie danych pomiędzy różnymi urządzeniami. W praktyce, każdy komputer, serwer czy router w sieci posiada swój własny adres IP, co pozwala na zróżnicowanie ich w globalnej sieci. Adresy IP dzielą się na dwie wersje: IPv4, które składają się z czterech liczb oddzielonych kropkami (np. 192.168.1.1), oraz nowsze IPv6, które mają znacznie większą liczbę kombinacji i składają się z ośmiu grup szesnastkowych. Dobrą praktyką jest stosowanie statycznych adresów IP dla serwerów, aby zapewnić ich stałą dostępność, podczas gdy dynamiczne adresy IP są często przypisywane urządzeniom mobilnym. Zrozumienie struktury i funkcji adresów IP jest kluczowe dla specjalistów zajmujących się sieciami oraz IT, co potwierdzają liczne standardy, takie jak RFC 791 dla IPv4 oraz RFC 8200 dla IPv6.

Pytanie 10

Jakie urządzenie w sieci lokalnej nie wydziela segmentów sieci komputerowej na kolizyjne domeny?

A. Most
B. Router
C. Koncentrator
D. Przełącznik
Koncentrator to urządzenie, które działa na warstwie fizycznej modelu OSI, co oznacza, że jego głównym zadaniem jest transmitowanie sygnałów elektrycznych lub optycznych pomiędzy podłączonymi urządzeniami w sieci lokalnej. W przeciwieństwie do innych urządzeń, takich jak mosty, przełączniki czy routery, koncentrator nie filtruje ani nie przechowuje danych, a jedynie przekazuje je do wszystkich portów. To oznacza, że nie dzieli obszaru sieci na domeny kolizyjne, co skutkuje tym, że wszystkie urządzenia podłączone do koncentratora dzielą tę samą domenę kolizyjną. Przykładem zastosowania koncentratora może być niewielka sieć lokalna, w której nie ma dużego ruchu danych, co sprawia, że prostota oraz niski koszt jego wdrożenia są atutami. W nowoczesnych sieciach lokalnych rzadko spotyka się koncentratory, ponieważ zastępują je przełączniki, które są bardziej efektywne i pozwalają na lepsze zarządzanie ruchem danych. Zaleca się korzystanie z przełączników w większych i bardziej złożonych infrastrukturach sieciowych, aby zminimalizować kolizje i poprawić wydajność sieci.

Pytanie 11

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, jedno z najbliższymi sąsiadami, a dane są przesyłane z jednego komputera do kolejnego w formie pętli?

A. Siatka
B. Pierścień
C. Gwiazda
D. Drzewo
Topologia pierścienia charakteryzuje się tym, że każde urządzenie w sieci jest połączone z dwoma sąsiadami, co tworzy zamkniętą pętlę. Dane są przesyłane w jednym kierunku od jednego urządzenia do następnego, co minimalizuje ryzyko kolizji i pozwala na stosunkowo prostą konfigurację. W przypadku tej topologii, dodawanie lub usuwanie urządzeń może wpływać na cały system, co wymaga staranności w zarządzaniu siecią. Praktycznym zastosowaniem topologii pierścienia jest sieć Token Ring, która była popularna w latach 80. i 90. XX wieku. W standardzie IEEE 802.5 wykorzystywano specjalny token, aby kontrolować dostęp do mediów, co znacznie zwiększało wydajność przesyłania danych. Warto również zauważyć, że w przypadku awarii jednego z urządzeń, cały pierścień może zostać przerwany, co stanowi potencjalny problem w kontekście niezawodności sieci. Dlatego w nowoczesnych rozwiązaniach stosuje się różne mechanizmy redundancji oraz monitorowania stanu sieci, aby zwiększyć odporność na awarie.

Pytanie 12

Użycie skrętki kategorii 6 (CAT 6) o długości 20 metrów w sieci LAN oznacza jej maksymalną przepustowość wynoszącą

A. 100 Gb/s
B. 100 Mb/s
C. 10 Mb/s
D. 10 Gb/s
Skrętka kategorii 6 (CAT 6) jest standardem przewodów stosowanych w sieciach lokalnych (LAN), który zapewnia wyspecjalizowaną wydajność transmisji danych. Maksymalna przepustowość skrętki CAT 6 wynosi 10 Gb/s na dystansie do 55 metrów, co czyni ją odpowiednią do zastosowań wymagających dużych prędkości, takich jak przesyłanie strumieniowe wideo w jakości HD, gry online czy intensywne aplikacje chmurowe. Oprócz tego, CAT 6 jest zgodna z protokołami Ethernet, co oznacza, że może być używana w różnych konfiguracjach sieciowych. Standard ten również obsługuje częstotliwości do 250 MHz, co zwiększa jego zdolność do pracy w środowiskach o dużym zakłóceniu elektromagnetycznym. W praktyce, instalacje wykorzystujące CAT 6 są idealne dla biur i domów, gdzie wymagane są stabilne i szybkie połączenia, a ich konfiguracja jest stosunkowo prosta, co czyni je popularnym wyborem wśród inżynierów i techników. Dodatkowo, stosowanie odpowiednich komponentów, takich jak złącza i gniazda zaprojektowane dla kategorii 6, zapewnia uzyskanie maksymalnej wydajności.

Pytanie 13

Jaką komendę należy wpisać w miejsce kropek, aby w systemie Linux wydłużyć standardowy odstęp czasowy między kolejnymi wysyłanymi pakietami przy użyciu polecenia ping?

ping ........... 192.168.11.3

A. -c 9
B. -i 3
C. -a 81
D. -s 75
Polecenie ping jest narzędziem diagnostycznym używanym do sprawdzania dostępności oraz jakości połączenia z innym hostem w sieci. Opcja -a w ping jest czasami używana w różnych implementacjach do uruchomienia alarmu akustycznego gdy host odpowiada jednak nie jest to standardowa opcja w kontekście zmiany interwału czasowego między pakietami. W trybie diagnostycznym flaga -c określa liczbę pakietów które mają być wysłane co jest użyteczne gdy chcemy ograniczyć liczbę próbek do analizy ale nie wpływa na odstęp między nimi. Użycie tej opcji jest istotne gdy potrzebujemy jednorazowej analizy zamiast ciągłego wysyłania pakietów. Opcja -s ustala rozmiar pakietu ICMP co może być przydatne do testowania jak różne rozmiary pakietów wpływają na jakość połączenia jednak również nie ma związku z częstotliwością wysyłania pakietów. W kontekście zwiększania odstępu czasowego wszystkie te opcje są niewłaściwe ponieważ nie wpływają na harmonogram wysyłania pakietów. Zrozumienie i właściwe użycie dostępnych opcji jest kluczowe w skutecznym diagnozowaniu i optymalizowaniu sieci co pozwala na bardziej świadome zarządzanie zasobami sieciowymi i ograniczenie potencjalnych problemów związanych z przepustowością i opóźnieniami. Poprawne przypisanie flag do ich funkcji wymaga zrozumienia specyfiki protokołów i mechanizmów sieciowych co jest istotne w profesjonalnym podejściu do administracji siecią.

Pytanie 14

Na zamieszczonym zdjęciu widać

Ilustracja do pytania
A. kartridż
B. tuner
C. taśmę barwiącą
D. tusz
Taśma barwiąca, często stosowana w drukarkach igłowych oraz maszynach do pisania, pełni kluczową rolę w procesie druku. Jest to materiał eksploatacyjny, który przenosi tusz na papier za pomocą igieł drukarki lub uderzeń maszyny do pisania. W odróżnieniu od tuszów i kartridżów używanych w drukarkach atramentowych i laserowych, taśma barwiąca wykorzystuje fizyczny mechanizm transferu tuszu. Typowy przykład zastosowania to drukarki igłowe używane w miejscach, gdzie wymagane są trwałe i wielowarstwowe wydruki, takie jak faktury czy paragony. Przemysłowe standardy dotyczące taśm barwiących obejmują aspekt ich wytrzymałości i wydajności, co jest kluczowe dla zapewnienia długotrwałej jakości druku i minimalizacji kosztów operacyjnych. Przy wybieraniu taśmy barwiącej, warto zwracać uwagę na jej zgodność z urządzeniem oraz na jakość wydruku, jaką zapewnia. Prawidłowe stosowanie taśm barwiących wymaga również znajomości ich montażu oraz regularnej konserwacji sprzętu, co jest dobrym przykładem praktyki zgodnej z zasadami utrzymania technicznego urządzeń biurowych.

Pytanie 15

Strzałka na diagramie ilustrującym schemat systemu sieciowego według normy PN-EN 50173 wskazuje na rodzaj okablowania

Ilustracja do pytania
A. kampusowe
B. szkieletowe zewnętrzne
C. pionowe
D. poziome
Okablowanie szkieletowe zewnętrzne odnosi się do infrastruktury zapewniającej połączenia między budynkami w ramach kampusu. Jest to okablowanie, które musi być odporne na warunki atmosferyczne i spełniać wymogi dotyczące bezpieczeństwa oraz ochrony środowiska. Wybór tego terminu jako odpowiedzi na pytanie dotyczące schematu wskazującego na połączenia wewnątrz budynku jest błędnym zrozumieniem kontekstu. Okablowanie kampusowe natomiast dotyczy rozwiązań łączących różne budynki w kompleksie i obejmuje zarówno okablowanie pionowe, jak i poziome, ale w szerszym zakresie geograficznym. Poziome okablowanie odnosi się do połączeń w obrębie tego samego piętra budynku, łącząc punkty dystrybucyjne z gniazdami telekomunikacyjnymi. Jest to kluczowe w zapewnieniu komunikacji w ramach danego piętra, jednak nie dotyczy połączeń między piętrami, co jest główną funkcją okablowania pionowego. Częstym błędem jest mylenie okablowania pionowego z poziomym, ponieważ oba dotyczą sieci strukturalnych, ale ich zastosowanie i funkcje są definitywnie różne. Właściwe rozróżnienie tych pojęć jest kluczowe dla poprawnego projektowania i zarządzania infrastrukturą sieciową w budynkach zgodnie z obowiązującymi standardami.

Pytanie 16

Czym jest mapowanie dysków?

A. przypisaniem etykiety dysku do określonego katalogu w sieci
B. określaniem użytkowników oraz grup użytkowników
C. przyznawaniem praw do folderu użytkownikom w sieci WAN
D. ustawienie interfejsów sieciowych
Mapowanie dysków to proces, który polega na przypisaniu oznaczenia literowego do określonego katalogu sieciowego, co umożliwia łatwiejszy dostęp do zasobów przechowywanych na innych komputerach w sieci. Dzięki mapowaniu dysków użytkownicy mogą korzystać z tych zasobów tak, jakby były one lokalne, co znacznie upraszcza pracę w środowisku sieciowym. Na przykład, w środowisku firmowym, administratorzy sieci mogą zmapować zdalny folder serwera plików do litery dysku, co pozwala pracownikom na bezproblemowe otwieranie i edytowanie dokumentów. Zgodnie z najlepszymi praktykami branżowymi, mapowanie dysków powinno być realizowane przy użyciu odpowiednich protokołów, takich jak SMB (Server Message Block), co zapewnia bezpieczeństwo i integralność danych podczas przesyłania. Dodatkowo, administracja powinna regularnie monitorować dostęp do zmapowanych dysków, aby zabezpieczyć dostęp tylko dla uprawnionych użytkowników, co zwiększa bezpieczeństwo danych w organizacji.

Pytanie 17

Aby połączyć cyfrową kamerę z interfejsem IEEE 1394 (FireWire) z komputerem, wykorzystuje się kabel z wtykiem zaprezentowanym na fotografii

Ilustracja do pytania
A. C
B. B
C. A
D. D
Interfejs IEEE 1394, znany również jako FireWire, był dość popularny, zwłaszcza w świecie multimediów. Używało się go często w kamerach cyfrowych. Wtyczka FireWire ma charakterystyczny, prostokątny kształt i najczęściej spotykane są wersje 4-pinowe lub 6-pinowe. W Stanach i Europie ten standard był wykorzystywany w profesjonalnych aplikacjach audio i video, bo pozwalał na przesyłanie danych z naprawdę dużą prędkością, nawet do 800 Mbps w wersji FireWire 800. Ta wtyczka na zdjęciu A to typowy przykład złącza FireWire. Dzięki niej można łatwo połączyć kamerę z komputerem, co znacznie ułatwia transfer plików wideo. Fajnie, że FireWire umożliwia łączenie kilku urządzeń w tzw. łańcuchu (daisy-chaining), więc można podłączyć kilka kamer do jednego portu. To była naprawdę duża zaleta dla tych, co zajmowali się produkcją multimedialną. Chociaż dzisiaj USB zdominowało rynek, FireWire wciąż sprawdza się w kilku niszach, głównie ze względu na niskie opóźnienia i stabilny transfer danych. Warto pamiętać, żeby odpowiednio dobrać kabel i złącze, bo to kluczowe dla ich współpracy i osiągnięcia najwyższej wydajności.

Pytanie 18

Jak nazywa się kod kontrolny, który służy do wykrywania błędów oraz potwierdzania poprawności danych odbieranych przez stację końcową?

A. CAT
B. IRC
C. CNC
D. CRC
Kod CRC, czyli Cyclic Redundancy Check, to naprawdę ważny element w komunikacji i przechowywaniu danych. Działa jak strażnik, który sprawdza, czy wszystko jest na swoim miejscu. Kiedy przesyłasz dane, CRC robi obliczenia, żeby upewnić się, że to, co wysłałeś, jest tym samym, co dotarło na miejsce. Jeśli coś jest nie tak, to znaczy, że wystąpił jakiś błąd podczas przesyłania. Jest to niezbędne w różnych aplikacjach, jak np. Ethernet czy USB, gdzie błędy mogą być naprawdę niebezpieczne. Co ciekawe, standardy takie jak IEEE 802.3 mówią, jak dokładnie powinno to działać. W praktyce CRC robi świetną robotę w wykrywaniu błędów, co ma kluczowe znaczenie w systemach, które wymagają niezawodnych danych.

Pytanie 19

W przypadku dłuższych przestojów drukarki atramentowej, pojemniki z tuszem powinny

A. być zabezpieczone w specjalnych pudełkach, które zapobiegają zasychaniu dysz
B. zostać wyjęte z drukarki i umieszczone w szafie, bez dodatkowych zabezpieczeń
C. pozostać w drukarce, bez konieczności podejmowania dodatkowych działań
D. pozostać w drukarce, którą należy osłonić folią
Zabezpieczenie pojemników z tuszem w specjalnych pudełkach uniemożliwiających zasychanie dysz jest kluczowym krokiem w utrzymaniu prawidłowej funkcjonalności drukarki atramentowej. Przy dłuższych przestojach tusz może wysychać, co prowadzi do zatykania dysz głowicy drukującej, a w konsekwencji do obniżenia jakości druku. Przykładem skutecznego rozwiązania jest stosowanie pojemników z tuszem, które są zaprojektowane z myślą o minimalizacji kontaktu z powietrzem. Dobre praktyki wskazują również, że należy unikać pozostawiania tuszu w otwartych opakowaniach, gdyż ekspozycja na wilgoć i zanieczyszczenia może znacznie obniżyć jego jakość. Ponadto, warto regularnie przeprowadzać czyszczenie głowicy drukującej, aby zapobiegać osadzaniu się tuszu w dyszach, zwłaszcza po dłuższych przerwach w użytkowaniu. Właściwe przechowywanie tuszu przyczynia się do wydłużenia jego trwałości i poprawy efektywności drukowania, co jest zgodne z rekomendacjami producentów sprzętu biurowego.

Pytanie 20

Usługa umożliwiająca przechowywanie danych na zewnętrznym serwerze, do którego dostęp możliwy jest przez Internet to

A. PSTN
B. Cloud
C. żadna z powyższych
D. VPN
Cloud, czyli chmura obliczeniowa, to usługa przechowywania danych oraz zasobów na zewnętrznych serwerach, które są dostępne przez Internet. Dzięki temu użytkownicy nie muszą inwestować w drogi sprzęt ani konfigurować lokalnych serwerów, co znacznie obniża koszty infrastruktury IT. W praktyce, usługi chmurowe oferują elastyczność oraz skalowalność, co oznacza, że użytkownicy mogą szybko dostosowywać swoje zasoby do zmieniających się potrzeb. Przykłady popularnych rozwiązań chmurowych to Amazon Web Services (AWS), Microsoft Azure czy Google Cloud Platform, które stosują standardy takie jak ISO/IEC 27001 dla zarządzania bezpieczeństwem informacji. Chmura obliczeniowa wspiera także zdalną współpracę, umożliwiając zespołom pracę zdalną oraz dostęp do zasobów z dowolnego miejsca na świecie. Warto także zwrócić uwagę na modele chmurowe, takie jak IaaS (Infrastructure as a Service), PaaS (Platform as a Service) i SaaS (Software as a Service), które oferują różne poziomy zarządzania i kontroli nad zasobami.

Pytanie 21

Jakie narzędzie pozwala na zarządzanie menedżerem rozruchu w systemach Windows od wersji Vista?

A. LILO
B. AFFS
C. BCDEDIT
D. GRUB
BCDEDIT to narzędzie wiersza poleceń, które zostało wprowadzone w systemie Windows Vista i jest używane do zarządzania danymi dotyczących rozruchu systemu operacyjnego. Dzięki BCDEDIT użytkownicy mogą tworzyć, edytować i usunąć wpisy w Boot Configuration Data (BCD), co jest kluczowe dla konfiguracji i zarządzania wieloma systemami operacyjnymi oraz umożliwia dostosowywanie opcji rozruchu. Przykładem zastosowania BCDEDIT jest sytuacja, gdy użytkownik chce zmienić domyślny system operacyjny, który ma być uruchamiany podczas startu komputera. Można to osiągnąć poprzez polecenie `bcdedit /default {identifier}`, gdzie `{identifier}` to identyfikator konkretnego wpisu BCD. BCDEDIT jest narzędziem, które wymaga pewnej wiedzy technicznej, dlatego zaleca się, aby użytkownicy zapoznali się z jego dokumentacją oraz dobrymi praktykami przy edytowaniu ustawień rozruchowych, aby uniknąć problemów z uruchamianiem systemu.

Pytanie 22

W systemie adresacji IPv6 adres ff00::/8 definiuje

A. adres wskazujący na lokalny host
B. zestaw adresów służących do komunikacji multicast
C. zestaw adresów sieci testowej 6bone
D. adres nieokreślony
Adres ff00::/8 w adresacji IPv6 jest zarezerwowany dla komunikacji multicast. Adresy multicast to unikalne adresy, które pozwalają na przesyłanie danych do wielu odbiorców jednocześnie, co jest szczególnie przydatne w aplikacjach takich jak transmisja wideo na żywo, wideokonferencje czy gry online. Dzięki zastosowaniu multicast, zamiast wysyłać wiele kopii tej samej informacji do każdego odbiorcy, można przesłać pojedynczą kopię, a routery odpowiedzialne za trasowanie danych zajmą się dostarczeniem jej do wszystkich zainteresowanych. Ta metoda znacząco redukuje obciążenie sieci oraz zwiększa jej efektywność. W praktyce, wykorzystując adresy z zakresu ff00::/8, można budować zaawansowane aplikacje i usługi, które wymagają efektywnej komunikacji z wieloma uczestnikami, co jest zgodne z wytycznymi ustalonymi w standardzie RFC 4220, który definiuje funkcjonalności multicast w IPv6. Zrozumienie roli adresów multicast jest kluczowe dla projektowania nowoczesnych sieci oraz rozwijania aplikacji opartych na protokole IPv6.

Pytanie 23

Jakie napięcie zasilające mają pamięci DDR2?

A. 1,4 V
B. 2,5 V
C. 1,8 V
D. 1,0 V
Odpowiedź 1,8 V jest prawidłowa, ponieważ pamięci DDR2 zostały zaprojektowane do pracy przy napięciu zasilania wynoszącym właśnie 1,8 V. Ten standard zasilania zapewnia równocześnie odpowiednią wydajność oraz stabilność działania modułów pamięci. Pamięci DDR2, które są rozwinięciem wcześniejszych standardów DDR, wprowadziły szereg udoskonaleń, takich jak podwyższona szybkość transferu i wydajność energetyczna. Dzięki niższemu napięciu w porównaniu do starszych pamięci DDR (które wymagały 2,5 V), DDR2 generują mniej ciepła i pozwalają na oszczędność energii, co jest szczególnie istotne w przypadku laptopów i urządzeń mobilnych. Umożliwia to także projektowanie bardziej kompaktowych systemów z mniejszymi wymaganiami chłodzenia, co jest kluczowym aspektem w nowoczesnych komputerach i sprzęcie elektronicznym. Warto zaznaczyć, że zgodność z tym napięciem jest kluczowa dla zapewnienia optymalnej pracy pamięci w systemach komputerowych oraz dla zapewnienia ich długotrwałej niezawodności.

Pytanie 24

Największą pojemność spośród nośników optycznych posiada płyta

A. Blu-Ray
B. DVD-RAM
C. CD
D. DVD
Płyta Blu-Ray, w porównaniu do innych nośników optycznych, oferuje największą pojemność, co czyni ją idealnym rozwiązaniem dla przechowywania dużych ilości danych, takich jak filmy w wysokiej rozdzielczości, gry komputerowe czy archiwizacja danych. Standardowa płyta Blu-Ray ma pojemność 25 GB na warstwę, a nowoczesne nośniki dwuwarstwowe mogą pomieścić aż 50 GB. Dzięki zastosowaniu technologii lasera o krótszej długości fali (405 nm), Blu-Ray jest w stanie zapisać więcej informacji na tej samej powierzchni niż tradycyjne nośniki, takie jak CD (700 MB) i DVD (4,7 GB/8,5 GB w wersji dwuwarstwowej). W praktyce, płyty Blu-Ray znalazły zastosowanie w branży filmowej, gdzie umożliwiają wydanie filmów w jakości 4K, a także w sektorze gier, gdzie pozwalają na przechowywanie bardziej rozbudowanych tytułów bez potrzeby kompresji danych. Warto zaznaczyć, że z powodu rosnącego znaczenia digitalizacji danych oraz potrzeby efektywnego zarządzania dużymi zbiorami informacji, nośniki Blu-Ray stały się standardem w wielu profesjonalnych aplikacjach. Oprócz tego, ich kompatybilność z odtwarzaczami multimedialnymi sprawia, że są one wszechstronnym wyborem dla użytkowników domowych.

Pytanie 25

Zgodnie z normą 802.3u w sieciach FastEthernet 100Base-FX stosuje się

A. przewód UTP kat. 6
B. światłowód wielomodowy
C. światłowód jednomodowy
D. przewód UTP kat. 5
Odpowiedź 'światłowód wielomodowy' jest poprawna, ponieważ standard 802.3u definiuje technologię FastEthernet, która obsługuje różne medium transmisyjne, w tym światłowód. W przypadku 100Base-FX, stosowany jest światłowód wielomodowy, który charakteryzuje się większą średnicą rdzenia w porównaniu do światłowodu jednomodowego. Dzięki temu, światłowody wielomodowe są w stanie transmitować wiele promieni świetlnych równocześnie, co zwiększa przepustowość i elastyczność sieci. W praktyce, 100Base-FX jest często wykorzystywany w systemach telekomunikacyjnych oraz w lokalnych sieciach komputerowych, gdzie odległość między urządzeniami jest znacząca, a potrzeba dużej przepustowości jest kluczowa. Zastosowanie światłowodów w tych sieciach pozwala na osiągnięcie dużych zasięgów, przekraczających 2 km, co czyni je odpowiednimi do zastosowań w kampusach uniwersyteckich czy dużych biurach. Ponadto, światłowody wielomodowe są również bardziej odporne na zakłócenia elektryczne, co czyni je korzystnym wyborem w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych.

Pytanie 26

W nowoczesnych panelach dotykowych prawidłowe działanie wyświetlacza zapewnia mechanizm rozpoznający zmianę

A. oporu pomiędzy przezroczystymi diodami wtopionymi w ekran
B. pola elektrostatycznego
C. położenia ręki dotykającej ekranu z zastosowaniem kamery
D. pola elektromagnetycznego
W nowoczesnych ekranach dotykowych, takich jak te stosowane w smartfonach i tabletach, mechanizm wykrywający dotyk opiera się na zmianach pola elektrostatycznego. Ekrany te zazwyczaj wykorzystują technologię pojemnościową, która polega na mierzeniu zmian w ładunku elektrycznym. Kiedy palec zbliża się do ekranu, zmienia się lokalne pole elektrostatyczne, co jest detektowane przez matrycę czujników umieszczoną na powierzchni ekranu. Dzięki tej technologii, ekrany dotykowe są bardzo czułe i pozwalają na precyzyjne sterowanie przy użyciu zaledwie lekkiego dotknięcia. Przykłady zastosowania tego mechanizmu można znaleźć nie tylko w urządzeniach mobilnych, ale także w kioskach informacyjnych, tabletach do rysowania oraz panelach sterujących w różnych urządzeniach elektronicznych. Zastosowanie technologii pojemnościowej zgodne jest z najlepszymi praktykami w branży, co zapewnia wysoką jakość i trwałość ekranów dotykowych.

Pytanie 27

Które urządzenie pomiarowe wykorzystuje się do określenia wartości napięcia w zasilaczu?

A. Omomierz
B. Woltomierz
C. Watomierz
D. Amperomierz
Woltomierz jest specjalistycznym przyrządem pomiarowym zaprojektowanym do mierzenia napięcia elektrycznego. Jego zastosowanie jest kluczowe w elektrotechnice, gdzie ocena wartości napięcia w zasilaczach i obwodach elektrycznych jest niezbędna do zapewnienia ich prawidłowego funkcjonowania. Przykładowo, przy konserwacji i diagnostyce urządzeń elektronicznych w laboratoriach lub warsztatach, woltomierz pozwala na precyzyjne określenie napięcia wejściowego i wyjściowego, co jest istotne dla analizy ich wydajności i bezpieczeństwa. W praktyce, pomiar napięcia z użyciem woltomierza odbywa się poprzez podłączenie jego końcówek do punktów, między którymi chcemy zmierzyć napięcie, co jest zgodne z zasadami BHP oraz standardami branżowymi, takimi jak IEC 61010. Zrozumienie funkcji woltomierza oraz umiejętność jego użycia jest niezbędne dla każdego specjalisty zajmującego się elektrycznością i elektroniką.

Pytanie 28

Ile podsieci obejmują komputery z adresami: 192.168.5.12/25, 192.168.5.200/25 oraz 192.158.5.250/25?

A. 4
B. 2
C. 1
D. 3
Adres IP 192.168.5.12/25 oznacza, że maska podsieci to 255.255.255.128, co daje 128 adresów w podsieci (od 192.168.5.0 do 192.168.5.127). Adres 192.168.5.200/25 również należy do podsieci z tą samą maską, z tym że jego zakres to 192.168.5.128 do 192.168.5.255. Zatem oba adresy IP (192.168.5.12 i 192.168.5.200) są w różnych podsieciach. Natomiast adres 192.158.5.250/25 ma zupełnie inną pierwszą oktetę i nie należy do podsieci 192.168.5.0/25. W związku z tym, podsumowując, mamy trzy unikalne podsieci: pierwsza z adresem 192.168.5.12, druga z 192.168.5.200 oraz trzecia z 192.158.5.250. Ustalanie podsieci jest kluczowym elementem zarządzania siecią, a stosowanie właściwych masek podsieci pozwala na efektywne wykorzystanie dostępnych adresów IP oraz minimalizowanie konfliktów adresowych.

Pytanie 29

Który z wymienionych interfejsów stanowi port równoległy?

A. RS232
B. USB
C. IEEE1294
D. IEEE1394
IEEE 1294 to standard interfejsu, który jest powszechnie znany jako port równoległy. Jego głównym zastosowaniem jest umożliwienie komunikacji między komputerami a urządzeniami peryferyjnymi, takimi jak drukarki. Standard ten przewiduje przesył danych w równoległym trybie, co oznacza, że wiele bitów informacji może być przesyłanych jednocześnie po różnych liniach. Przykładem zastosowania IEEE 1294 są starsze drukarki, które korzystają z tego złącza do przesyłania danych, co pozwala na szybszą komunikację w porównaniu do interfejsów szeregowych. Warto również zauważyć, że w miarę rozwoju technologii, interfejsy równoległe zostały w dużej mierze zastąpione przez nowocześniejsze rozwiązania, jak USB, które oferują większą szybkość przesyłu danych i wsparcie dla wielu różnych typów urządzeń. IEEE 1294 pozostaje jednak ważnym przykładem standardu równoległego, który wpłynął na rozwój technologii komunikacyjnej.

Pytanie 30

Symbol umieszczony na obudowie komputera stacjonarnego informuje o zagrożeniu przed

Ilustracja do pytania
A. możliwym zagrożeniem radiacyjnym
B. porażeniem prądem elektrycznym
C. możliwym urazem mechanicznym
D. promieniowaniem niejonizującym
Symbol przedstawiony na obudowie komputera to powszechnie stosowany znak ostrzegawczy przed porażeniem prądem elektrycznym Składa się z żółtego trójkąta z czarną obwódką oraz czarną błyskawicą w środku Ten symbol informuje użytkownika o potencjalnym ryzyku związanym z kontaktem z nieosłoniętymi przewodami lub urządzeniami elektrycznymi mogącymi znajdować się pod niebezpiecznym napięciem Znak ten jest szeroko stosowany w różnych gałęziach przemysłu gdzie istnieje możliwość porażenia prądem szczególnie w miejscach o dużym natężeniu energii elektrycznej Przestrzeganie oznaczeń jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy oraz w domach Zgodnie z międzynarodowymi normami i standardami takimi jak ISO 7010 czy ANSI Z535.4 stosowanie tego rodzaju symboli jest wymagane do informowania o zagrożeniach elektrycznych Praktyczne zastosowanie znaku obejmuje nie tylko sprzęt komputerowy ale także rozdzielnie elektryczne oraz inne urządzenia przemysłowe gdzie występuje ryzyko kontaktu z prądem Elektryczność mimo swoich korzyści stanowi poważne zagrożenie dla zdrowia i życia dlatego znajomość i rozumienie takich symboli jest kluczowe w codziennym użytkowaniu urządzeń elektrycznych i elektronicznych

Pytanie 31

W sieciach bezprzewodowych Ad-Hoc (Independent Basic Service Set) wykorzystywana jest fizyczna struktura

A. siatki
B. magistrali
C. gwiazdy
D. pierścienia
W analizie sieci bezprzewodowych Ad-Hoc, ważne jest zrozumienie, jak różne topologie wpływają na działanie sieci. Topologia pierścienia, choć interesująca w kontekście tradycyjnych sieci przewodowych, nie jest efektywna w przypadku sieci bezprzewodowych Ad-Hoc. W topologii pierścienia każde urządzenie jest połączone z dwoma sąsiadami, co w sytuacjach zaników sygnału lub awarii jednego z węzłów, prowadzi do problemów z komunikacją w całej sieci. Podobnie, topologia magistrali, gdzie wszystkie urządzenia są podłączone do jednego kabla, nie jest odpowiednia dla sieci Ad-Hoc. Tego rodzaju architektura nie wspiera elastyczności i mobilności, które są kluczowe dla takich rozwiązań. Topologia gwiazdy, z kolei, wymaga centralnego punktu dostępowego, co stoi w sprzeczności z ideą Ad-Hoc, która opiera się na bezpośredniej komunikacji między urządzeniami. Użytkownicy mogą mylić dostępność w takich sieciach z ich strukturą, co prowadzi do błędnych wniosków. Kluczowym błędem jest założenie, że tradycyjne modele topologii mogą być bezpośrednio stosowane w dynamicznych sieciach bezprzewodowych, co prowadzi do nieefektywności w projektowaniu i implementacji systemów sieciowych.

Pytanie 32

Który interfejs pozwala na korzystanie ze sterowników oraz oprogramowania systemu operacyjnego, umożliwiając m.in. przesył danych pomiędzy pamięcią systemową a dyskiem SATA?

A. AHCI
B. UHCI
C. EHCI
D. OHCI
AHCI (Advanced Host Controller Interface) to interfejs, który umożliwia niskopoziomowe zarządzanie interakcjami między systemem operacyjnym a urządzeniami przechowującymi danymi, takimi jak dyski SATA. Jego główną zaletą jest wsparcie dla zaawansowanych funkcji, takich jak Native Command Queuing (NCQ), co pozwala na bardziej efektywne zarządzanie wieloma równoczesnymi operacjami zapisu i odczytu. Dzięki AHCI system operacyjny może optymalizować przepływ danych, co przekłada się na zwiększenie wydajności oraz skrócenie czasu dostępu do danych. W praktyce, AHCI jest standardem stosowanym w nowoczesnych systemach operacyjnych, takich jak Windows i Linux, co ułatwia integrację z różnymi urządzeniami pamięci masowej. Użycie AHCI jest szczególnie korzystne w środowiskach, gdzie występuje intensywne korzystanie z dysków twardych, takich jak serwery baz danych czy stacje robocze do edycji multimediów, gdzie szybkość i efektywność operacji dyskowych są kluczowe. Wartość AHCI w kontekście nowoczesnych systemów komputerowych jest potwierdzona przez liczne dokumentacje i standardy branżowe, które promują jego stosowanie jako najlepszej praktyki w zarządzaniu pamięcią masową.

Pytanie 33

Jakie protokoły przesyłają cykliczne kopie tablic routingu do sąsiadującego rutera i NIE ZAWIERAJĄ pełnych informacji o dalekich ruterach?

A. OSPF, RIP
B. EIGRP, OSPF
C. RIP, IGRP
D. EGP, BGP
Wybór protokołów RIP (Routing Information Protocol) i IGRP (Interior Gateway Routing Protocol) jako odpowiedzi nie jest prawidłowy ze względu na różnice w sposobie wymiany informacji o routingu. RIP jest protokołem wektora odległości, który działa na zasadzie cyklicznego przesyłania pełnych tablic routingu co 30 sekund. Chociaż jest prosty w implementacji, jego architektura nie pozwala na efektywne przekazywanie tylko zmienionych informacji, co prowadzi do znacznego obciążenia sieci. IGRP, pomimo że jest bardziej zaawansowanym protokołem, również opiera się na przesyłaniu pełnych informacji o tablicach routingu, co czyni go mniej odpowiednim w kontekście efektywności. Z kolei OSPF i EIGRP, które są w stanie działać w bardziej dynamicznych środowiskach, wykorzystują techniki przesyłania zaktualizowanych informacji o stanie łączy i metrykach, co prowadzi do lepszej optymalizacji tras w sieci. Wybór EGP (Exterior Gateway Protocol) oraz BGP (Border Gateway Protocol) również nie jest poprawny, ponieważ te protokoły są zaprojektowane do działania na granicach systemów autonomicznych i nie stosują mechanizmu okresowego przesyłania tablic rutingu. Często błędne rozumienie różnic między protokołami wewnętrznymi, a zewnętrznymi prowadzi do nieporozumień w ich zastosowaniu. Kluczowe jest zrozumienie, że efektywność routingu w dużych sieciach zależy nie tylko od wyboru protokołu, ale również od jego odpowiedniej konfiguracji i implementacji zgodnie z potrzebami danej infrastruktury.

Pytanie 34

Która z przedstawionych na rysunkach topologii jest topologią siatkową?

Ilustracja do pytania
A. A
B. D
C. B
D. C
Topologia siatki charakteryzuje się tym że każdy węzeł sieci jest połączony bezpośrednio z każdym innym węzłem co zapewnia wysoką odporność na awarie Jeśli jedno połączenie zawiedzie dane mogą być przesyłane inną drogą co czyni tę topologię bardziej niezawodną niż inne rozwiązania W praktyce topologia siatki znajduje zastosowanie w systemach wymagających wysokiej dostępności i redundancji takich jak sieci wojskowe czy systemy komunikacji krytycznej W topologii pełnej siatki każdy komputer jest połączony z każdym innym co zapewnia maksymalną elastyczność i wydajność Jednak koszty wdrożenia i zarządzania taką siecią są wysokie ze względu na liczbę wymaganych połączeń Z tego powodu częściej spotykana jest topologia częściowej siatki gdzie nie wszystkie węzły są bezpośrednio połączone ale sieć nadal zachowuje dużą odporność na awarie Topologia siatki jest zgodna z dobrymi praktykami projektowania sieci w kontekście niezawodności i bezpieczeństwa Przykłady jej zastosowania można znaleźć również w zaawansowanych sieciach komputerowych gdzie niezawodność i bezpieczeństwo są kluczowe

Pytanie 35

Wskaż tryb operacyjny, w którym komputer wykorzystuje najmniej energii

A. uśpienie
B. wstrzymanie
C. gotowość (pracy)
D. hibernacja
Hibernacja to tryb pracy komputera, który zapewnia minimalne zużycie energii, ponieważ zapisuje aktualny stan systemu na dysku twardym i całkowicie wyłącza zasilanie urządzenia. W tym stanie komputer nie zużywa energii, co czyni go najbardziej efektywnym energetycznie trybem, szczególnie w przypadku dłuższych przerw w użytkowaniu. Przykładem zastosowania hibernacji jest sytuacja, gdy użytkownik planuje dłuższą nieobecność, na przykład podczas podróży służbowej. W przeciwieństwie do trybu uśpienia, który zachowuje na pamięci RAM stan pracy, hibernacja nie wymaga zasilania, co jest zgodne z praktykami oszczędzania energii i ochrony środowiska. W standardzie Energy Star, hibernacja jest rekomendowana jako jedna z najlepszych metod zmniejszania zużycia energii przez komputery. Warto również wspomnieć, że hibernacja przyspiesza uruchamianie systemu, ponieważ przywraca z zapisanej sesji, co jest bardziej efektywne niż uruchamianie od zera.

Pytanie 36

Która z usług pozwala na zdalne zainstalowanie systemu operacyjnego?

A. IRC
B. RIS
C. DNS
D. IIS
IIS, czyli Internet Information Services, to serwer aplikacji i serwer WWW stworzony przez Microsoft. Jego główną funkcją jest hostowanie stron internetowych oraz aplikacji webowych, co nie ma nic wspólnego z instalacją systemów operacyjnych. Użycie IIS w kontekście zdalnej instalacji systemów może prowadzić do nieporozumień, ponieważ jego zastosowanie skupia się na stronach WWW, a nie na zarządzaniu urządzeniami. IRC, czyli Internet Relay Chat, to protokół komunikacyjny, który służy do czatowania w czasie rzeczywistym, również nie związany z instalacją systemów operacyjnych. W kontekście zdalnej administracji może być używany do komunikacji między zespołami, ale nie ma funkcji instalacji oprogramowania. Natomiast DNS, czyli Domain Name System, jest systemem, który odpowiada za tłumaczenie nazw domen na adresy IP. Chociaż jest kluczowy dla działania sieci, nie pełni roli w zakresie zdalnej instalacji oprogramowania. Zrozumienie tych różnic jest kluczowe, by poprawnie identyfikować usługi, które rzeczywiście wspierają procesy związane z zarządzaniem systemami operacyjnymi.

Pytanie 37

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji oświetleniowej powinna wynosić

A. 20cm
B. 40cm
C. 30cm
D. 50cm
Odległość 30 cm pomiędzy torami nieekranowanych kabli sieciowych a instalacjami elektrycznymi jest zgodna z ogólnie przyjętymi normami dotyczącymi instalacji telekomunikacyjnych i elektrycznych, w tym z wytycznymi określonymi w normie PN-EN 50174-2. Ta odległość ma kluczowe znaczenie dla zapewnienia ochrony przed zakłóceniami elektromagnetycznymi, które mogą negatywnie wpływać na jakość sygnału przesyłanego przez kable sieciowe. Przykładowo, w przypadku instalacji w biurze, gdzie przewody sieciowe są często prowadzone w pobliżu instalacji oświetleniowych, odpowiednia separacja zmniejsza ryzyko wpływu zakłóceń, co przekłada się na stabilność połączeń internetowych. Utrzymanie minimalnej odległości 30 cm zapewnia również zgodność z wymaganiami bezpieczeństwa, co jest istotne dla długoterminowej niezawodności systemów komunikacyjnych.

Pytanie 38

Możliwości zmiany uprawnień dostępu do plików w systemie Windows 10 można uzyskać za pomocą komendy

A. icacls
B. convert
C. set
D. verify
Polecenie icacls (ang. Integrity Control Access Control Lists) jest narzędziem w systemie Windows 10, które umożliwia zarządzanie uprawnieniami dostępu do plików i folderów. Używając icacls, administratorzy mogą modyfikować, wyświetlać, tworzyć oraz przywracać uprawnienia dostępu do zasobów systemowych. Przykładowo, aby nadać użytkownikowi pełne uprawnienia do pliku, można użyć komendy: icacls \"ścieżka\do\pliku\" /grant Użytkownik:F. To polecenie przyznaje użytkownikowi pełne (F - Full) uprawnienia do modyfikowania i odczytywania pliku. Ponadto, icacls pozwala na automatyzację zarządzania uprawnieniami poprzez skrypty, co jest zgodne z najlepszymi praktykami w administracji systemami operacyjnymi. Dzięki tym funkcjom, narzędzie to jest niezwykle przydatne w kontekście zapewnienia bezpieczeństwa systemów Windows, umożliwiając precyzyjne zarządzanie dostępem do danych. Warto również zaznaczyć, że icacls obsługuje różne poziomy uprawnień, takie jak odczyt, zapis, czy pełna kontrola, co daje administratorom dużą elastyczność w zarządzaniu dostępem do zasobów."

Pytanie 39

Podaj właściwy sposób zapisu liczby -1210 w metodzie znak-moduł na ośmiobitowej liczbie binarnej.

A. +1.11000zm
B. 10001100zm
C. 00001100zm
D. -1.11000zm
Wszystkie niepoprawne odpowiedzi bazują na błędnych założeniach dotyczących reprezentacji liczby -1210 w systemie binarnym oraz zastosowania metody znak-moduł. Przykładowo, zapis 00001100zm przedstawia tylko wartość dodatnią 12, natomiast nie uwzględnia faktu, że liczba jest ujemna. W przypadku metody znak-moduł, najstarszy bit powinien być ustawiony na 1, aby wskazać, że liczba jest ujemna. Z kolei odpowiedzi +1.11000zm oraz -1.11000zm sugerują format zmiennoprzecinkowy, który nie jest odpowiedni do reprezentacji liczb całkowitych w kontekście przedstawionym w pytaniu. Metoda znak-moduł wykorzystuje bezpośrednie reprezentacje liczb całkowitych, a nie zmiennoprzecinkowe, co jest kluczowym błędem tych odpowiedzi. Dodatkowo, odpowiedzi te nie uwzględniają, że liczba -1210 w systemie binarnym nie może być przedstawiona w postaci, która nie wskazuje wyraźnie na jej ujemność. W praktyce, w systemach komputerowych, istotne jest odpowiednie reprezentowanie liczb, aby uniknąć błędów obliczeniowych i zapewnić poprawność działania algorytmów. Stosowanie metod, które nie są zgodne z wymaganiami zadania, prowadzi do niepoprawnych wyników i może być źródłem problemów w aplikacjach wymagających precyzyjnych obliczeń.

Pytanie 40

Sprzęt, który umożliwia konfigurację sieci VLAN, to

A. firewall
B. regenerator (repeater)
C. switch
D. most przezroczysty (transparent bridge)
Switch, czyli przełącznik sieciowy, jest kluczowym urządzeniem w architekturze sieci VLAN (Virtual Local Area Network). Pozwala on na tworzenie wielu logicznych sieci w ramach jednej fizycznej infrastruktury, co jest szczególnie przydatne w dużych organizacjach. Dzięki VLAN można segmentować ruch sieciowy, co zwiększa bezpieczeństwo i efektywność zarządzania siecią. Przykładem może być sytuacja, w której dział finansowy i dział IT w tej samej firmie funkcjonują w odrębnych VLAN-ach, co ogranicza dostęp do poufnych danych. Standardy takie jak IEEE 802.1Q definiują, w jaki sposób przełączniki mogą tagować ramki Ethernet, aby rozróżniać różne VLAN-y. Dobrą praktyką jest stosowanie VLAN-ów do izolowania ruchu, co nie tylko poprawia bezpieczeństwo, ale także zwiększa wydajność sieci poprzez ograniczenie rozprzestrzeniania się broadcastów. Warto również zwrócić uwagę na możliwość zarządzania VLAN-ami przez protokoły takie jak VTP (VLAN Trunking Protocol), co upraszcza administrację siecią w skomplikowanych środowiskach.