Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 maja 2025 04:47
  • Data zakończenia: 24 maja 2025 04:58

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jak należy ustawić w systemie Windows Server 2008 parametry protokołu TCP/IP karty sieciowej, aby komputer mógł jednocześnie łączyć się z dwiema różnymi sieciami lokalnymi posiadającymi odrębne adresy IP?

A. Wprowadzić dwie bramy, korzystając z zakładki "Zaawansowane"
B. Wybrać opcję "Uzyskaj adres IP automatycznie"
C. Wprowadzić dwa adresy serwerów DNS
D. Wprowadzić dwa adresy IP, korzystając z zakładki "Zaawansowane"
Niepoprawne odpowiedzi bazują na pomyłkach związanych z funkcjonalnością protokołu TCP/IP w kontekście przypisywania adresów IP. Wpisanie dwóch adresów serwerów DNS nie ma nic wspólnego z dodawaniem wielu adresów IP do jednej karty sieciowej; DNS odpowiada za tłumaczenie nazw domenowych na adresy IP, a nie za bezpośrednie przypisywanie adresów sieciowych. Zaznaczenie opcji 'Uzyskaj adres IP automatycznie' również nie jest właściwe, gdyż ta funkcja dotyczy automatycznego przydzielania adresu IP przez serwer DHCP, co nie odpowiada potrzebie przypisania wielu statycznych adresów IP do jednego interfejsu. Ponadto, wpisanie dwóch adresów bramy jest niemożliwe, ponieważ każda karta sieciowa może mieć tylko jedną domyślną bramę. Dwie bramy w tej samej podsieci prowadzą do konfliktów, ponieważ protokół routingu nie wie, która brama powinna być używana do przesyłania danych. Zrozumienie tych różnic jest kluczowe dla prawidłowej konfiguracji sieci, a nieznajomość zasad dotyczących adresacji IP i ról DNS może prowadzić do poważnych problemów z komunikacją w sieci.

Pytanie 2

Aby poprawić bezpieczeństwo prywatnych danych sesji na stronie internetowej, zaleca się dezaktywację w ustawieniach przeglądarki

A. informowania o wygasłych certyfikatach
B. blokady okienek wyskakujących
C. blokady działania skryptów
D. funkcji zapisywania haseł
Funkcja zapamiętywania haseł w przeglądarkach to rzeczywiście wygodne rozwiązanie, ale może być dość ryzykowne dla naszej prywatności. Kiedy przeglądarka zapamiętuje hasła, zazwyczaj są one w jakiejś formie zabezpieczone, ale w przypadku, gdy ktoś dostanie się do naszego komputera, te hasła da się odszyfrować. Jak się okazuje, jeżeli ktoś fizycznie dostaje się do naszego sprzętu, to bez problemu może przejąć kontrolę nad naszymi zapisanymi danymi, w tym hasłami. Teraz, kiedy patrzymy na różne badania, widać, że ataki phishingowe mogą być skuteczniejsze, jeżeli użytkownicy polegają na funkcjach zapamiętywania haseł, ponieważ stają się mniej ostrożni w stosunku do prób kradzieży danych. Dlatego moim zdaniem warto pomyśleć o korzystaniu z menedżerów haseł – one oferują znacznie lepsze zabezpieczenia. A do tego dobrze byłoby wprowadzić podwójną autoryzację przy ważniejszych kontach. To wszystko przypomina mi o potrzebie świadomego zarządzania swoimi danymi, na przykład regularnie zmieniając hasła i nie zapisując ich w przeglądarkach. To jest zgodne z tym, co mówią standardy bezpieczeństwa, jak NIST Special Publication 800-63.

Pytanie 3

W której fizycznej topologii awaria jednego komputera powoduje przerwanie pracy całej sieci?

A. Magistrali
B. Siatki
C. Pierścienia
D. Drzewa
Topologie magistrali, siatki i drzewa różnią się od pierścienia pod względem struktury i sposobu działania, co wpływa na ich odporność na awarie. W topologii magistrali wszystkie urządzenia są podłączone do pojedynczego kabla, co sprawia, że awaria kabla prowadzi do przerwania komunikacji całej sieci. W praktyce, jeśli jeden segment magistrali ulegnie uszkodzeniu, to wszystkie urządzenia w tej sieci przestaną być w stanie komunikować się ze sobą. Użytkownicy mylnie mogą sądzić, że magistrala jest bardziej odporna na awarie, ponieważ jest łatwiejsza w instalacji i tańsza, jednak jej kruchość w obliczu uszkodzeń jest istotnym problemem w większych sieciach. Topologia siatki zapewnia większą redundancję dzięki wielokrotnym połączeniom między węzłami, co oznacza, że uszkodzenie jednego węzła nie wpływa na funkcjonowanie całej sieci. Użytkownicy mogą mylnie myśleć, że siatka jest podobna do pierścienia, ale w rzeczywistości siatka umożliwia różne trasy dla danych, co zwiększa stabilność. Z kolei topologia drzewa, będąca hybrydą magistrali i gwiazdy, również prezentuje wyzwania związane z awariami. Uszkodzenie węzła w hierarchii drzewa może prowadzić do problemów z dostępnością, ale niekoniecznie do całkowitego zatrzymania sieci, co czyni ją bardziej odporną na awarie w porównaniu do magistrali. W związku z tym, kluczowe jest zrozumienie, że różne topologie mają swoje unikalne właściwości, które wpływają na ich odporność na uszkodzenia oraz na efektywność komunikacji w sieci.

Pytanie 4

W systemie Linux przypisano uprawnienia do katalogu w formie ciągu znaków rwx--x--x. Jaką wartość liczbową te uprawnienia reprezentują?

A. 543
B. 621
C. 777
D. 711
Odpowiedź 711 jest poprawna, ponieważ prawa dostępu do folderu w systemie Linux są reprezentowane przez trzy grupy trzech znaków: rwx, --x oraz --x. Każda z grup oznacza prawa dla właściciela, grupy oraz innych użytkowników. Wartości numeryczne przypisane do tych praw są następujące: 'r' (read - odczyt) ma wartość 4, 'w' (write - zapis) ma wartość 2, a 'x' (execute - wykonanie) ma wartość 1. Zatem, dla właściciela, który ma pełne prawa (rwx), obliczamy 4+2+1, co daje 7. Dla grupy oraz innych użytkowników, którzy mają tylko prawo do wykonania (x), obliczamy 0+0+1, co daje 1. Łącząc te wartości, mamy 711. Ustalanie praw dostępu jest kluczowym elementem bezpieczeństwa w systemach Unix/Linux i jest zgodne z zasadami zarządzania dostępem. Przykładowo, jeśli folder zawiera skrypty, umożliwiając wykonanie ich tylko przez właściciela, zminimalizujemy ryzyko nieautoryzowanego dostępu.

Pytanie 5

Drugi monitor CRT, który jest podłączony do komputera, ma zastosowanie do

A. dostosowywania danych
B. analizowania danych
C. magazynowania danych
D. wyświetlania informacji
Wybór odpowiedzi sugerujących, że drugi monitor CRT służy do przechowywania, kalibracji lub przetwarzania danych, opiera się na błędnym zrozumieniu funkcji monitorów w systemach komputerowych. Monitory, w tym CRT, są urządzeniami wyjściowymi, co oznacza, że ich podstawowym zadaniem jest prezentacja danych, a nie ich przechowywanie ani przetwarzanie. Przechowywanie informacji odbywa się w pamięci systemu komputerowego, na dyskach twardych lub w chmurze, a nie na monitorze. Ponadto kalibracja danych odnosi się do procesu dostosowywania parametrów urządzeń pomiarowych, co również nie ma związku z funkcją wyjściową monitora. Użytkownicy mogą mylnie sądzić, że różne funkcje sprzętu komputerowego mogą się ze sobą pokrywać, jednak każda z tych funkcji ma swoje specyficzne urządzenia i przeznaczenie. Przykładowo, do kalibracji wykorzystywane są specjalistyczne programy i urządzenia pomiarowe, a przetwarzanie danych odbywa się na procesorze komputerowym. Zrozumienie ról różnych komponentów w systemie komputerowym jest kluczowe dla efektywnego wykorzystywania technologii, a pomylenie ich z funkcjami monitorów prowadzi do nieefektywnych praktyk oraz trudności w rozwiązywaniu problemów związanych z konfiguracją sprzętową.

Pytanie 6

Norma EN 50167 odnosi się do systemów okablowania

A. horyzontalnego
B. szkieletowego
C. wertykalnego
D. sieciowego
Zrozumienie znaczenia różnych typów okablowania w budynkach jest kluczowe dla efektywnej instalacji sieci telekomunikacyjnych. Okablowanie kampusowe odnosi się do połączeń między różnymi budynkami na terenie kampusu, co jest bardziej złożonym zagadnieniem, które wymaga innego podejścia projektowego, zarówno pod kątem odległości, jak i zastosowanych technologii. W przypadku okablowania pionowego, które łączy różne piętra budynku, istotne jest, aby instalacje były zgodne z lokalnymi normami budowlanymi oraz odpowiednio zabezpieczone przed zakłóceniami. Wreszcie, okablowanie szkieletowe to termin używany do opisania infrastruktury sieciowej obejmującej główne elementy, takie jak przełączniki i routery, które są kluczowe dla efektywnego zarządzania ruchem danych. Zbyt często myli się te terminy, co prowadzi do nieprawidłowych założeń w projektowaniu systemów sieciowych. Każdy z tych rodzajów okablowania ma swoje unikalne wymagania i zastosowania, które muszą być starannie rozważone w kontekście całej infrastruktury sieciowej. Dlatego tak ważne jest, aby przy projektowaniu i wdrażaniu systemów okablowania stosować się do odpowiednich norm i standardów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować ryzyko awarii.

Pytanie 7

Który z poniższych zapisów stanowi właściwy adres w wersji IPv6?

A. 2001:DB8::BAF:FE94
B. 2001-DB8-BAF-FE94
C. 2001:DB8::BAF::FE94
D. 2001.DB8.BAF.FE94
Adres IPv6, który wybrałeś, 2001:DB8::BAF:FE94, jest poprawnym zapisem, ponieważ spełnia wszystkie normy określone w standardzie RFC 4291. Adresy IPv6 są reprezentowane jako osiem bloków szesnastkowych oddzielonych dwukropkami, przy czym każdy blok może mieć od 1 do 4 cyfr szesnastkowych. W tym przypadku użycie podwójnego dwukropka (::) do reprezentowania sekwencji zer jest poprawne, co pozwala na skrócenie adresu i uczynienie go bardziej zwięzłym. Warto zauważyć, że adresy IPv6 są kluczowe w kontekście rosnącej liczby urządzeń podłączonych do Internetu, gdzie adresacja IPv4 staje się niewystarczająca. Użycie poprawnych adresów IPv6 jest istotne dla prawidłowej komunikacji w sieci i zgodności z nowoczesnymi standardami sieciowymi, co jest szczególnie ważne w kontekście rozwoju Internetu rzeczy (IoT) oraz zastosowań w chmurze. Przykładem zastosowania adresów IPv6 są usługi hostingowe, które wymagają unikalnych adresów IP dla każdego z hostów, co pozwala na efektywne zarządzanie i kierowanie ruchem w sieci.

Pytanie 8

Zastąpienie koncentratorów przełącznikami w sieci Ethernet doprowadzi do

A. rozszerzenia domeny rozgłoszeniowej.
B. potrzeby zmiany adresów IP.
C. redukcji liczby kolizji.
D. zmiany w topologii sieci.
Zrozumienie wpływu wymiany koncentratorów na przełączniki na topologię sieci i kolizje jest kluczowe dla prawidłowego projektowania sieci. Zmiana topologii sieci na ogół nie zachodzi tylko z powodu zmiany urządzeń sieciowych z koncentratorów na przełączniki. Topologia sieci odnosi się do fizycznego lub logicznego układu urządzeń w sieci, a sama wymiana sprzętu nie wpływa na tę strukturę. Zmiana adresów IP również nie jest konieczna w przypadku wymiany tych urządzeń, ponieważ adresy IP są przypisane do urządzeń końcowych, a nie do samych koncentratorów ani przełączników. Co więcej, wprowadzenie przełączników nie prowadzi do zwiększenia domeny rozgłoszeniowej, a wręcz przeciwnie – może ona zostać zmniejszona, ponieważ przełączniki ograniczają rozgłoszenie ramek tylko do odpowiednich portów, co zwiększa efektywność sieci. W praktyce, błędne zrozumienie tych koncepcji może prowadzić do nieefektywnego projektowania sieci, co może powodować problemy z wydajnością oraz złożonością zarządzania ruchem sieciowym. Dlatego kluczowe jest zrozumienie, jak różne urządzenia wpływają na funkcjonowanie sieci oraz jakie są ich role w kontekście wydajności i organizacji ruchu.

Pytanie 9

Narzędzie służące do przechwytywania oraz ewentualnej analizy ruchu w sieci to

A. keylogger
B. viewer
C. spyware
D. sniffer
Odpowiedź "sniffer" jest poprawna, ponieważ sniffer to program służący do przechwytywania i analizy ruchu w sieci komputerowej. Sniffery są wykorzystywane przez administratorów sieci do monitorowania i diagnozowania problemów z wydajnością oraz bezpieczeństwem sieci. Przykładowym zastosowaniem sniffera może być analiza pakietów przesyłanych w sieci lokalnej, co pozwala na identyfikację nieprawidłowości, takich jak nieautoryzowane próby dostępu do zasobów czy też ataki typu Denial of Service (DoS). W kontekście bezpieczeństwa, sniffery są również wykorzystywane w testach penetracyjnych, aby sprawdzić podatności systemów na ataki. W branży bezpieczeństwa informacji istnieją standardy, takie jak NIST SP 800-115, które zalecają stosowanie narzędzi do analizy ruchu sieciowego w celu zapewnienia integralności i poufności danych. Warto zauważyć, że używanie snifferów wymaga świadomości prawnej, ponieważ nieautoryzowane przechwytywanie danych może być niezgodne z przepisami prawa.

Pytanie 10

Użytkownik planuje instalację 32-bitowego systemu operacyjnego Windows 7. Jaka jest minimalna ilość pamięci RAM, którą powinien mieć komputer, aby system mógł działać w trybie graficznym?

A. 1 GB
B. 2 GB
C. 256 MB
D. 512 MB
Zgadza się, aby system operacyjny Windows 7 w wersji 32-bitowej mógł pracować w trybie graficznym, niezbędne jest posiadanie co najmniej 1 GB pamięci RAM. To minimalne wymaganie wynika z architektury systemu operacyjnego oraz jego zdolności do zarządzania zasobami. W praktyce, posiadanie 1 GB RAM-u umożliwia uruchamianie podstawowych aplikacji oraz korzystanie z interfejsu graficznego bez większych problemów. Warto również zaznaczyć, że większa ilość pamięci RAM może znacznie poprawić wydajność systemu, co jest szczególnie istotne w przypadku używania złożonych aplikacji multimedialnych czy gier. Ponadto, zgodnie z zasadami dobrych praktyk, zaleca się posiadanie pamięci RAM powyżej minimalnych wymagań, co pozwala na lepsze wykorzystanie systemu i jego funkcjonalności. W przypadku Windows 7, 2 GB RAM to bardziej komfortowy wybór, który zapewnia płynne działanie systemu, a także umożliwia korzystanie z wielu aplikacji jednocześnie.

Pytanie 11

Graficzny symbol ukazany na ilustracji oznacza

Ilustracja do pytania
A. koncentrator
B. przełącznik
C. bramę
D. most
Symbol graficzny przedstawiony na rysunku rzeczywiście oznacza przełącznik sieciowy co jest zgodne z odpowiedzią numer trzy Przełącznik jest kluczowym urządzeniem w infrastrukturze sieci komputerowych odpowiadającym za efektywne kierowanie ruchem sieciowym w ramach lokalnej sieci komputerowej LAN Działa na poziomie drugiego modelu ISO/OSI czyli warstwie łącza danych Jego podstawową funkcją jest przekazywanie pakietów pomiędzy urządzeniami w ramach tej samej sieci lokalnej poprzez analizę adresów MAC Dzięki temu przełączniki potrafią znacząco zwiększać wydajność sieci poprzez redukcję kolizji danych i efektywne zarządzanie pasmem sieciowym W praktyce przełączniki są wykorzystywane w wielu zastosowaniach od małych sieci domowych po zaawansowane sieci korporacyjne W środowiskach korporacyjnych przełączniki mogą obsługiwać zaawansowane funkcje takie jak VLAN wirtualne sieci LAN zapewniające segregację ruchu sieciowego oraz Quality of Service QoS umożliwiające priorytetyzację ruchu Odpowiednie zarządzanie i konfiguracja przełączników są kluczowe dla zachowania bezpieczeństwa i wydajności całej infrastruktury sieciowej Współczesne przełączniki często integrują technologię Power over Ethernet PoE co umożliwia zasilanie urządzeń sieciowych takich jak telefony VoIP czy kamery IP bezpośrednio przez kabel sieciowy co upraszcza instalację i obniża koszty eksploatacji

Pytanie 12

Aby przywrócić zgubione dane w systemach z rodziny Windows, konieczne jest użycie polecenia

A. renew
B. recover
C. release
D. reboot
Wybór poleceń 'release', 'renew' oraz 'reboot' wskazuje na nieporozumienie co do funkcji, jakie pełnią te komendy w systemie Windows. Polecenie 'release' stosowane jest zazwyczaj w kontekście zarządzania adresami IP w protokole DHCP; pozwala na zwolnienie przypisanego adresu IP, co jest zupełnie inną operacją niż odzyskiwanie danych. 'Renew' jest związane z odnowieniem adresu IP, co również nie ma związku z procesem odzyskiwania danych. Takie mylenie funkcji tych poleceń może prowadzić do poważnych problemów w konfiguracji sieci, zwłaszcza w środowiskach, gdzie stabilność połączenia jest kluczowa. 'Reboot' natomiast oznacza ponowne uruchomienie systemu, co może być pomocne w rozwiązaniu problemów z oprogramowaniem, ale nie przywraca utraconych danych. Pomylenie tych terminów wskazuje na brak zrozumienia podstawowych mechanizmów działania systemów operacyjnych i ich narzędzi. Ważne jest, aby zrozumieć, że odzyskiwanie danych wymaga specyficznych działań, a nie ogólnych operacji, które mogą tylko tymczasowo rozwiązać inne problemy.

Pytanie 13

System Windows 8, w którym wcześniej został utworzony punkt przywracania, doświadczył awarii. Jakie polecenie należy wydać, aby przywrócić ustawienia i pliki systemowe?

A. rootkey
B. rstrui
C. reload
D. replace
Wybór odpowiedzi innych niż 'rstrui' świadczy o niepełnym zrozumieniu funkcji przywracania systemu w Windows. Polecenie 'reload' nie jest znane w kontekście systemu Windows i nie odnosi się do żadnej czynności związanej z przywracaniem systemu. W systemach operacyjnych termin 'reload' często używany jest w kontekście przeładowania aplikacji lub modułów, ale nie ma zastosowania przy zarządzaniu punktami przywracania. Kolejną nieprawidłową odpowiedzią jest 'replace', co sugeruje, że użytkownik myli proces przywracania z procesem zastępowania plików, co nie ma miejsca w standardowej procedurze przywracania systemu. Przywracanie nie polega na zastępowaniu pojedynczych plików, lecz na przywracaniu całego stanu systemu, co jest znacznie bardziej złożonym procesem. Z kolei 'rootkey' to termin, który odnosi się do rejestru systemu Windows, a nie do przywracania systemu. Użytkownicy mogą mieć tendencję do mylenia pojęć związanych z rejestrem i punktami przywracania, co prowadzi do nieporozumień w kontekście zarządzania systemem. Ważne jest, aby zrozumieć odmienność tych terminów i ich zastosowanie w praktyce, aby skutecznie zarządzać systemem operacyjnym i unikać problemów w przyszłości.

Pytanie 14

Jakiej funkcji powinno się użyć, aby utworzyć kopię zapasową rejestru systemowego w programie regedit?

A. Załaduj gałąź rejestru
B. Importuj
C. Skopiuj nazwę klucza
D. Eksportuj
Wybór odpowiedzi 'Kopiuj nazwę klucza', 'Załaduj gałąź rejestru' oraz 'Importuj' jest błędny, ponieważ każda z tych opcji ma inne funkcje i nie służy do tworzenia kopii zapasowej rejestru. Funkcja 'Kopiuj nazwę klucza' jedynie umożliwia skopiowanie nazwy wybranego klucza do schowka, co nie ma żadnej wartości w kontekście tworzenia kopii zapasowej, ponieważ nie zapisuje ona żadnych danych ani ustawień. Z kolei 'Załaduj gałąź rejestru' służy do wczytywania wcześniej zapisanych gałęzi rejestru z pliku, co jest procesem odwrotnym do tworzenia kopii zapasowej. Użytkownicy mogą mylić tę funkcję z eksportem, jednak załadunek nie tworzy kopii, lecz wprowadza zmiany w istniejącym rejestrze. Natomiast 'Importuj' to funkcja, która również ma na celu wprowadzenie danych z pliku rejestru, co oznacza, że nie jest to sposób na utworzenie kopii zapasowej, ale raczej na dodanie lub modyfikację danych w systemie. Często zdarza się, że użytkownicy nie rozumieją różnicy pomiędzy eksportem a importem, co prowadzi do niepoprawnych wniosków. Właściwe zrozumienie tych funkcji jest kluczowe dla skutecznego zarządzania rejestrem oraz zapobiegania potencjalnym problemom, które mogą wyniknąć z nieprawidłowych operacji na rejestrze.

Pytanie 15

Jakie polecenie należy wprowadzić w konsoli, aby skorygować błędy na dysku?

A. CHDIR
B. SUBST
C. DISKCOMP
D. CHKDSK
Polecenie CHKDSK (Check Disk) jest narzędziem używanym w systemach operacyjnych Windows do analizy i naprawy błędów na dysku twardym. Jego podstawową funkcją jest sprawdzanie integralności systemu plików oraz struktury dysku, co pozwala na identyfikację i naprawę uszkodzeń, takich jak błędne sektory. Użycie CHKDSK jest zalecane w sytuacjach, gdy występują problemy z dostępem do plików lub gdy system operacyjny zgłasza błędy związane z dyskiem. Przykład zastosowania tego polecenia to uruchomienie go w wierszu polecenia jako administrator z parametrem '/f', co automatycznie naprawia błędy, które zostaną wykryte. Przykład użycia: 'chkdsk C: /f' naprawi błędy na dysku C. Warto również zaznaczyć, że regularne korzystanie z CHKDSK jest dobrą praktyką w utrzymaniu systemu, ponieważ pozwala na proaktywne zarządzanie stanem dysku, co może zapobiec utracie danych oraz wydłużyć żywotność sprzętu.

Pytanie 16

Który z podanych adresów IP v.4 należy do klasy C?

A. 10.0.2.0
B. 126.110.10.0
C. 223.0.10.1
D. 191.11.0.10
Wszystkie pozostałe adresy IP wymienione w pytaniu nie są adresami klasy C. Adres 10.0.2.0 zalicza się do klasy A, której pierwsza okteta znajduje się w zakresie od 1 do 126. Klasa A jest wykorzystywana do dużych sieci, gdzie liczba hostów może być znaczna, co czyni ją odpowiednią dla dużych organizacji lub dostawców usług internetowych. Adres 126.110.10.0 również nie pasuje do klasy C, ponieważ pierwsza okteta (126) przypisuje go do klasy B, gdzie zakres oktetów to od 128 do 191. Klasa B jest idealna dla średniej wielkości sieci, umożliwiając adresowanie do 65 tysięcy hostów. Natomiast adres 191.11.0.10 to adres klasy B, ponieważ jego pierwsza okteta (191) również znajduje się w przedziale 128 do 191. Typowe błędy w rozpoznawaniu klas adresów IP często wynikają z niezrozumienia zakresów przypisanych poszczególnym klasom oraz ich zastosowań. Kluczowe jest, aby podczas analizy adresów IP pamiętać o ich zastosowaniu oraz o tym, że klasy adresowe są skonstruowane w celu efektywnego zarządzania adresowaniem w zależności od potrzeb organizacji. Niezrozumienie tych klasyfikacji może doprowadzić do nieoptymalnego wykorzystania zasobów sieciowych i kłopotów z ich zarządzaniem.

Pytanie 17

Jaki rodzaj kabla powinien być użyty do podłączenia komputera w miejscu, gdzie występują zakłócenia elektromagnetyczne?

A. UTP Cat 5e
B. UTP Cat 6
C. FTP Cat 5e
D. UTP Cat 5
Wybór kabli UTP Cat 6, UTP Cat 5 i UTP Cat 5e w kontekście pomieszczenia z zakłóceniami elektromagnetycznymi może prowadzić do problemów z jakością sygnału i stabilnością połączenia. Kable UTP (Unshielded Twisted Pair) nie posiadają żadnego zabezpieczenia przed zakłóceniami zewnętrznymi, co czyni je mniej odpowiednimi w środowisku, gdzie występują silne źródła zakłóceń. Kable UTP Cat 6, mimo że oferują wyższe prędkości transmisji w porównaniu do starszych standardów, wciąż nie są ekranowane, co nie zabezpiecza sygnału przed wpływem elektromagnetycznym. Podobnie, UTP Cat 5 i Cat 5e, choć mogą być używane do transmisji danych w normalnych warunkach, nie są wystarczająco odporne w sytuacjach, gdzie zakłócenia są znaczące. W przypadku stosowania takich kabli w trudnych warunkach, użytkownicy mogą doświadczyć problemów związanych z błędami transmisji, co może prowadzić do spadku wydajności sieci oraz zwiększenia liczby błędów w przesyłanych danych. Właściwe dobieranie kabli do warunków otoczenia jest kluczowe dla zapewnienia niezawodności i efektywności infrastruktury sieciowej. Z tego powodu, wybór kabli ekranowanych, takich jak FTP, jest jedynym logicznym rozwiązaniem w środowiskach narażonych na zakłócenia elektromagnetyczne.

Pytanie 18

Jak wygląda kolejność przewodów w wtyczce RJ-45 zgodnie z normą TIA/EIA-568 dla zakończeń typu T568B?

A. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
B. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
C. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
D. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
Odpowiedź "Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy" jest właściwa zgodnie z normą TIA/EIA-568 dla zakończeń typu T568B. Standard ten określa kolory przewodów, które powinny być używane do tworzenia kabli sieciowych Ethernet. Przewody są rozmieszczone według określonej kolejności, aby zapewnić poprawną transmisję danych, co jest kluczowe w kontekście zarówno wydajności, jak i niezawodności sieci. Przykładowo, w przypadku błędnego podłączenia, może dojść do zakłóceń w komunikacji, co wpływa na przepustowość i stabilność połączenia. Stosowanie normy T568B jest powszechną praktyką w instalacjach sieciowych, co ułatwia identyfikację i diagnozowanie problemów. Zrozumienie tego standardu jest niezbędne dla specjalistów zajmujących się instalacją i konserwacją sieci, a także dla tych, którzy projektują infrastrukturę sieciową w różnych środowiskach, takich jak biura, szkoły czy obiekty przemysłowe. Poprawna kolejność przewodów ma wpływ na specyfikację zasilania PoE, co jest istotne w kontekście nowoczesnych rozwiązań sieciowych.

Pytanie 19

Jakie będą całkowite wydatki na materiały potrzebne do stworzenia 20 kabli połączeniowych typu patchcord, z których każdy ma długość 1,5m, jeśli cena 1 metra bieżącego kabla wynosi 1zł, a cena wtyku to 50 gr?

A. 50 zł
B. 60 zł
C. 30 zł
D. 40 zł
Próba obliczenia łącznego kosztu materiałów do wykonania kabli połączeniowych często prowadzi do błędów, które wynikają z niewłaściwego zrozumienia zastosowanych jednostek oraz ilości potrzebnych materiałów. Na przykład, jeśli ktoś błędnie oszacuje ilość kabla, mogą przyjść do wniosku, że 30 zł to wystarczająca kwota tylko za kabel, co jest nieprawidłowe, ponieważ nie uwzględniają dodatkowego kosztu wtyków. Warto również zauważyć, że pomyłki w obliczeniach mogą wynikać z mylnego założenia, że koszt wtyków jest zbyt niski lub został pominięty całkowicie. Ponadto, odpowiedzi takie jak 40 zł, 60 zł czy 30 zł mogą wynikać z przypadkowego dodawania różnych wartości, które nie odpowiadają rzeczywistym potrzebom projektu. Na przykład, osoba mogąca wybrać opcję 60 zł mogła dodać koszt kabla jako 40 zł, myląc jednostki lub nie uwzględniając ilości kabli. Ważne jest, aby przy obliczeniach materiałowych stosować odpowiednie metodyki kosztorysowania oraz mieć na uwadze standardy branżowe, które sugerują dokładne obliczenia i kalkulacje oparte na rzeczywistych potrzebach projektu. Prawidłowe podejście do wyceniania zasobów jest kluczowe dla efektywnego zarządzania budżetem w projektach inżynieryjnych i technologicznych.

Pytanie 20

Który aplet w panelu sterowania systemu Windows 7 pozwala na ograniczenie czasu, jaki użytkownik spędza przed komputerem?

A. Kontrola rodzicielska
B. Windows Defender
C. Centrum akcji
D. Konta użytkowników
Centrum akcji to aplet służący do zarządzania powiadomieniami i alertami w systemie Windows, a nie do ograniczania czasu pracy użytkownika. Jego głównym celem jest informowanie o stanie zabezpieczeń, aktualizacjach systemu oraz innych istotnych kwestiach, co czyni go narzędziem pomocnym w monitorowaniu kondycji systemu, ale nie w zarządzaniu czasem użytkowania. Windows Defender, z kolei, to wbudowane oprogramowanie zabezpieczające, które chroni system przed złośliwym oprogramowaniem i innymi zagrożeniami. Jego funkcjonalność koncentruje się na bezpieczeństwie, a nie na kontroli dostępu do komputera. Konta użytkowników umożliwiają zarządzanie różnymi profilami dostępu do systemu, ale same w sobie nie oferują narzędzi do ograniczania czasu pracy na komputerze. Często mylone jest również pojęcie kontroli użytkowników z kontrolą rodzicielską, co prowadzi do błędnych wniosków. Aby skutecznie zarządzać czasem spędzanym przed komputerem przez dzieci, należy korzystać z rozwiązań dedykowanych, takich jak Kontrola rodzicielska, która jest stworzona z myślą o rodzicach i ich dzieciach, a nie ogólne mechanizmy dostępne w systemie operacyjnym.

Pytanie 21

Zamiana taśmy barwiącej wiąże się z eksploatacją drukarki

A. termicznej
B. laserowej
C. igłowej
D. atramentowej
Drukarki igłowe wykorzystują taśmy barwiące jako kluczowy element do reprodukcji tekstu i obrazów. W przeciwieństwie do drukarek laserowych czy atramentowych, które używają toneru czy atramentu, drukarki igłowe działają na zasadzie mechanicznego uderzenia igieł w taśmę barwiącą, co pozwala na przeniesienie atramentu na papier. Wymiana taśmy barwiącej jest konieczna, gdy jakość wydruku zaczyna się pogarszać, co może objawiać się niewyraźnym tekstem lub niedoborem koloru. Przykładem zastosowania drukarek igłowych są systemy księgowe, które wymagają wielokrotnego drukowania takich dokumentów jak faktury czy raporty, gdzie trwałość druku jest kluczowa. Dobre praktyki sugerują, aby regularnie kontrolować stan taśmy barwiącej oraz wymieniać ją zgodnie z zaleceniami producenta, co zapewnia optymalną jakość wydruków i wydajność sprzętu.

Pytanie 22

W jednostce ALU w akumulatorze zapisano liczbę dziesiętną 500. Jaką ona ma binarną postać?

A. 111011000
B. 111111101
C. 110110000
D. 111110100
Reprezentacja binarna liczby 500 to 111110100. Aby uzyskać tę wartość, należy przekształcić liczbę dziesiętną na system binarny, który jest podstawowym systemem liczbowym wykorzystywany w komputerach. Proces konwersji polega na podzieleniu liczby przez 2 i zapisywaniu reszt z kolejnych dzielen. W przypadku liczby 500 dzielimy ją przez 2, co daje 250 z resztą 0, następnie 250 dzielimy przez 2, co daje 125 z resztą 0, kontynuując ten proces aż do momentu, gdy otrzymamy 1. Reszty zapiszemy w odwrotnej kolejności: 1, 111110100. W praktyce, zrozumienie konwersji między systemami liczbowymi jest kluczowe w programowaniu niskopoziomowym, operacjach na danych oraz w pracy z mikrokontrolerami. Znalezienie tej umiejętności w kontekście standardów branżowych, takich jak IEEE 754 dla reprezentacji liczb zmiennoprzecinkowych, ilustruje znaczenie prawidłowego przekształcania danych w kontekście architektury komputerów.

Pytanie 23

Kable łączące dystrybucyjne punkty kondygnacyjne z głównym punktem dystrybucji są określane jako

A. okablowaniem pionowym
B. okablowaniem poziomym
C. połączeniami telekomunikacyjnymi
D. połączeniami systemowymi
Okablowanie poziome odnosi się do kabli, które łączą urządzenia końcowe, takie jak komputery i telefony, z punktami dystrybucji w danym piętrze, co jest odmiennym zagadnieniem. W kontekście architektury sieci, okablowanie poziome jest zorganizowane w ramach kondygnacji budynku i nie obejmuje połączeń między kondygnacjami, co jest kluczowe w definicji okablowania pionowego. Połączenia systemowe czy telekomunikacyjne są terminami szerszymi, które mogą obejmować różne formy komunikacji, ale nie identyfikują jednoznacznie specyficznych typów okablowania. Typowym błędem myślowym przy wyborze tych odpowiedzi jest mylenie lokalizacji i funkcji kabli. Każde okablowanie ma swoje specyficzne zadania, a zrozumienie ich ról w systemie telekomunikacyjnym jest kluczowe. Na przykład, projektując sieć w budynku, inżynierowie muszą precyzyjnie określić, które połączenia są pionowe, aby zainstalować odpowiednie komponenty, takie jak serwery czy routery, w głównych punktach dystrybucyjnych, a nie na poziomie pięter. Dlatego poprawne zrozumienie koncepcji okablowania pionowego jest niezbędne dla prawidłowego projektowania infrastruktury sieciowej.

Pytanie 24

Aby uzyskać informacje na temat aktualnie działających procesów w systemie Linux, można użyć polecenia

A. su
B. ls
C. ps
D. rm
Polecenie 'ps' w systemie Linux jest kluczowym narzędziem służącym do wyświetlania informacji o bieżących procesach. Skrót 'ps' oznacza 'process status', co doskonale oddaje jego funkcjonalność. Umożliwia ono użytkownikom przeglądanie listy procesów działających w systemie, a także ich stanu, wykorzystania pamięci i innych istotnych parametrów. Przykładowe użycie polecenia 'ps aux' pozwala na uzyskanie szczegółowych informacji o wszystkich procesach, w tym tych, które są uruchomione przez innych użytkowników. Dzięki temu administratorzy i użytkownicy mają możliwość monitorowania aktywności systemu, diagnozowania problemów oraz optymalizacji użycia zasobów. W kontekście dobrej praktyki, korzystanie z polecenia 'ps' jest niezbędne do zrozumienia, jakie procesy obciążają system, co jest kluczowe w zarządzaniu systemami wielozadaniowymi, gdzie optymalizacja wydajności jest priorytetem. Warto również zaznaczyć, że na podstawie wyników polecenia 'ps' można podejmować decyzje dotyczące zarządzania procesami, takie jak ich zatrzymywanie czy priorytetyzacja.

Pytanie 25

Po dokonaniu eksportu klucza HKCU powstanie kopia rejestru zawierająca dane dotyczące ustawień

A. procedur startujących system operacyjny
B. wszystkich aktywnie załadowanych profili użytkowników systemu
C. sprzętu komputera dla wszystkich użytkowników systemu
D. aktualnie zalogowanego użytkownika
Wybór odpowiedzi dotyczącej procedur uruchamiających system operacyjny, sprzętowej konfiguracji komputera lub profili użytkowników nie jest właściwy, ponieważ każdy z tych obszarów ma swoje unikalne klucze w rejestrze systemu Windows. Klucz HKLM (HKEY_LOCAL_MACHINE) przechowuje informacje dotyczące sprzętu oraz konfiguracji systemu operacyjnego dla wszystkich użytkowników, a nie tylko jednego. To może prowadzić do nieporozumień, ponieważ zakłada się, że eksportując HKCU, uzyskuje się dostęp do globalnych ustawień systemowych, co jest mylne. Sprzętowe informacje komputera są integralną częścią kluczy HKLM, które obejmują takie dane jak sterowniki, ustawienia BIOS oraz inne parametry sprzętowe wspólne dla wszystkich użytkowników. Kolejny błąd myślowy pojawia się przy pomyśle, że eksportuje się informacje o wszystkich aktywnie ładowanych profilach użytkowników. W rzeczywistości każdy profil użytkownika ma oddzielny klucz HKU (HKEY_USERS), a eksport HKCU dotyczy tylko profilu aktualnie zalogowanego użytkownika. Błędy te mogą prowadzić do poważnych pomyłek w zarządzaniu systemem, zwłaszcza w kontekście kopiowania i przywracania ustawień, co może skutkować utratą danych lub nieprawidłowym działaniem aplikacji. Zrozumienie struktury rejestru jest kluczowe dla efektywnego zarządzania systemem operacyjnym, a nieuwzględnienie tego aspektu może prowadzić do trudności w diagnostyce i rozwiązywaniu problemów.

Pytanie 26

Który z poniższych zapisów reprezentuje adres strony internetowej oraz przypisany do niego port?

A. 100.168.0.1-8080
B. 100.168.0.1-AH1
C. 100.168.0.1:8080
D. 100.168.0.1:AH1
Odpowiedź 100.168.0.1:8080 jest poprawna, ponieważ jest to standardowy format zapisu adresu IP z przypisanym portem. W tym przypadku '100.168.0.1' jest adresem IP, który identyfikuje unikalne urządzenie w sieci, a ':8080' to zapis portu, na którym nasłuchuje server. Port 8080 jest często wykorzystywany do działań związanych z aplikacjami webowymi, zwłaszcza gdy standardowy port 80 jest już zajęty. Dzięki zastosowaniu odpowiedniego portu, możliwe jest jednoczesne uruchamianie wielu usług na tym samym adresie IP. W praktyce, zrozumienie tego zapisu jest kluczowe w kontekście administracji sieciami, gdzie często musimy łączyć się z różnymi serwisami działającymi na różnych portach. Poprawny zapis portu umożliwia nie tylko dostęp do danych, ale również pozwala na prawidłowe skonfigurowanie zapory sieciowej, co jest istotne w kontekście bezpieczeństwa. Używając standardów takich jak RFC 793, możemy lepiej zrozumieć funkcjonowanie protokołów komunikacyjnych, co przyczynia się do efektywnego zarządzania siecią.

Pytanie 27

Zgodnie z normą TIA/EIA-568-B.1 kabel UTP 5e z przeplotem powstaje poprzez zamianę lokalizacji w wtyczce 8P8C następujących par żył (odpowiednio według kolorów):

A. biało-pomarańczowy i pomarańczowy z biało-brązowym i brązowym
B. biało-zielony i zielony z biało-niebieskim i niebieskim
C. biało-zielony i zielony z biało-brązowym i brązowym
D. biało-pomarańczowy i pomarańczowy z biało-zielonym i zielonym
Zrozumienie, które pary przewodów powinny być zamienione w wtyczce 8P8C jest kluczowe dla prawidłowego zakończenia kabli UTP. Wybór pary biało-pomarańczowy i pomarańczowy z inną parą, jak biało-brązowy i brązowy, skutkuje niepoprawnym ułożeniem, które może prowadzić do zakłóceń w transmisji danych. Schematy kolorów w kablach UTP są zaprojektowane w taki sposób, aby zapewnić optymalną transmisję sygnału w danym standardzie. Zamiana par, które nie są przewidziane w normie, może powodować niewłaściwe współdziałanie sygnałów, co skutkuje degradacją jakości połączenia oraz zwiększeniem liczby błędów w transmisji. Takie błędy mogą prowadzić do spadku wydajności sieci oraz problemów z kompatybilnością urządzeń. W przypadku zastosowań, gdzie wymagana jest wysoka przepustowość, nieprawidłowe zakończenie kabli może być szczególnie problematyczne, jako że nawet niewielkie zakłócenia mogą prowadzić do znacznych opóźnień w przesyłaniu danych. Dlatego kluczowe jest przestrzeganie ustalonych norm i praktyk, aby zapewnić stabilność oraz niezawodność sieci teleinformatycznych.

Pytanie 28

Jakie oprogramowanie powinno być zainstalowane, aby umożliwić skanowanie tekstu z drukowanego dokumentu do edytora tekstu?

A. Program CAD
B. Program ERP
C. Program COM+
D. Program OCR
Program OCR (Optical Character Recognition) jest specjalistycznym oprogramowaniem, które umożliwia konwersję zeskanowanych dokumentów, obrazów i tekstów wydrukowanych do formatu edytowalnego. Działa to na zasadzie rozpoznawania wzorów i znaków, co pozwala na przekształcenie wizualnych danych na tekst cyfrowy. W praktyce, wykorzystanie programu OCR jest powszechne w biurach, archiwach oraz bibliotekach, gdzie duża ilość dokumentów papierowych musi zostać zdigitalizowana. Dzięki technologii OCR możemy efektywnie archiwizować dokumenty, oszczędzając czas i przestrzeń. Warto również wspomnieć, że nowoczesne programy OCR są w stanie rozpoznać nie tylko standardowe czcionki, ale również różne języki i znaki diakrytyczne, co sprawia, że są wszechstronne i użyteczne w międzynarodowym kontekście. Przykładowe oprogramowanie OCR to ABBYY FineReader czy Adobe Acrobat, które są zgodne z branżowymi standardami, takimi jak PDF/A, co zapewnia długoterminową archiwizację dokumentów.

Pytanie 29

Która z poniższych wskazówek nie jest właściwa w kontekście konserwacji skanera płaskiego?

A. Dbać, aby podczas prac nie uszkodzić szklanej powierzchni tacy dokumentów
B. Sprawdzać, czy kurz nie zgromadził się na powierzchni tacy dokumentów
C. Zachować ostrożność, aby podczas prac nie wylać płynu na mechanizm skanera oraz na elementy elektroniczne
D. Używać do czyszczenia szyby acetonu lub alkoholu etylowego wylewając bezpośrednio na szybę
Czyszczenie szyby skanera acetonu czy alkoholem etylowym to kiepski pomysł, bo te substancje mogą zniszczyć specjalne powłoki ochronne. Najlepiej sięgnąć po środki czyszczące zaprojektowane do urządzeń optycznych. Są one dostosowane, żeby skutecznie wyczyścić, a przy tym nie zaszkodzić powierzchni. Na przykład, roztwór alkoholu izopropylowego w odpowiednim stężeniu to bezpieczna i skuteczna opcja. Ważne jest też, żeby używać miękkiej ściereczki z mikrofibry – dzięki temu unikniemy zarysowań. Regularne czyszczenie szyby skanera wpływa na jego dłuższą żywotność i lepszą jakość skanów, co jest kluczowe, gdy pracujemy z ważnymi dokumentami.

Pytanie 30

Standard IEEE 802.11b dotyczy sieci

A. bezprzewodowych
B. światłowodowych
C. telefonicznych
D. przewodowych
Odpowiedzi związane z sieciami telefonicznymi, światłowodowymi oraz przewodowymi wykazują nieporozumienie w zakresie zastosowania i funkcji standardów sieciowych. Sieci telefoniczne, które historycznie funkcjonują na infrastrukturze kablowej, nie korzystają z technologii bezprzewodowej, co sprawia, że normy takie jak IEEE 802.11b są dla nich nieadekwatne. W przypadku sieci światłowodowych, które opierają się na technologii przesyłania danych za pomocą światła w włóknach optycznych, standard 802.11b również nie ma zastosowania. Większość standardów dla światłowodów, takich jak 100BASE-FX, jest skoncentrowana na wysokiej przepustowości i dużych odległościach, co stoi w sprzeczności z celami standardu 802.11b. Z kolei odpowiedzi dotyczące sieci przewodowych, które obejmują technologie Ethernet, wskazują na mylne przekonanie, że wszystkie formy komunikacji wymagają fizycznego połączenia. W rzeczywistości sieci przewodowe i bezprzewodowe mają różne zastosowania i są projektowane z myślą o różnych wymaganiach, takich jak mobilność czy łatwość instalacji. Prawidłowe zrozumienie różnic między tymi technologiami jest kluczowe w projektowaniu i wdrażaniu nowoczesnych systemów komunikacyjnych.

Pytanie 31

Jakie pasmo częstotliwości definiuje klasa okablowania D?

A. 500 MHz
B. 10 MHz
C. 250 MHz
D. 100 MHz
Wybór innych pasm częstotliwości, takich jak 500 MHz, 10 MHz czy 250 MHz, jest niepoprawny, ponieważ nie odpowiadają one wymaganiom standardu klasa D. Pasmo 500 MHz jest charakterystyczne dla wyższej klasy okablowania, takiej jak klasa F, używanej w aplikacjach, które wymagają dużej przepustowości, co wykracza poza możliwości okablowania klasy D. Z kolei 250 MHz i 10 MHz również nie są adekwatne, ponieważ 250 MHz odnosi się do klasy E, która obsługuje bardziej zaawansowane technologie, a 10 MHz jest zbyt niską częstotliwością, która nie spełnia standardów dla współczesnych sieci. Często mylenie klas okablowania i ich odpowiadających częstotliwości wynika z braku zrozumienia różnic między poszczególnymi standardami oraz ich zastosowaniem w praktyce. Aby poprawnie dobierać okablowanie do specyfiki projektu, ważne jest, aby mieć na uwadze wymagania dotyczące przepustowości, odległości oraz rodzaju przesyłanych danych. Właściwy dobór klas okablowania pozwala na optymalne wykorzystanie infrastruktury oraz zapewnia stabilność i wydajność sieci.

Pytanie 32

Po podłączeniu działającej klawiatury do jednego z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Mimo to po uruchomieniu systemu w standardowym trybie klawiatura funkcjonuje prawidłowo. Co to oznacza?

A. uszkodzone porty USB
B. uszkodzony kontroler klawiatury
C. uszkodzony zasilacz
D. nieprawidłowe ustawienia BIOS
Uszkodzony kontroler klawiatury, uszkodzone porty USB i uszkodzony zasilacz są to możliwości, które na pierwszy rzut oka mogą wydawać się logicznymi przyczynami problemów z klawiaturą. Jednakże, w omawianej sytuacji, klawiatura działa prawidłowo w normalnym trybie uruchomienia, co wyklucza uszkodzenie urządzenia. Kontroler klawiatury jest odpowiedzialny za przetwarzanie sygnałów z klawiatury i ich przekazywanie do systemu operacyjnego. Skoro klawiatura działa po uruchomieniu systemu, oznacza to, że kontroler działa prawidłowo. Podobnie, jeśli porty USB były uszkodzone, klawiatura nie włączałaby się w żadnym trybie. Zasilacz z kolei dostarcza energię do komputera, a jego uszkodzenie spowodowałoby znacznie poważniejsze problemy, takie jak brak włączania się systemu lub niestabilna praca sprzętu. W tym przypadku to błędne myślenie, które prowadzi do fałszywych wniosków, opiera się na założeniu, że problemy z urządzeniami peryferyjnymi zawsze są związane z ich awarią. W rzeczywistości wiele problemów z dostępnością opcji w BIOS może wynikać z niewłaściwych ustawień, co pokazuje, jak kluczowe jest zrozumienie roli BIOS w procesie rozruchu i diagnostyki sprzętu. Warto zawsze analizować problem w szerszym kontekście i zrozumieć, które elementy systemu mogą wpływać na jego funkcjonowanie.

Pytanie 33

W systemie Linux narzędzie do śledzenia zużycia CPU, pamięci, procesów oraz obciążenia systemu z poziomu terminala to

A. pwd
B. dxdiag
C. passwd
D. top
Wybór odpowiedzi, które nie są związane z narzędziami monitorującymi, może prowadzić do nieporozumień dotyczących zarządzania systemem Linux. Odpowiedź 'pwd' to polecenie służące do wyświetlania bieżącej ścieżki roboczej w systemie plików, a nie do monitorowania zasobów systemowych. Gdy administratorzy próbują zrozumieć, jak działają procesy w systemie, powinni korzystać z narzędzi, które dostarczają informacji o ich stanie, a nie tych, które jedynie informują o lokalizacji w systemie plików. Z kolei 'dxdiag' jest narzędziem dostępnym w systemie Windows, które służy do zbierania informacji o sprzęcie i zainstalowanych sterownikach, a nie o monitorowaniu procesów czy obciążenia CPU w systemie Linux. Natomiast 'passwd' jest komendą używaną do zmiany haseł, co również nie ma związku z monitorowaniem systemu. Wybierając niewłaściwe narzędzia, użytkownicy mogą stracić czas na wykonanie błędnych operacji, co prowadzi do nieefektywności w pracy oraz może przyczynić się do problemów z bezpieczeństwem, gdyż brak monitoringu zasobów może ukrywać potencjalne problemy z wydajnością lub nadużywaniem zasobów. Właściwy wybór narzędzi do monitorowania jest kluczowy dla skutecznego zarządzania systemem, dlatego ważne jest, aby znać i korzystać z narzędzi dedykowanych do tych zadań.

Pytanie 34

AES (ang. Advanced Encryption Standard) to standard szyfrowania, który?

A. nie może być stosowany do szyfrowania plików
B. nie może być wdrożony w sprzęcie
C. wykorzystuje symetryczny algorytm szyfrujący
D. jest następcą DES (ang. Data Encryption Standard)
Wybrane odpowiedzi sugerują błędne zrozumienie zasad działania algorytmu AES oraz kontekstu jego wykorzystania. Stwierdzenie, że AES nie może być wykorzystany przy szyfrowaniu plików, jest nieprawdziwe, ponieważ algorytm ten znalazł szerokie zastosowanie w różnych formatach plików, w tym w dokumentach, zdjęciach, a także w archiwach. Wręcz przeciwnie, wiele systemów plików i aplikacji do przechowywania danych opiera się na AES, aby zapewnić ich bezpieczeństwo. Ponadto, twierdzenie, że AES jest poprzednikiem DES, jest mylące, ponieważ to DES był wcześniejszym standardem, a AES został opracowany jako jego następca, który oferuje większe bezpieczeństwo i lepszą wydajność. Z kolei informacja o tym, że AES nie może być zaimplementowany sprzętowo, jest fałszywa; AES jest efektywnie implementowany w wielu urządzeniach sprzętowych, takich jak procesory i dedykowane układy scalone, co pozwala na szybką i wydajną obsługę szyfrowania. Te nieprawidłowe przekonania mogą prowadzić do dezinformacji na temat możliwości i zastosowań algorytmu AES, co jest niebezpieczne w kontekście planowania architektur bezpieczeństwa danych.

Pytanie 35

W przypadku drukarki igłowej, jaki materiał eksploatacyjny jest używany?

A. pigment
B. atrament
C. taśma barwiąca
D. toner
Drukarka igłowa wykorzystuje taśmę barwiącą jako materiał eksploatacyjny, co jest kluczowe dla procesu drukowania. Taśma barwiąca składa się z materiału, który w trakcie pracy drukarki styka się z papierem, a igły drukujące przenoszą farbę na powierzchnię papieru, tworząc obraz lub tekst. Ten typ drukarki jest często wykorzystywany w zastosowaniach, gdzie wymagana jest trwałość druku, na przykład w fakturach, dokumentach i etykietach. Przykładem są drukarki igłowe, które znajdują zastosowanie w biurach do drukowania dokumentów księgowych lub w systemach punktów sprzedaży, gdzie szybkość i niezawodność są kluczowe. Warto zaznaczyć, że taśmy barwiące charakteryzują się różnorodną kolorystyką oraz długością życia, co sprawia, że ich dobór powinien być dostosowany do specyficznych potrzeb użytkownika. Ponadto, w kontekście standardów branżowych, zastosowanie taśmy barwiącej jest zgodne z wymogami jakości druku i efektywności kosztowej.

Pytanie 36

Jak nazywa się translacja adresów źródłowych w systemie NAT routera, która zapewnia komputerom w sieci lokalnej dostęp do internetu?

A. DNAT
B. SNAT
C. LNAT
D. WNAT
WNAT, LNAT i DNAT to terminy, które są często mylone z SNAT, ale ich zastosowanie i działanie jest różne. WNAT, czyli Wide Network Address Translation, nie jest standardowym terminem w kontekście NAT i może być mylony z NAT ogólnie. Z kolei LNAT, co w domyśle mogłoby oznaczać Local Network Address Translation, również nie ma uznania w standardach sieciowych i nie wskazuje na konkretne funkcjonalności. Natomiast DNAT, czyli Destination Network Address Translation, jest techniką używaną do zmiany adresów docelowych pakietów IP, co jest przeciwieństwem SNAT. Użycie DNAT ma miejsce w sytuacjach, gdy ruch przychodzący z Internetu musi być przekierowany do odpowiednich serwerów w sieci lokalnej, co znajduje zastosowanie w przypadkach hostingowych. Typowym błędem myślowym jest przyjmowanie, że wszystkie formy NAT są takie same, co prowadzi do nieporozumień dotyczących ich funkcji i zastosowań. W rzeczywistości, SNAT jest kluczowe dla umożliwienia urządzeniom w sieci lokalnej dostępu do Internetu, podczas gdy DNAT koncentruje się na ruchu przychodzącym. Zrozumienie różnicy między tymi technikami jest istotne dla prawidłowego projektowania i zarządzania sieciami komputerowymi, co jest fundamentalne w kontekście coraz bardziej złożonych infrastruktur sieciowych.

Pytanie 37

Na przedstawionym schemacie urządzeniem, które łączy komputery, jest

Ilustracja do pytania
A. ruter
B. most
C. przełącznik
D. regenerator
Ruter to urządzenie sieciowe, które łączy różne sieci komputerowe i kieruje ruchem danych między nimi. W przeciwieństwie do przełączników, które działają na poziomie drugiej warstwy modelu OSI i zajmują się przesyłaniem danych w obrębie tej samej sieci lokalnej, rutery funkcjonują w trzeciej warstwie, co pozwala im na międzysegmentową komunikację. Ruter analizuje nagłówki pakietów i decyduje o najlepszej ścieżce przesłania danych do ich docelowego adresu. Jego użycie jest kluczowe w sieciach rozległych (WAN), gdzie konieczna jest efektywna obsługa ruchu pomiędzy różnymi domenami sieciowymi. Rutery wykorzystują protokoły routingu, takie jak OSPF czy BGP, umożliwiając dynamiczną adaptację tras w odpowiedzi na zmiany w topologii sieci. Dzięki temu zapewniają redundancję i optymalizację trasy danych, co jest niezbędne w środowiskach o dużym natężeniu ruchu. W praktyce ruter pozwala również na nadawanie priorytetów i zarządzanie przepustowością, co jest istotne dla utrzymania jakości usług w sieciach obsługujących różnorodne aplikacje i protokoły.

Pytanie 38

Użycie skrętki kategorii 6 (CAT 6) o długości 20 metrów w sieci LAN wskazuje na jej maksymalną przepustowość wynoszącą

A. 100 Mb/s
B. 10 Mb/s
C. 100 Gb/s
D. 10 Gb/s
Wybór niepoprawnych odpowiedzi jest często wynikiem nieporozumień dotyczących parametrów technicznych skrętek sieciowych. Odpowiedź wskazująca na przepustowość 10 Mb/s jest znacząco zaniżona i nie odpowiada rzeczywistym możliwościom skrętek kategorii 6, które w obecnej chwili są uznawane za standard w nowoczesnych instalacjach LAN. Skrętka CAT 6 jest przeznaczona do pracy w szybkościach znacznie wyższych, co czyni 10 Mb/s przestarzałym standardem, stosowanym głównie w bardzo starych infrastrukturach. Również wybór 100 Mb/s to zaledwie część możliwości CAT 6. Choć taka prędkość jest osiągalna, nie wykorzystuje ona potencjału, który oferuje ten typ kabla. Odpowiedzi wskazujące na 100 Gb/s odnoszą się do bardziej zaawansowanych kategorii kabli, takich jak CAT 6A czy CAT 7, które są przeznaczone do zastosowań w środowiskach wymagających ekstremalnych prędkości oraz większych dystansów. Warto zauważyć, że skrętki CAT 6, przy poprawnej instalacji i odpowiednich warunkach, mogą osiągnąć maksymalną prędkość 10 Gb/s, jednak do długości 55 metrów. Wiedza o specyfikacjach kabli i ich odpowiednim zastosowaniu jest kluczowa w kontekście planowania każdej nowoczesnej sieci, aby uniknąć takich nieporozumień, które mogą prowadzić do obniżenia wydajności systemu sieciowego.

Pytanie 39

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja planująca rozpoczęcie transmisji sprawdza, czy w sieci ma miejsce ruch, a następnie

A. oczekuje na przydzielenie priorytetu transmisji przez koncentrator
B. wysyła prośbę o rozpoczęcie transmisji
C. czeka na żeton pozwalający na rozpoczęcie nadawania
D. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
Zgłoszenie żądania transmisji nie jest odpowiednim krokiem w kontekście metody CSMA/CD, ponieważ ta metoda opiera się na zasadzie detekcji kolizji i samodzielnego zarządzania dostępem do nośnika. W przypadku, gdy stacja usiłuje nadawać bez wcześniejszego nasłuchu na obecność ruchu, istnieje duże ryzyko kolizji, co prowadzi do utraty danych oraz konieczności ich retransmisji, co jest nieefektywne. Ponadto, oczekiwanie na nadanie priorytetu transmisji przez koncentrator nie znajduje zastosowania w tej metodzie, gdyż CSMA/CD nie operuje na zasadzie przypisywania priorytetów, a każda stacja ma równy dostęp do medium. Warto również zauważyć, że mechanizm żetonu, stosowany często w metodzie Token Ring, nie jest zastosowaniem metody CSMA/CD. Takie pomylenie może wynikać z niepełnego zrozumienia zasady działania różnych metod dostępu do medium. Prawidłowe zrozumienie, jak CSMA/CD różni się od innych protokołów, takich jak Token Ring, jest kluczowe dla efektywnego projektowania i diagnozowania sieci. W kontekście praktycznym, omijanie podstawowych zasad detekcji kolizji w CSMA/CD może prowadzić do zwiększenia obciążenia sieci i pogorszenia jakości przesyłanych danych.

Pytanie 40

Na dołączonym obrazku pokazano działanie

Ilustracja do pytania
A. połączenia danych
B. kodu źródłowego
C. kompresji danych
D. usuwania danych
Kompresja danych to proces redukcji rozmiaru plików poprzez usuwanie redundancji w danych. Jest to kluczowy etap w zarządzaniu wielkimi zbiorami danych oraz w transmisji danych przez sieci, szczególnie gdy przepustowość jest ograniczona. Najczęściej stosowane algorytmy kompresji to ZIP RAR i 7z, które różnią się efektywnością i czasem kompresji. Kompresja jest szeroko stosowana w różnych dziedzinach techniki i informatyki, m.in. przy przesyłaniu plików w Internecie, gdzie ograniczenie wielkości plików przyspiesza ich przepływ. Proces ten jest również istotny w przechowywaniu danych, ponieważ zredukowane pliki zajmują mniej miejsca na dyskach twardych, co przyczynia się do oszczędności przestrzeni dyskowej oraz kosztów związanych z utrzymaniem infrastruktury IT. Przy kompresji plików istotne jest zachowanie integralności danych, co zapewniają nowoczesne algorytmy kompresji bezstratnej, które umożliwiają odtworzenie oryginalnych danych bez żadnych strat. Kompresja ma również zastosowanie w multimediach, gdzie algorytmy stratne są używane do zmniejszenia rozmiarów plików wideo i audio poprzez usuwanie mniej istotnych danych, co jest mniej zauważalne dla ludzkiego oka i ucha.