Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 11 czerwca 2025 22:05
  • Data zakończenia: 11 czerwca 2025 22:22

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W przypadku instalacji o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω funkcjonującej w systemie TN-C nie ma efektywnej dodatkowej ochrony przed porażeniem prądem elektrycznym, ponieważ

A. opór izolacji miejsca pracy jest zbyt wysoki
B. opór uziomu jest zbyt niski
C. impedancja sieci zasilającej jest zbyt niska
D. impedancja pętli zwarcia jest zbyt wysoka
Impedancja pętli zwarcia jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznych. W systemie TN-C, gdzie zneutralizowane przewody są połączone, niska impedancja pętli zwarcia jest niezbędna do szybkiego wyłączenia zasilania w przypadku wystąpienia zwarcia. W omawianym przypadku, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być zbyt niski, aby wyzwolić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. To prowadzi do sytuacji, w której czas reakcji zabezpieczeń jest zbyt długi, co w konsekwencji zwiększa ryzyko porażenia prądem elektrycznym. Przykładowo, w praktyce inżynieryjnej, zaleca się, aby impedancja pętli zwarcia nie przekraczała 1 Ω dla instalacji zasilających o napięciu 230 V, co pozwala na wyłączenie obwodu w czasie nieprzekraczającym 0,4 s. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61439, które podkreślają znaczenie odpowiednich wartości impedancji dla bezpieczeństwa użytkowników.

Pytanie 2

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Producent energii elektrycznej
B. Właściciel obiektu
C. Zarządca obiektu
D. Dostawca energii elektrycznej
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 3

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Wykorzystanie izolacji podwójnej lub wzmocnionej.
B. Usytuowanie części czynnych poza zasięgiem dłoni.
C. Izolacja elektryczna obwodu pojedynczego odbiornika.
D. Automatyczne odłączenie zasilania.
Umieszczenie części czynnych poza zasięgiem ręki stanowi jedną z kluczowych metod zapobiegania porażeniom prądem, szczególnie w instalacjach niskonapięciowych do 1 kV. Ta strategia opiera się na zasadzie, że fizyczne oddalenie od elementów pod napięciem skutecznie eliminują ryzyko przypadkowego kontaktu. Przykładem takiego rozwiązania są obudowy urządzeń elektrycznych, które są projektowane w sposób, aby niebezpieczne części były niedostępne dla użytkownika. Zgodnie z normami, takimi jak PN-EN 61140, wymagane jest, aby części czynne były umieszczone w miejscach, które są trudne do osiągnięcia bez specjalnych narzędzi lub wiedzy. Dodatkowo, ta metoda ma zastosowanie w wielu obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem. W praktyce, umieszczając elementy elektryczne w trudno dostępnych miejscach, minimalizuje się możliwość przypadkowego dotyku, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 4

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar napięcia zasilającego
B. Przeprowadzenie próbnego rozruchu urządzenia
C. Pomiar rezystancji uzwojeń stojana
D. Weryfikacja stanu ochrony przeciwporażeniowej
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 5

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Tylko po przeprowadzonym remoncie budynku
B. Nie rzadziej niż co 10 lat
C. Tylko po wymianie elementów instalacji
D. Nie rzadziej niż co 5 lat
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 6

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zwiększy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zmniejszy się czterokrotnie
Wybór opcji wskazującej na czterokrotne zmniejszenie wydzielanego ciepła w jednostce czasu wynika z mylnego rozumienia relacji między długością spirali grzejnej a oporem elektrycznym. Koncepcja, że zmiana długości spirali prowadzi do ekstremalnego spadku wydajności, ignoruje podstawowe zasady elektrotechniki. W rzeczywistości, zmniejszenie długości spirali grzejnika elektrycznego o połowę prowadzi do zmniejszenia oporu R, co z kolei, przy zachowaniu napięcia, skutkuje zwiększeniem wydobywanej mocy. Błędne podejście opiera się na założeniu, że wydajność grzejnika spadnie w sposób proporcjonalny do długości spirali, co jest nieprawdziwe. Również stwierdzenia, że zmniejszenie długości spirali o połowę prowadzi do zmniejszenia wydzielania ciepła w sposób czterokrotny, nie uwzględniają charakterystyki elektronicznego przewodzenia energii w materiałach. Efekt Joule'a, który wyjaśnia generację ciepła w przewodnikach, mówi o kwadracie napięcia podzielonym przez opór, co wykazuje jednoznaczną zależność, która w tym przypadku wskazuje na wzrost mocy. Zrozumienie tych zasad jest kluczowe nie tylko w kontekście teorii, ale także w praktycznym projektowaniu systemów grzewczych, gdzie odpowiednia regulacja parametrów, takich jak długość spirali i napięcie, może znacząco wpłynąć na efektywność energetyczną i komfort użytkowania.

Pytanie 7

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B16
B. B25
C. B20
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 8

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Autotransformator
B. Softstart
C. Rozrusznik
D. Falownik
Falownik to urządzenie elektroniczne, które pozwala na płynną regulację obrotów silników indukcyjnych poprzez modulację częstotliwości i napięcia zasilającego. Dzięki zastosowaniu falowników, można precyzyjnie dostosować prędkość obrotową silnika do aktualnych potrzeb aplikacji, co jest szczególnie istotne w procesach przemysłowych, gdzie zmiana prędkości ma kluczowe znaczenie dla efektywności działania. Na przykład, w systemach transportowych, takich jak przenośniki taśmowe, regulacja prędkości pozwala na optymalizację przepływu materiałów. Falowniki są zgodne z normami IEC 61800, które określają wymagania dotyczące regulacji napędów elektrycznych. Ponadto, zastosowanie falowników wpływa na zmniejszenie zużycia energii, co jest zgodne z aktualnymi trendami w kierunku zrównoważonego rozwoju i efektywności energetycznej. Dzięki swojej wszechstronności, falowniki są wykorzystywane w różnych gałęziach przemysłu, w tym w automatyce budynkowej, klimatyzacji i wentylacji, co czyni je niewątpliwie najlepszym wyborem do regulacji obrotów silników indukcyjnych.

Pytanie 9

Jaką wartość prądu znamionowego powinien posiadać wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz Py = 2,4 kW przed zwarciem?

A. 10A
B. 16A
C. 20A
D. 6A
Wybór wyłącznika instalacyjnego nadprądowego o charakterystyce typu B do zabezpieczenia grzejnika jednofazowego o parametrach UN = 230 V i Py = 2,4 kW jest kluczowy dla prawidłowego działania instalacji elektrycznej. Obliczając wartość prądu znamionowego, korzystamy ze wzoru: I = P / U, gdzie P to moc grzejnika, a U to napięcie zasilania. Zatem I = 2400 W / 230 V = 10,43 A. Wyłącznik nadprądowy powinien mieć wartość prądu znamionowego większą od prądu obliczonego, co w praktyce oznacza, że dla tego zastosowania odpowiedni będzie wyłącznik 16A, który pozwoli na swobodne działanie urządzenia, nie wyzwalając w normalnych warunkach pracy. Wyłączniki instalacyjne charakteryzujące się typem B są przeznaczone do ochrony obwodów zawierających urządzenia o charakterze rezystancyjnym, co jest typowe dla grzejników. Użycie wyłącznika o odpowiedniej charakterystyce minimalizuje ryzyko uszkodzeń instalacji elektrycznej oraz pożarów. W praktyce oznacza to, że dobór 16A jest zgodny z obowiązującymi normami, co wpływa na bezpieczeństwo i wiarygodność całej instalacji.

Pytanie 10

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 2,5 mm2
B. 4 mm2
C. 1 mm2
D. 1,5 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 11

Jakie zadanie związane z utrzymaniem sprawności technicznej instalacji elektrycznej spoczywa na dostawcy energii?

A. Okresowa legalizacja, naprawa lub wymiana licznika energii
B. Zachowanie zasad bezpieczeństwa korzystania z urządzeń elektrycznych
C. Nadzór nad jakością realizacji prac eksploatacyjnych
D. Prowadzenie dokumentacji dotyczącej eksploatacji obiektu
Odpowiedź dotycząca okresowej legalizacji, naprawy lub wymiany licznika energii jest poprawna, ponieważ dostawcy energii są odpowiedzialni za zapewnienie, że urządzenia pomiarowe są w dobrym stanie technicznym i zgodne z obowiązującymi normami. Legalizacja licznika oznacza jego zatwierdzenie przez odpowiednie organy, co gwarantuje, że pomiary energii są wiarygodne i zgodne z przepisami prawa. W praktyce, dostawcy przeprowadzają regularne kontrole i konserwacje liczników, aby upewnić się, że działają one z wymaganymi tolerancjami. Na przykład, zgodnie z normą PN-EN 62053-21, liczniki energii elektrycznej muszą być regularnie sprawdzane, aby zapewnić ich dokładność. Dobre praktyki w tym zakresie obejmują również prowadzenie szczegółowej dokumentacji dotyczącej stanu technicznego liczników oraz przeprowadzonych działań, co pozwala na łatwe monitorowanie i zarządzanie infrastrukturą pomiarową. Współpraca między dostawcami a organami regulacyjnymi w zakresie legalizacji liczników jest kluczowa dla utrzymania jakości usług i ochrony konsumentów.

Pytanie 12

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
B. spisu terminów oraz zakresów testów i pomiarów kontrolnych
C. opisu doboru urządzeń zabezpieczających
D. charakterystyki technicznej instalacji
Odpowiedzi, które wskazują na wykaz terminów oraz zakresów prób i pomiarów kontrolnych, zasady bezpieczeństwa przy wykonywaniu prac oraz charakterystykę instalacji, są błędne. Wydaje mi się, że wszystkie te elementy są super ważne w instrukcjach eksploatacji instalacji elektrycznych. Wykaz terminów i prób mówi nam, jakie testy zrobić i jak często – to kluczowe dla bezpieczeństwa instalacji. Zasady bezpieczeństwa przy pracach eksploatacyjnych to coś, co wszyscy powinni znać, żeby unikać wypadków. A charakterystyka techniczna daje szczegóły na temat tego, jak działają używane urządzenia, bez tego trudno zrozumieć, jak instalacja ma działać. Z perspektywy przepisów, każdy z tych elementów jest mega ważny - wpływa to nie tylko na bezpieczeństwo, ale i na to, jak sprawnie działa cała instalacja. Nie doceniając ich znaczenia, ryzykujemy, że będziemy źle zarządzać instalacjami elektrycznymi, a to po prostu mija się z praktykami w branży.

Pytanie 13

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. otworzyć łączniki instalacyjne i wkręcić żarówki
B. otworzyć łączniki instalacyjne i wykręcić żarówki
C. zamknąć łączniki instalacyjne i wykręcić żarówki
D. zamknąć łączniki instalacyjne i wkręcić żarówki
Otwieranie łączników i wkręcanie żarówek nie jest mądrym pomysłem, bo może to prowadzić do sporych niebezpieczeństw podczas pomiarów rezystancji izolacji. Jak otworzysz łączniki, to instalacja może się niechcący włączyć, co stwarza ryzyko porażenia prądem lub uszkodzenia sprzętu. Wkręcanie żarówek w tym przypadku to zły ruch, bo może to prowadzić do nieplanowanych połączeń elektrycznych, które mogą być niebezpieczne i generować nieoczekiwane napięcia. Pamiętaj, że przy pomiarach izolacji istotne jest, by cała instalacja była odłączona od zasilania. Zgodnie z normą PN-IEC 60079, podstawową zasadą bezpieczeństwa jest unikanie pracy na sprzęcie pod napięciem. Z tego powodu odpowiedzi sugerujące otwieranie łączników są po prostu niezgodne z najlepszymi praktykami. Zawsze, gdy robisz pomiary elektryczne, kluczowe jest, aby podjąć wszelkie środki ostrożności i odpowiednio przygotować instalację, żeby zminimalizować ryzyko niebezpieczeństw.

Pytanie 14

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Daje możliwość zdalnego pomiaru energii elektrycznej
B. Poszerza zakres pomiarowy amperomierza
C. Zwiększa zakres pomiarowy woltomierza
D. Umożliwia pomiar upływu prądu przez izolację
Wszystkie pozostałe odpowiedzi sugerują zastosowanie bocznika rezystancyjnego w kontekście pomiarów, jednak żaden z tych scenariuszy nie odzwierciedla jego rzeczywistej roli. Rozszerzenie zakresu pomiarowego woltomierza nie jest realizowane za pomocą bocznika, ponieważ bocznik działa w kontekście pomiaru prądu, a nie napięcia. Woltomierze mogą być używane do pomiaru napięcia w obwodach, ale w tym przypadku stosuje się inne techniki, takie jak dzielniki napięcia, które są zaprojektowane do pracy z wysokimi wartościami napięcia, a nie prądu. Twierdzenie, że bocznik pozwala zmierzyć upływ prądu przez izolację, jest mylne, ponieważ upływ prądu można oceniać za pomocą testów izolacyjnych, które angażują inne metody pomiarowe, jak megametry. Natomiast sugestia, że bocznik umożliwia zdalny pomiar energii elektrycznej, jest również nieprecyzyjna. Zdalne pomiary energii wymagają zastosowania bardziej złożonych układów pomiarowych, które mogą obejmować rozdzielnicze liczniki energii oraz komunikację bezprzewodową, co wykracza poza funkcjonalność bocznika. W efekcie, mylenie funkcji bocznika z innymi technikami pomiarowymi pokazuje brak zrozumienia podstawowych zasad działania tych urządzeń oraz ich zastosowań w praktyce inżynieryjnej.

Pytanie 15

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Higrometru termo.
B. Pirometru
C. Prądnicy tachometrycznej.
D. Tensometru mostkowego.
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 16

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 17

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. B20
B. C10
C. B16
D. C16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'B16' jest prawidłowa, ponieważ dotyczy wyłącznika, który spełnia wymogi samoczynnego wyłączenia zasilania w przypadku uszkodzenia. W przypadku instalacji o napięciu 230 V, zasilanej z sieci TN-S, ważne jest, aby wyłącznik miał odpowiednią wartość prądową oraz aby czas zadziałania był krótki, co pozwoli na zabezpieczenie osób przed porażeniem prądem. Zgodnie z normą PN-EN 61008-1, dla instalacji o impedancji pętli zwarcia wynoszącej 2,5 Ω, maksymalny czas zadziałania wyłącznika powinien wynosić 0,4 sekundy. Wyłącznik typu B16, charakteryzujący się prądem znamionowym 16 A, jest w stanie skutecznie zadziałać w tym czasie, co czyni go odpowiednim do ochrony przed porażeniem. Przykładowo, w domowych instalacjach elektrycznych często stosuje się wyłączniki B16 do zabezpieczenia obwodów oświetleniowych lub gniazd zasilających, co dodatkowo wspiera bezpieczeństwo użytkowników.

Pytanie 18

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Samoczynnego szybkiego wyłączenia napięcia
B. Izolowania części czynnych
C. Umieszczenia elementów z napięciem poza zasięgiem ręki
D. Instalowania osłon i barier
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 19

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O uszkodzeniu przełącznika kierunku prądu w wirniku
B. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
C. O przerwie w uzwojeniu stojana
D. O zwarciu w uzwojeniach wirnika
Odpowiedź o uszkodzeniu przełącznika kierunku prądu w wirniku jest prawidłowa, ponieważ brak obrotów w lewo w ręcznej wiertarce elektrycznej najczęściej oznacza, że mechanizm odpowiedzialny za zmianę kierunku obrotów nie działa poprawnie. Przełącznik kierunku prądu jest kluczowym elementem, który umożliwia zmianę kierunku obrotów silnika, co jest niezbędne do wykonywania prac w różnych warunkach. Przykładem zastosowania tej wiedzy jest potrzeba zmiany kierunku obrotów wiertarki podczas pracy z różnymi materiałami, gdzie w prawo i w lewo może być wymagane do usunięcia wiórów z otworu. Regularne sprawdzanie i konserwacja przełączników kierunkowych, zgodnie z zaleceniami producenta, może zapobiec awariom i zwiększyć żywotność narzędzia. W przypadku awarii przełącznika, najczęściej zauważalne są problemy z samym mechanizmem przełączania oraz opóźnienia w reakcjach przy zmianie kierunków. W praktyce, jeśli wiertarka działa w jednym kierunku, należy najpierw zdiagnozować przełącznik przed podejmowaniem innych działań naprawczych.

Pytanie 20

Podczas wymiany gniazda wtyczkowego w instalacji domowej wykonanej w rurkach pod tynkiem złamał się jeden z przewodów aluminiowych, przez co stał się za krótki. Jak powinno się postąpić w tej sytuacji przy wymianie gniazda?

A. Przylutować brakującą część przewodu aluminiowego i zamontować gniazdo
B. Przed zamontowaniem gniazda wymienić przewody na miedziane, wciągając nowe razem z usuwaniem starych
C. Skręcić złamany przewód z kawałkiem przewodu miedzianego i zamontować gniazdo
D. Przed zamontowaniem gniazda usunąć uszkodzony przewód i wciągnąć nowy miedziany
Przy wymianie gniazda wtyczkowego i uszkodzeniu przewodu aluminiowego, zastosowanie lutowania lub skręcania przewodów aluminiowych z miedzianymi jest wysoce niewłaściwe. Luty w instalacjach elektrycznych powinny być unikać, zwłaszcza w przypadku materiałów różnego rodzaju, jak miedź i aluminium, gdyż różnice w rozszerzalności cieplnej oraz w elektrochemii mogą prowadzić do słabych połączeń, które są niebezpieczne. Użycie przewodów aluminiowych w połączeniu z miedzianymi stwarza ryzyko korozji galwanicznej, co na dłuższą metę powoduje problemy z przewodnictwem i może skutkować awarią instalacji. W przypadku wyciągania uszkodzonego przewodu aluminiowego i wciągania nowego miedzianego, należy pamiętać, że wprowadzenie nowych przewodów wymaga nie tylko wymiany materiału, ale także dostosowania do odpowiednich norm i standardów instalacyjnych. Niewłaściwe podejście do wymiany może prowadzić do poważnych awarii instalacji elektrycznej, co może stanowić zagrożenie dla użytkowników budynku. W związku z tym, kluczowe jest, aby unikać łączenia materiałów o różnych właściwościach w instalacjach elektrycznych oraz zapewnić pełną zgodność z przepisami i standardami bezpieczeństwa.

Pytanie 21

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 200 MΩ, 1000 V
B. 2000 MΩ, 1000 V
C. 2000 MΩ, 2500 V
D. 200 MΩ, 2500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji kabli elektroenergetycznych jest kluczowym elementem diagnostyki stanu technicznego instalacji. Użycie zakresu 2000 MΩ oraz napięcia 2500 V zapewnia, że wykonany pomiar będzie zarówno bezpieczny, jak i precyzyjny. Wysoka wartość rezystancji izolacji (2000 MΩ) jest niezbędna w kontekście kabli wysokiego napięcia, gdzie izolacja musi utrzymywać wyjątkowo dużą odporność elektryczną, aby zapobiec przebiciom i innym awariom. Napięcie 2500 V jest standardowym wyborem w branży do testowania izolacji, ponieważ pozwala na uzyskanie wiarygodnych wyników, które odzwierciedlają rzeczywistą kondycję izolacji. Przykładowe zastosowanie to regularne pomiary przed rozpoczęciem sezonu zimowego, co pozwala na zidentyfikowanie ewentualnych defektów izolacji, które mogą prowadzić do awarii w trudnych warunkach atmosferycznych. Dobrą praktyką w branży elektroenergetycznej jest przestrzeganie norm IEC 60216 oraz PN-EN 60529, które określają wymagania dotyczące pomiarów izolacji.

Pytanie 22

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
B. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
Udzielenie odpowiedzi, w której odbiorniki pozostają włączone lub źródła światła są zamontowane, wskazuje na zrozumienie tematu, które nie uwzględnia podstawowych zasad bezpieczeństwa i dokładności pomiarów w instalacjach elektrycznych. Pozostawienie włączonych odbiorników może prowadzić do sytuacji, w której prąd płynie przez obwód, co z kolei może spowodować zwarcia lub inne niebezpieczeństwa. W kontekście pomiaru rezystancji izolacji istotne jest, aby wszystkie odbiorniki były odłączone, co zapobiega niespodziewanym skutkom ubocznym, a także minimalizuje ryzyko uszkodzenia cennych urządzeń elektronicznych. Wyposażenie w instalacje elektryczne powinno być zgodne z normami, które wymagają przeprowadzenia pomiarów w warunkach minimalizujących ryzyko. Zamontowane źródła światła mogą również zakłócić pomiary, ponieważ ich obwody mogą mieć różne charakterystyki oraz wpływ na wyniki rezystancji. Dlatego zasada, aby przed pomiarami izolacji usunąć wszystkie aktywne elementy z obwodu, jest nie tylko praktyką zalecaną, ale wręcz niezbędną do osiągnięcia wiarygodnych i bezpiecznych wyników.

Pytanie 23

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Czterokrotnie wzrośnie
B. Dwukrotnie wzrośnie
C. Czterokrotnie zmniejszy się
D. Dwukrotnie zmniejszy się

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 24

Obwód typu SELV powinien być zasilany z sieci energetycznej poprzez

A. dzielnik napięcia
B. autotransformator
C. rezystor w układzie szeregowym
D. transformator bezpieczeństwa
Transformator bezpieczeństwa jest kluczowym elementem zasilania obwodów SELV (Separated Extra Low Voltage), który zapewnia izolację i bezpieczeństwo użytkowników. Takie zasilanie charakteryzuje się niskim napięciem, co minimalizuje ryzyko porażenia prądem oraz innych niebezpieczeństw. Transformator bezpieczeństwa działa poprzez separację obwodu niskonapięciowego od sieci zasilającej, dzięki czemu nie ma bezpośredniego połączenia ze źródłem wysokiego napięcia. Przykładem zastosowania transformatorów bezpieczeństwa mogą być systemy oświetlenia w obiektach użyteczności publicznej, gdzie zapewnia się wysokie bezpieczeństwo, zwłaszcza w miejscach narażonych na kontakt z wodą, takich jak łazienki czy baseny. Zastosowanie transformatora bezpieczeństwa jest zgodne z normami, takimi jak IEC 60364 oraz dyrektywami Unii Europejskiej, które podkreślają znaczenie stosowania urządzeń zapewniających bezpieczeństwo elektryczne. Dzięki tym rozwiązaniom można znacząco zredukować ryzyko wypadków związanych z elektrycznością.

Pytanie 25

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 60 V
B. 12 V
C. 25 V
D. 50 V
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 26

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Włączanie i wyłączanie
B. Zarządzanie czasem pracy
C. Oględziny wymagające demontażu
D. Przeglądy wymagające demontażu
Optymalizacja czasu pracy, przeglądy wymagające demontażu oraz oględziny wymagające demontażu nie są bezpośrednio związane z codziennymi zadaniami pracowników obsługi urządzeń elektrycznych. W kontekście pierwszej z wymienionych odpowiedzi, choć optymalizacja czasu pracy jest istotna w zarządzaniu procesami, nie jest to czynność, którą wykonują pracownicy obsługi bezpośrednio przy samym urządzeniu. Optymalizacja raczej odnosi się do analizy wydajności i strategii operacyjnych, które są podejmowane na poziomie zarządzania, a nie w codziennym użytkowaniu maszyn. W przypadku przeglądów i oględzin wymagających demontażu, są to skomplikowane zadania, które zazwyczaj są realizowane przez wyspecjalizowanych techników lub inżynierów, a nie pracowników zajmujących się obsługą. Obejmuje to takie czynności jak demontaż elementów maszyny w celu przeprowadzenia szczegółowych inspekcji, co wymaga zaawansowanej wiedzy technicznej oraz odpowiednich uprawnień. W praktyce, takie operacje powinny być zgodne z zaleceniami producenta i standardami bezpieczeństwa, aby zminimalizować ryzyko awarii lub uszkodzeń. Powszechnym błędem jest mylenie prac rutynowych związanych z obsługą z bardziej skomplikowanymi zadaniami konserwacyjnymi, co może prowadzić do niewłaściwego przypisania obowiązków oraz z potencjalnymi zagrożeniami dla bezpieczeństwa operacji. W związku z tym, kluczowe jest zachowanie jasnego podziału obowiązków i odpowiedzialności między różnymi poziomami personelu w zakładzie.

Pytanie 27

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Jedynie świadectwo kwalifikacyjne w zakresie E
B. Świadectwo kwalifikacyjne w zakresie E + pomiary
C. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
D. Wyłącznie świadectwo kwalifikacyjne w zakresie D
Posiadanie wyłącznie świadectwa kwalifikacyjnego w zakresie D lub E jest niewystarczające do samodzielnego wykonywania pomiarów odbiorczych instalacji elektrycznej. Świadectwo kwalifikacyjne w zakresie D odnosi się do eksploatacji urządzeń, instalacji i sieci elektrycznych, ale nie obejmuje bezpośrednio umiejętności przeprowadzania pomiarów, które są kluczowe dla zapewnienia prawidłowego funkcjonowania instalacji elektrycznej. Odpowiedzi sugerujące, że samo świadectwo w zakresie E wystarczy, aby wykonywać pomiary, ignorują fakt, że pomiary wymagają specyficznych umiejętności i wiedzy technicznej. W praktyce, pomiar izolacji, pomiar prądu oraz pomiar napięcia to podstawowe czynności, które muszą być przeprowadzane przez osobę posiadającą odpowiednie przygotowanie. Dodatkowo, odpowiedź sugerująca, że świadectwo w zakresie E i D z pomiarami jest wystarczające, jest myląca, gdyż nie uwzględnia konieczności specjalistycznej wiedzy z zakresu pomiarów, która jest niezbędna w kontekście norm i przepisów dotyczących praktyki instalacyjnej. W praktyce, dobrze jest również znać obowiązujące przepisy prawa, które regulują wymagania dotyczące bezpieczeństwa i jakości wykonania instalacji elektrycznych. Dlatego kluczowe jest, aby technik elektryk posiadał zarówno odpowiednie świadectwa, jak i umiejętności praktyczne związane z pomiarami.

Pytanie 28

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Kierownik grupy mechaników
B. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
C. Każdy pracownik na pisemne zlecenie pracodawcy
D. Operator tej maszyny
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 29

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Montowanie w instalacji wyłącznika różnicowoprądowego
B. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
C. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
D. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
Wykonanie instalacji elektrycznej przewodem o żyłach w postaci linki nie zapewnia podstawowej ochrony przed porażeniem prądem. Choć zastosowanie przewodów wielożyłowych może być korzystne w kontekście elastyczności i łatwości montażu, nie wpływa bezpośrednio na poziom ochrony przed porażeniem. Kluczowym czynnikiem w zabezpieczeniu przed prądem jest jakość izolacji oraz jej rezystancja, a nie sam rodzaj przewodu. Połączenie styków ochronnych gniazd z przewodem ochronnym sieci, mimo że jest istotne dla uziemienia, samo w sobie nie wystarczy, aby zapobiec porażeniu. Uziemienie działa jako zabezpieczenie, ale najsłabszym ogniwem w systemie mogą być właśnie przewody robocze, których izolacja nie jest odpowiednia. Zastosowanie wyłącznika różnicowoprądowego, chociaż bardzo ważne, również nie jest jedynym czynnikiem, który zapewnia bezpieczeństwo. Wyłączniki te działają w momencie wykrycia różnicy prądów, ale nie eliminują ryzyka wynikającego z nieodpowiedniej izolacji przewodów. Dlatego kluczowym elementem bezpieczeństwa jest monitorowanie stanu izolacji przewodów roboczych oraz ich odpowiednia specyfikacja, co powinno być standardem w każdej instalacji elektrycznej.

Pytanie 30

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. nieokresowej
B. przerywanej
C. dorywczej
D. ciągłej
Oznaczenie S1 na tabliczce znamionowej silnika trójfazowego mówi nam, że ten silnik jest stworzony do pracy ciągłej. To znaczy, że powinien działać bez przerwy i w pełnym obciążeniu przez dłuższy czas. Takie silniki są projektowane według normy IEC 60034-1, która określa różne klasy i tryby pracy silników elektrycznych. Silniki oznaczone jako S1 są często używane w różnych branżach przemysłowych, jak pompy, wentylatory czy kompresory. Tutaj stała, niezawodna praca jest bardzo ważna. Na przykład, w systemach HVAC wentylatory muszą działać non-stop, żeby utrzymać dobrą cyrkulację powietrza. Silniki S1 to także gwarancja dłuższej żywotności i lepszej efektywności energetycznej, co jak najbardziej wpisuje się w dobre praktyki inżynieryjne i normy ochrony środowiska. Co więcej, zazwyczaj są objęte gwarancją, co jeszcze bardziej podkreśla ich niezawodność w zastosowaniach wymagających ciągłej pracy.

Pytanie 31

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667

A. 10 mm2
B. 4 mm2
C. 6 mm2
D. 16 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dla instalacji trójfazowej z przewodami YDY umieszczonymi w rurze instalacyjnej na ścianie drewnianej (metoda B2), minimalny przekrój przewodów wynoszący 10 mm2 jest odpowiedni dla przewidywanego prądu obciążenia wynoszącego 36 A. Ten przekrój przewodów zapewnia, że obciążalność wynosząca 50 A jest znacznie wyższa niż wymagana, co gwarantuje bezpieczeństwo i niezawodność instalacji. Zastosowanie odpowiednich przekrojów przewodów jest kluczowe, aby uniknąć przegrzania oraz potencjalnych zagrożeń pożarowych. W praktyce, wybór przekroju przewodów powinien również uwzględniać długość trasy przewodów oraz rodzaj izolacji. W standardach instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie odpowiedniego doboru przekrojów w zależności od warunków instalacyjnych, co minimalizuje ryzyko awarii. Dla instalacji o wyższych obciążeniach, warto również rozważyć zastosowanie przewodów o większej obciążalności, aby mieć większy margines bezpieczeństwa w przypadku przyszłych zmian w obciążeniu.

Pytanie 32

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
C. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
D. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 33

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP2X
B. IP4X
C. IP3X
D. IP5X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 34

Jakiego typu obudowę ma urządzenie elektryczne oznaczone na tabliczce znamionowej symbolem IP001?

A. Wodoszczelną
B. Głębinową
C. Zamkniętą
D. Otwartą
Obudowa oznaczona symbolem IP001 wskazuje, że urządzenie ma otwartą konstrukcję, co oznacza, że nie jest przystosowane do ochrony przed wnikaniem wody ani ciał stałych. W standardzie IP (Ingress Protection) pierwsza cyfra, w tym przypadku '0', oznacza brak ochrony przed ciałami stałymi, zaś druga cyfra, '1', oznacza ograniczoną ochronę przed wodą. W praktyce oznacza to, że urządzenie jest przeznaczone do zastosowania w suchych pomieszczeniach, gdzie nie ma ryzyka kontaktu z wodą. Tego typu obudowy są często stosowane w urządzeniach elektronicznych, które nie wymagają specjalnej ochrony, takich jak niektóre modele komputerów, sprzętu biurowego lub urządzeń domowych. Zrozumienie klasyfikacji IP jest kluczowe dla odpowiedniego doboru urządzeń do zastosowań w różnych warunkach otoczenia oraz dla zapewnienia ich długotrwałego i bezpiecznego działania.

Pytanie 35

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
B. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
C. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
D. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
Gniazda wtykowe każdego pomieszczenia zasilać z osobnego obwodu to zalecenie, które nie znajduje zastosowania w standardach dotyczących instalacji elektrycznych w pomieszczeniach mieszkalnych. Według norm PN-IEC 60364-1 oraz wytycznych związanych z projektowaniem instalacji elektrycznych, obwody gniazd wtykowych mogą być grupowane, aby zminimalizować koszty i uprościć instalację. Zazwyczaj zaleca się, aby gniazda wtykowe w jednym pomieszczeniu były zasilane z jednego obwodu, co pozwala na efektywne wykorzystanie energii oraz ogranicza liczbę wymaganych obwodów w rozdzielnicy. Przykładowo, w typowej kuchni lub salonie, gdzie wykorzystuje się wiele gniazd wtykowych, projektowanie obwodów z wykorzystaniem jednego obwodu dla danego pomieszczenia jest praktycznym rozwiązaniem. Ponadto, stosując się do takich zasad, można uniknąć niepotrzebnej komplikacji w instalacji oraz eksploatacji, co sprzyja bezpieczeństwu użytkowania."

Pytanie 36

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 9
B. 12
C. 50
D. 35
Odpowiedź 9 jest właściwa, ponieważ zgodnie z dokumentacją techniczno-ruchową, wirnik szlifierki oznaczony jest właśnie tym numerem. Znajomość oznaczeń w dokumentacji jest kluczowa dla efektywnego przeprowadzania konserwacji oraz napraw urządzeń. Na przykład, w przypadku wymiany uszkodzonego wirnika, technik powinien korzystać z dokumentacji, aby zidentyfikować odpowiednią część zamienną. Oznaczenia w dokumentacji są często zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie dokumentacji w zarządzaniu jakością. Używanie właściwych numerów oznaczeń pozwala na przyspieszenie procesu naprawy i minimalizację przestojów w pracy. Również, dla techników i inżynierów, umiejętność szybkiego lokalizowania i identyfikowania części przy pomocy oznaczeń jest niezbędna w codziennej pracy, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 37

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. maksymalnej współczynnika przepięć
B. mocy zainstalowanych urządzeń elektrycznych w instalacji
C. maksymalnego spadku częstotliwości w sieci zasilającej
D. impedancji pętli zwarcia instalacji
Odpowiedź dotycząca impedancji pętli zwarcia instalacji jest poprawna, ponieważ ta wartość jest kluczowa dla oceny skuteczności ochrony przeciwporażeniowej realizowanej przez samoczynne wyłączenie zasilania. Impedancja pętli zwarcia wpływa na prąd zwarciowy, który może przepłynąć przez instalację w przypadku awarii. Zgodnie z normami IEC 60364-4-41 oraz PN-IEC 61008-1, istotne jest, aby prąd wyłączający dla zastosowanego zabezpieczenia (np. wyłącznika nadprądowego lub różnicowoprądowego) był odpowiednio wyższy od wartości prądu zwarciowego, co zapewnia szybkie działanie zabezpieczeń. W praktyce, aby zapewnić skuteczność ochrony, projektanci instalacji elektrycznych muszą przeprowadzić obliczenia impedancji pętli zwarcia, co pozwala na dobór odpowiednich zabezpieczeń. Na przykład, w przypadku instalacji o napięciu znamionowym 230 V i użyciu bezpiecznika o prądzie wyłączającym 30 mA, wartość impedancji pętli zwarcia musi być obliczona tak, aby prąd zwarciowy wynosił co najmniej 150 mA, co zapewnia odpowiednie wyłączenie w wymaganym czasie.

Pytanie 38

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Zwiększenie temperatury przewodu
B. Obniżenie obciążalności prądowej
C. Wzrost spadku napięcia na przewodach
D. Obniżenie rezystancji pętli zwarciowej
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 39

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Dwóch
B. Jednego
C. Czterech
D. Trzech
Wybór większej liczby pracowników, jak czterech, trzech czy dwóch, wskazuje na nieporozumienie dotyczące zasadności liczby osób wymaganych do wykonania prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV. Często przyjmuje się, że większa liczba osób zwiększa bezpieczeństwo, co jest mylnym wnioskiem. Z punktu widzenia norm bezpieczeństwa, takich jak PN-IEC 60364, kluczowe jest, aby osoba wykonująca prace była odpowiednio wykwalifikowana i przeszkolona, a nie koniecznie, aby do wykonania prostych zadań występowało wiele osób. Więcej pracowników może wprowadzać dodatkowe ryzyko, takie jak chaos operacyjny, czy trudności w komunikacji, co może prowadzić do nieefektywności i potencjalnie zwiększać ryzyko wypadków. W praktyce, w wielu sytuacjach, standardowe procedury operacyjne przewidują, że jedna osoba jest wystarczająca do wykonania prób i pomiarów, o ile posiada odpowiednie uprawnienia. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi to nadmierne skupienie na liczbie osób zamiast na ich kwalifikacjach oraz zrozumieniu specyfiki wykonywanych prac. Takie podejście może podważać efektywność działań i prowadzić do niepotrzebnych kosztów związanych z zatrudnieniem większej liczby pracowników.

Pytanie 40

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 500 mA
B. 1 000 mA
C. 30 mA
D. 100 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.