Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 30 maja 2025 16:29
  • Data zakończenia: 30 maja 2025 16:43

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W sytuacji, gdy na powierzchni tarcz hamulcowych osi kierowanej zauważono pęknięcia, jakie działania naprawcze należy podjąć?

A. splanowanie tarcz
B. spawanie tarcz
C. szlifowanie powierzchni tarcz
D. wymiana tarcz na nowe
Wymiana tarcz hamulcowych na nowe jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności pojazdu. Pęknięcia na powierzchni tarcz hamulcowych mogą prowadzić do poważnych problemów z hamowaniem, w tym do zmniejszenia skuteczności hamulców oraz ryzyka uszkodzenia innych elementów układu hamulcowego. Wymiana tarcz na nowe jest zgodna z zaleceniami producentów oraz normami bezpieczeństwa, które podkreślają, że uszkodzone tarcze powinny być natychmiast wymieniane. Nowe tarcze hamulcowe zapewniają optymalną powierzchnię cierną, co jest niezbędne do uzyskania odpowiedniej siły hamowania. Przykładowo, w przypadku pojazdów sportowych, gdzie wymagane są intensywne hamowania, zaniedbanie wymiany uszkodzonych tarcz może prowadzić do poważnych konsekwencji, w tym wypadków. Dlatego, w praktyce, nie tylko sama wymiana, ale również dobra jakość nowych tarcz ma kluczowe znaczenie, aby spełniały one standardy producenta i zapewniały bezpieczeństwo w ruchu drogowym.

Pytanie 2

Dzięki lampie stroboskopowej możliwe jest wykonanie pomiaru

A. ustawień świateł.
B. kąta wyprzedzenia zapłonu.
C. ciśnienia sprężania.
D. zbieżności kół.
Wybór odpowiedzi dotyczący ustawienia świateł, ciśnienia sprężania czy zbieżności kół to typowe pułapki myślowe, które mogą prowadzić do nieporozumień w diagnostyce pojazdów. Ustawienie świateł dotyczy ich właściwej orientacji i poziomu, co jest ważne dla bezpieczeństwa na drodze, ale nie ma związku z pomiarem kąta wyprzedzenia zapłonu. Ciśnienie sprężania to parametr silnika, który można mierzyć za pomocą manometru, a nie lampy stroboskopowej. Pomiar tego ciśnienia ma na celu ocenę stanu technicznego silnika, ale nie dotyczy on ustawienia zapłonu. Zbieżność kół to z kolei problem związany z geometrią zawieszenia pojazdu, który wpływa na jego prowadzenie, ale nie jest bezpośrednio związany z działaniem silnika czy zapłonu. Błędne myśli prowadzące do tych odpowiedzi mogą wynikać z mylenia podstawowych pojęć związanych z diagnostyką. Każdy z tych parametrów wymaga innych narzędzi i technik pomiarowych, co powinno być dobrze zrozumiane przez specjalistów zajmujących się obsługą i diagnostyką pojazdów. Dlatego kluczowe jest posługiwanie się odpowiednimi narzędziami w odpowiednich kontekstach oraz dogłębne zrozumienie, jakie aspekty pojazdu można mierzyć za pomocą konkretnego sprzętu.

Pytanie 3

Częścią systemu hamulcowego nie jest

A. modulator ABS
B. korektor siły hamowania
C. hamulec awaryjny
D. wysprzęglik
Wysprzęglik to taki element, który nie ma nic wspólnego z układem hamulcowym. Jego głównym zadaniem jest rozłączanie silnika od skrzyni biegów, co jest super ważne w autach z manualną skrzynią. Zamiast tego, jeśli chodzi o hamulce, mamy do czynienia z hamulcami tarczowymi, bębnowymi, a także z systemami wspomagającymi, jak ABS, które zapobiegają blokowaniu kół. Wysprzęglik, jako część sprzęgła, w ogóle nie wpływa na hamowanie. Ale, żeby było jasne, jego działanie jest kluczowe dla bezpieczeństwa jazdy, bo pozwala kierowcy na precyzyjne włączanie biegów, co zwiększa kontrolę nad autem. Zrozumienie tej różnicy jest naprawdę ważne, bo przy diagnozowaniu i konserwacji pojazdów to może robić różnicę.

Pytanie 4

Urządzenia do pomiaru grubości powłok lakierniczych, które funkcjonują na zasadzie indukcji magnetycznej, stosuje się do weryfikacji powłok na elementach

A. z ceramiki
B. z drewna
C. ze stali
D. z aluminium
Przy wyborze odpowiedzi, która nie dotyczy stali, warto zwrócić uwagę na właściwości materiałów. Drewno i ceramika to materiały, które nie są ferromagnetyczne, co oznacza, że nie reagują na pole magnetyczne. Przyrządy działające na zasadzie indukcji magnetycznej są zaprojektowane tak, aby korzystać z właściwości magnetycznych metali, które tworzą różne interakcje z polem magnetycznym. W przypadku drewna, pomiar grubości powłok lakierniczych jest realizowany innymi metodami, takimi jak pomiar optyczny lub ultradźwiękowy, ponieważ te materiały nie przewodzą prądu elektrycznego ani nie mają właściwości ferromagnetycznych. Podobnie jest z ceramiką, która również nie ma takich właściwości magnetycznych. Wybór aluminium jako materiału do pomiaru powłok lakierniczych za pomocą indukcji magnetycznej również jest błędny, ponieważ aluminium jest materiałem paramagnetycznym, co oznacza, że jego odpowiedź na pole magnetyczne jest bardzo słaba i nie nadaje się do pomiaru za pomocą opisanej metody. W praktyce, w przypadku powłok na aluminium stosuje się inne techniki, takie jak pomiar oporności elektrycznej lub metody optyczne. Takie błędne podejścia wynikają z niepełnego zrozumienia zasad działania przyrządów pomiarowych oraz właściwości materiałów, co może prowadzić do niewłaściwego doboru metod inspekcji i kontroli jakości.

Pytanie 5

W współczesnych silnikach benzynowych stopień kompresji to mniej więcej

A. 1:11
B. 1:6
C. 11:1
D. 6:1
Stopień sprężania w silnikach benzynowych to bardzo ważny parametr, który ma wpływ na efektywność i wydajność silnika. Odnośnie do pierwszych dwóch odpowiedzi, 1:11 i 6:1, to wartości, które nie pasują do obecnych silników. 1:11 jest błędny, bo sugeruje, że sprężanie paliwa jest zbyt wysokie dla typowego silnika, co mogłoby prowadzić do detonacji. Z kolei 6:1 to coś, co było standardem kiedyś, ale teraz mamy wyższe stopnie sprężania, żeby poprawić wydajność i osiągi. Odpowiedź 1:6 w ogóle nie ma sensu, bo sugeruje coś zupełnie odwrotnego do sprężania, co pokazuje, że można się pomylić. Jeśli się tego nie rozumie, to może być problem z użytkowaniem i serwisowaniem aut. Ważne, żeby zrozumieć, że wysoki stopień sprężania w nowych silnikach to efekt zaawansowanej inżynierii i dążenie do lepszej mocy i efektywności paliwowej.

Pytanie 6

Podczas naprawy układu zawieszenia wymieniono amortyzatory. Jakie mogą być konsekwencje ich nieprawidłowego montażu?

A. Skrócony czas pracy akumulatora
B. Zmniejszenie mocy silnika
C. Zwiększone drgania i niestabilność pojazdu
D. Zmniejszenie efektywności układu hamulcowego
Amortyzatory są kluczowym elementem układu zawieszenia, który odpowiada za tłumienie drgań i utrzymanie stabilności pojazdu podczas jazdy. Prawidłowy montaż amortyzatorów jest niezbędny, aby zapewnić odpowiednie właściwości jezdne samochodu. Jeżeli amortyzatory są zamontowane nieprawidłowo, mogą powodować zwiększone drgania pojazdu, co prowadzi do obniżenia komfortu jazdy i zmniejszenia kontroli nad pojazdem. Z mojego doświadczenia, nieprawidłowo zamontowane amortyzatory mogą również prowadzić do nadmiernego zużycia innych komponentów układu zawieszenia, takich jak tuleje czy łożyska, przez co pojazd staje się bardziej podatny na awarie. Dodatkowo, nieprawidłowy montaż może prowadzić do nierównomiernego zużycia opon, co jest szczególnie niebezpieczne podczas jazdy na śliskiej nawierzchni. W praktyce, aby tego uniknąć, zaleca się zawsze stosować się do instrukcji producenta i używać odpowiednich narzędzi do montażu.

Pytanie 7

Energia mechaniczna w silnikach cieplnych funkcjonujących prawidłowo nie powstaje w wyniku procesu spalania

A. benzyny
B. oleju napędowego
C. gazu ziemnego
D. oleju silnikowego
Olej silnikowy jest substancją, która nie jest bezpośrednio używana do wytwarzania energii mechanicznej w silnikach cieplnych. Jego podstawowym zadaniem jest smarowanie ruchomych części silnika, co zapobiega ich zużyciu oraz przegrzewaniu. W silnikach cieplnych, takich jak silniki spalinowe, energia mechaniczna jest uzyskiwana zazwyczaj w wyniku spalania paliw, takich jak benzyna, olej napędowy czy gaz ziemny. Proces ten polega na przekształceniu energii chemicznej zawartej w paliwie na energię cieplną, która następnie wywołuje ruch tłoków. Olej silnikowy, choć niezwykle ważny dla prawidłowego funkcjonowania silnika, nie ma roli w tym procesie konwersji energii. Zrozumienie roli oleju silnikowego w systemie smarowania podkreśla znaczenie jego regularnej wymiany oraz stosowania olejów o odpowiednich parametrach, co jest zgodne z zaleceniami producentów pojazdów. Dbałość o układ smarowania przyczynia się do wydłużenia trwałości silnika oraz optymalizacji jego pracy.

Pytanie 8

W pojeździe z przednim napędem, tylko przy maksymalnym skręcie kierownicy, można usłyszeć rytmiczne stuki w pobliżu koła w trakcie jazdy. Takie symptomy wskazują na uszkodzenie

A. tarczy hamulcowej
B. klocków hamulcowych
C. przegubu zewnętrznego
D. przegubu wewnętrznego
Wybór klocków hamulcowych jako źródła problemu nie uwzględnia specyfiki dźwięków wydawanych przez pojazd. Klocki hamulcowe, choć mogą generować hałas, zazwyczaj objawiają się w sytuacjach hamowania, a nie podczas jazdy z pełnym skrętem. Dźwięki te często są wynikiem zużycia materiału ciernego, co prowadzi do metalicznego odgłosu, jednak nie mają bezpośredniego związku z rytmicznymi stukami, które występują przy skręcie. Tarcze hamulcowe również nie są odpowiedzialne za stuki w czasie skrętu. Takie dźwięki mogą pochodzić od zniekształceń tarczy, ale objawy te są bardziej typowe dla sytuacji związanych z hamowaniem, a nie z pełnym skrętem. Z kolei przegub wewnętrzny, chociaż również jest elementem układu napędowego, zwykle objawia się inaczej, a jego uszkodzenie najczęściej powoduje hałas przy przyspieszaniu, a nie podczas skrętu. Zrozumienie różnicy między tymi elementami i ich funkcjami jest kluczowe w diagnostyce problemów w pojazdach. Dlatego ważne jest, aby podczas identyfikacji źródła hałasu kierować się objawami i ich kontekstem, co pomoże w uniknięciu pomyłek i nieprawidłowych diagnoz.

Pytanie 9

Zjawisko, w którym siła hamująca osłabia się, a następnie zanika w wyniku przegrzania, na przykład podczas długotrwałego hamowania, to

A. pochłanianie
B. przyczepność
C. honowanie
D. fading
Absorpcja odnosi się do procesu, w którym materiały pochłaniają energię lub substancje, co w kontekście układów hamulcowych nie wyjaśnia zjawiska słabnięcia siły hamującej. Adhezja to siła, która łączy różne materiały, a w hamulcach ma znaczenie przy tworzeniu tarcia między klockiem a tarczą, lecz sama adhezja nie wpływa na długotrwałe hamowanie i związane z nim przegrzewanie. Te pojęcia są często mylone z fadingiem, ponieważ wszystkie one dotyczą interakcji materiałów, ale nie odnoszą się bezpośrednio do problemu utraty skuteczności hamowania z powodu wysokiej temperatury. Honowanie to proces mechaniczny, który poprawia powierzchnię elementów w celu zwiększenia ich trwałości i wydajności, jednak nie ma związku z opisaną sytuacją, gdzie kluczowym czynnikiem jest temperatura materiałów hamulcowych. Typowym błędem myślowym jest skupienie się na powierzchownych właściwościach materiałów, zamiast na ich zachowaniu pod wpływem ekstremalnych warunków, co prowadzi do błędnych wniosków na temat efektywności systemu hamulcowego. Zrozumienie tych terminów i ich związku z fadingiem jest kluczowe w kontekście bezpieczeństwa użytkowników dróg i wydajności pojazdów.

Pytanie 10

Z przedstawionego fragmentu tabeli taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Fiat Grande Punto wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyFiat Punto     Fiat Grande Punto
Czas naprawy
Wymiana uszczelek tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelek tłoczków hamulcowych tył-----2 h
Wymiana uszczelek cylinderków hamulcowych tył2,5 h-----
Odpowietrzenie układu hamulcowego1 h1 h

A. 3,5 godziny
B. 4,0 godziny
C. 5,0 godzin
D. 4,5 godziny
Wybór 3,5 godziny, 5,0 godzin lub 4,0 godziny może wynikać z różnych nieporozumień związanych z oszacowaniem czasu wymiany uszczelnień tłoczków hamulcowych. Jednym z typowych błędów myślowych jest zaniżenie lub zawyżenie czasu potrzebnego na wykonanie pełnej procedury serwisowej. Na przykład, odpowietrzenie układu hamulcowego, które jest kluczowym elementem tego procesu, wymaga staranności oraz odpowiednich narzędzi, co w przypadku nieodpowiedniego oszacowania może prowadzić do skrócenia czasu serwisu. Często mechanicy, szczególnie mniej doświadczeni, mogą nie brać pod uwagę dodatkowego czasu potrzebnego na wykonanie przygotowań i montażu, co skutkuje błędnym oszacowaniem. Ponadto, mogą wystąpić różnice w czasie napraw w zależności od stanu technicznego pojazdu, co również powinno być uwzględnione w szacunkach. Również, przy ocenie złożoności naprawy, mechanicy mogą nie dostrzegać specyfiki konstrukcyjnej danego modelu, co prowadzi do dalszych nieprawidłowości w oszacowaniu. Zrozumienie tych aspektów jest kluczowe, aby unikać błędnych decyzji i właściwie planować czas pracy w warsztacie.

Pytanie 11

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. objętości elektrolitu
B. masy elektrolitu
C. gęstości elektrolitu
D. lepkości elektrolitu
Pomiar objętości elektrolitu nie dostarcza informacji o stopniu naładowania akumulatora, ponieważ objętość pozostaje względnie stała, niezależnie od stanu naładowania. W przypadku akumulatorów kwasowo-ołowiowych, zmiany w ilości dostępnego elektrolitu mogą wynikać z odparowania lub wycieku, co nie jest bezpośrednio związane ze stanem naładowania. Lepkość elektrolitu oraz masa elektrolitu również nie są miarodajnymi wskaźnikami stanu naładowania. Lepkość może się zmieniać pod wpływem temperatury, ale nie wskazuje na ilość zgromadzonej energii. Masa elektrolitu, z kolei, jest stała dla danego akumulatora, a jej pomiar nie informuje o jakości czy efektywności akumulatora. Błędem w myśleniu jest założenie, że te parametry są w stanie zastąpić właściwy pomiar gęstości. Aby skutecznie ocenić stan akumulatora, należy kierować się sprawdzonymi metodami pomiarowymi, takimi jak wspomniany wcześniej pomiar gęstości elektrolitu, a nie polegać na parametrach, które nie są z nim bezpośrednio związane.

Pytanie 12

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 173,4 cm3
B. 520,2 cm3
C. 693,6 cm3
D. 346,8 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 13

Wniknięcie cieczy chłodzącej do komory spalania silnika objawia się wydobywaniem spalin w kolorze

A. czarnym
B. niebieskim
C. szarym
D. białym
Odpowiedź biała jest prawidłowa, ponieważ przedostanie się cieczy chłodzącej do komory spalania silnika skutkuje emisją spalin o jasnym, mlecznym zabarwieniu. Taki stan rzeczy wskazuje na obecność wody lub płynu chłodzącego, który ulega spaleniu w wysokotemperaturowych warunkach komory cylindrów. W praktyce obserwowanie białego dymu z rury wydechowej jest istotnym sygnałem, że należy zbadać układ chłodzenia oraz uszczelki głowicy silnika. W przypadku wystąpienia tego objawu, zaleca się natychmiastowe zatrzymanie pojazdu w celu zapobiegnięcia dalszym uszkodzeniom silnika. Właściwa diagnostyka, często z wykorzystaniem analizy spalin oraz kontroli poziomu płynu chłodzącego, jest kluczowa dla zachowania sprawności silnika i uniknięcia kosztownych napraw. Wiedza o tym zjawisku jest szczególnie istotna dla mechaników oraz właścicieli pojazdów, gdyż pozwala na wczesne wykrycie problemu i jego skuteczne rozwiązanie, co jest zgodne z zasadami utrzymania i eksploatacji pojazdów zgodnie z normami przemysłowymi.

Pytanie 14

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h

A. 5,0 h
B. 4,0 h
C. 4,5 h
D. 3,5 h
Wybór innych odpowiedzi niż 4,5 h może wynikać z nieporozumień dotyczących czasu wymiany uszczelnień tłoczków hamulcowych oraz procedur związanych z odpowietrzaniem układu. Odpowiedzi takie jak 3,5 h mogą mylnie zakładać, że uwzględniono tylko czas wymiany uszczelnień bez doliczenia odpowietrzenia. Często w praktyce warsztatowej dochodzi do błędnego oszacowania, gdzie mechanicy pomijają istotne kroki procesu serwisowego. Ważne jest, aby pamiętać, że każdy etap naprawy ma swoje specyfikacje czasowe, które powinny być przestrzegane, aby uniknąć opóźnień i nieprawidłowości. Podobne błędy mogą wynikać z niedostatecznego zrozumienia roli, jaką każdy z procesów odgrywa w całościowej naprawie pojazdu. Przykładowo, nieprawidłowe założenie dotyczące czasu wymiany uszczelnień może prowadzić do nieefektywnego zarządzania czasem pracy w warsztacie. Dlatego kluczowe jest znajomość taryfikatorów oraz umiejętność ich stosowania wobec rzeczywistych procedur serwisowych, co pozwala na dokładne planowanie i realizację zleconych prac.

Pytanie 15

Podczas instalacji nowej uszczelki pod głowicą, co należy zrobić w pierwszej kolejności?

A. sprawdzić ustawienie luzów zaworowych
B. sprawdzić ciśnienie sprężania w cylindrach
C. dokręcić śruby przy użyciu klucza oczkowego
D. dokręcić śruby głowicy w odpowiedniej sekwencji
Dokręcanie śrub głowicy w odpowiedniej kolejności jest kluczowym krokiem w montażu nowej uszczelki pod głowicą. Proces ten ma na celu zapewnienie równomiernego rozkładu sił na uszczelce, co w konsekwencji zapobiega jej nieszczelności i umożliwia prawidłowe działanie silnika. Dobre praktyki wskazują na zastosowanie sekwencji dokręcania, która zazwyczaj zaczyna się od śrub centralnych i przechodzi w stronę zewnętrznych, co pozwala na stopniowe i kontrolowane napięcie. Właściwe dokręcenie śrub zgodnie z zaleceniami producenta, które często są podane w dokumentacji technicznej lub książkach serwisowych, jest niezbędne dla zachowania integralności silnika. Niewłaściwe dokręcenie może prowadzić do przemieszczenia głowicy, co w efekcie skutkuje uszkodzeniem uszczelki, a nawet całej jednostki napędowej. Dlatego też przed przystąpieniem do dokręcania konieczne jest dokładne zapoznanie się z instrukcjami i użycie odpowiedniego klucza dynamometrycznego, aby stosować właściwy moment obrotowy. Przykładem może być dokręcanie głowicy w silnikach typu DOHC, gdzie precyzyjne napięcie jest kluczowe dla utrzymania właściwego ciśnienia sprężania.

Pytanie 16

Jakie są zalecenia pierwszej pomocy w przypadku oparzenia termicznego?

A. użycie opaski uciskowej
B. unieruchomienie oparzonego obszaru
C. wykorzystanie koca termicznego
D. schładzanie rany zimną wodą przez około 15 minut
Chłodzenie rany zimną wodą przez około 15 minut jest pierwszym i najważniejszym działaniem w przypadku oparzenia termicznego, gdyż pozwala na obniżenie temperatury tkanki i zmniejszenie rozległości uszkodzenia. Woda powinna być czysta i chłodna, jednak nie lodowata, aby uniknąć dodatkowego uszkodzenia skóry. Tego typu działanie prowadzi do rozszerzenia naczyń krwionośnych, co z kolei zmniejsza ból oraz ryzyko powstania pęcherzy. Ważne jest, aby nie stosować lodu bezpośrednio na skórę, ponieważ to może skutkować odmrożeniem uszkodzonej tkanki. Przykładem zastosowania tej procedury jest sytuacja, gdy ktoś przypadkowo dotknie gorącego przedmiotu lub wpadnie w kontakt z płynem wrzącym. Dobrym zwyczajem jest również pamiętanie, że po schłodzeniu rany należy ją przykryć czystym opatrunkiem, aby zminimalizować ryzyko zakażenia, co jest zgodne z najlepszymi praktykami pierwszej pomocy. W przypadku poważniejszych oparzeń, zawsze należy wezwać pomoc medyczną.

Pytanie 17

Metoda ochrony przed korozją, która polega na nawalcowaniu na element cienkiej warstwy blachy z metalu odpornego na korozję, to

A. platerowanie
B. napawanie
C. galwanizacja
D. metalizacja
Galwanizacja, metalizacja i napawanie to techniki, które często są mylone z platerowaniem, ale każda z nich działa na trochę innej zasadzie. Galwanizacja to pokrywanie powierzchni metalowej cienką warstwą metalu poprzez proces elektrochemiczny. Tylko, że to nie zawsze daje takie same właściwości ochronne jak platerowanie. Metalizacja to nanoszenie metalowych powłok, na przykład przez natrysk cieplny, co też ma swoje różnice w porównaniu do platerowania. A napawanie to łączenie metali przez spawanie, więc tu też nie chodzi o ochronę przed korozją. Często pojawiają się błędy myślowe, bo niektórzy mogą myśleć, że wszystkie te metody dają podobne efekty, a tak naprawdę różnią się one znacząco. Warto wiedzieć, że są odpowiednie normy, jak ISO/TS 16949, które określają, jakie powinny być standardy jakości w różnych branżach.

Pytanie 18

Uszkodzony gwint w otworze świecy zapłonowej w głowicy silnika można naprawić przy użyciu

A. lutowania twardego
B. kołkowania
C. tulejowania
D. pasty uszczelniającej
Tulejowanie jest skuteczną metodą naprawy uszkodzonych otworów gwintowanych, szczególnie w przypadku głowic silników. Proces ten polega na wprowadzeniu tulei, która tworzy nowe, trwałe gwintowanie, zapewniając jednocześnie odpowiednią szczelność i wytrzymałość. Tulejki stosowane w tej metodzie wykonane są z materiałów odpornych na wysokie temperatury i ciśnienia, co czyni je idealnym rozwiązaniem w kontekście pracy silnika. Przykładem zastosowania tulejowania jest sytuacja, gdy w wyniku zużycia lub uszkodzenia gwintu w głowicy silnika, konieczne jest przywrócenie możliwości mocowania świecy zapłonowej. W takich przypadkach, zastosowanie tulei pozwala uniknąć kosztownej wymiany całej głowicy, co stanowi praktyczną i efektywną oszczędność. Tulejowanie jest zgodne z najlepszymi praktykami w naprawie silników spalinowych, co potwierdzają liczne normy dotyczące obróbki i naprawy elementów silnika.

Pytanie 19

Skrót ESP oznacza, że pojazd osobowy wyposażony jest w system

A. elektronicznego zarządzania siłą hamowania
B. zapobiegania blokowaniu kół w trakcie hamowania
C. zapobiegania poślizgom kół podczas startu
D. stabilizacji kierunku jazdy
Skrót ESP oznacza 'Electronic Stability Program', co w języku polskim można przetłumaczyć jako system stabilizacji toru jazdy. ESP jest zaawansowanym systemem bezpieczeństwa, który wspomaga kierowcę w kontrolowaniu pojazdu w krytycznych sytuacjach. Jego głównym zadaniem jest zapobieganie poślizgom, które mogą wystąpić na śliskiej nawierzchni, podczas gwałtownego manewrowania lub w trakcie nagłego hamowania. System ten monitoruje ruch pojazdu, porównując go z zamierzonym torem jazdy, który wskazuje kierowca. W sytuacji wykrycia utraty przyczepności, ESP automatycznie dostosowuje siłę hamowania do poszczególnych kół, co pozwala utrzymać pojazd na właściwej drodze. Przykład zastosowania ESP można zauważyć podczas jazdy w deszczu, gdzie może dojść do poślizgu. Wówczas system błyskawicznie reaguje, zmniejszając moc silnika i hamując konkretne koła, co stabilizuje pojazd. Zgodnie z zaleceniami Międzynarodowej Organizacji Normalizacyjnej (ISO), systemy takie jak ESP powinny być standardowym wyposażeniem nowoczesnych pojazdów, co przyczynia się do zwiększenia ogólnego bezpieczeństwa na drogach.

Pytanie 20

Maksymalna dozwolona prędkość holowania pojazdu na obszarze zabudowanym wynosi

A. 20 km/h
B. 50 km/h
C. 30 km/h
D. 40 km/h
Wybór prędkości 40 km/h, 20 km/h lub 50 km/h jako maksymalnej prędkości holowania pojazdu w terenie zabudowanym jest wynikiem niepełnego zrozumienia przepisów dotyczących bezpieczeństwa w ruchu drogowym. Prędkość 40 km/h, mimo iż może wydawać się rozsądna w kontekście normalnej jazdy, nie uwzględnia specyficznych warunków związanych z holowaniem, takich jak zmniejszona stabilność i manewrowość holowanego pojazdu. Holowanie w takich warunkach wymaga znacznego spowolnienia, aby zachować kontrolę i bezpieczeństwo. Z kolei prędkość 20 km/h, mimo że jest niższa, może być niewystarczająca do sprawnego poruszania się w terenie zabudowanym, co może prowadzić do blokowania ruchu i frustracji innych kierowców. Natomiast wybór 50 km/h jest absolutnie nieadekwatny, ponieważ znacznie przekracza bezpieczny limit, co zwiększa ryzyko poważnych wypadków. Kluczowe jest zrozumienie, że holowanie wymaga nie tylko dostosowania prędkości do warunków drogowych, ale także do charakterystyki holowanego pojazdu. Ostatecznie, prawidłowe podejście do holowania oznacza uwzględnienie przepisów, warunków drogowych oraz potencjalnych zagrożeń, co pozwala na minimalizowanie ryzyka i zapewnienie bezpieczeństwa na drodze.

Pytanie 21

Czym jest liczba cetanowa?

A. odpornością paliwa na niskie temperatury
B. wartością opałową paliwa
C. zdolnością paliwa do samozapłonu
D. odpornością paliwa na samozapłon
Liczba cetanowa to kluczowy wskaźnik jakości paliw silnikowych, szczególnie olejów napędowych. Określa zdolność paliwa do samozapłonu, co jest istotne podczas jego spalania w silnikach wysokoprężnych. Wyższa liczba cetanowa oznacza lepszą zdolność paliwa do szybkiego zapłonu w komorze spalania, co przekłada się na bardziej efektywne i stabilne działanie silnika. Praktycznie, paliwa o wyższej liczbie cetanowej przyczyniają się do redukcji emisji szkodliwych substancji i poprawy osiągów silnika, co jest zgodne z normami emisji spalin, takimi jak Euro 6. W branży transportowej oraz motoryzacyjnej zaleca się stosowanie paliw o liczbie cetanowej nie mniejszej niż 51 dla osiągnięcia optymalnej wydajności pracy silnika. Dobrą praktyką jest także testowanie paliw pod kątem liczby cetanowej w celu uniknięcia problemów z zapłonem, co z kolei może prowadzić do uszkodzeń silnika oraz zwiększonego zużycia paliwa.

Pytanie 22

Podczas przyjmowania pojazdu do naprawy mechanik zauważył uszkodzenie układu wydechowego. W protokole zdawczo-odbiorczym powinien również zanotować informację uzyskaną od właściciela pojazdu na temat

A. zakresu prac do wykonania w trakcie naprawy pojazdu
B. numeru kontaktowego do przedstawiciela ubezpieczalni pojazdu
C. innych uszkodzeń wykrytych w pojeździe
D. najdłuższego czasu realizacji naprawy
Właściwa odpowiedź dotyczy odnotowania innych uszkodzeń stwierdzonych w pojeździe, co jest kluczowe w procesie naprawy. Mechanik, przyjmując pojazd do naprawy, powinien uwzględnić wszystkie istotne informacje, które mogą wpłynąć na zakres i koszt naprawy. Odnotowanie dodatkowych uszkodzeń w protokole zdawczo-odbiorczym jest zgodne z najlepszymi praktykami w branży motoryzacyjnej oraz standardami jakości usług. Przykładowo, jeżeli w czasie przeglądu wykryte zostanie uszkodzenie zawieszenia obok uszkodzenia układu wydechowego, ważne jest, aby klient był świadomy pełnego zakresu potrzebnych napraw. Dzięki temu unika się nieporozumień dotyczących kosztów oraz czasu naprawy. Takie podejście nie tylko zwiększa zaufanie klienta, ale również pozwala warsztatom na efektywne planowanie prac oraz zarządzanie czasem.

Pytanie 23

Klient odwiedził warsztat, aby wymienić amortyzatory tylnej osi. Jaki jest łączny koszt tej usługi, jeśli czas potrzebny na wymianę jednego amortyzatora tylnej osi wynosi 0,6 rbg, stawka za roboczogodzinę to 125,00 zł, a koszt jednego amortyzatora to 70,00 zł?

A. 220,00 zł
B. 290,00 zł
C. 145,00 zł
D. 215,00 zł
Aby obliczyć całkowity koszt wymiany amortyzatorów osi tylnej, należy uwzględnić zarówno koszt robocizny, jak i koszt części. Czas pracy na wymianę jednego amortyzatora wynosi 0,6 rbg. Dla dwóch amortyzatorów, czas roboczy wynosi 0,6 rbg × 2 = 1,2 rbg. Koszt robocizny wynosi 125,00 zł za roboczogodzinę, co oznacza, że za 1,2 rbg zapłacimy 1,2 × 125,00 zł = 150,00 zł. Koszt dwóch amortyzatorów to 70,00 zł × 2 = 140,00 zł. Zatem całkowity koszt naprawy to 150,00 zł (robocizna) + 140,00 zł (amortyzatory) = 290,00 zł. Tego rodzaju obliczenia są standardem w branży motoryzacyjnej, gdzie precyzyjne kalkulacje kosztów są niezbędne do prawidłowego wyceny usług. Zrozumienie struktury kosztów pozwala na dostosowanie cen do oczekiwań klientów oraz utrzymanie konkurencyjności na rynku.

Pytanie 24

Jeśli przełożenie w skrzyni biegów wynosi ib=1,0, a przełożenie tylnego mostu to it=4,1, to całkowite przełożenie układu napędowego jest równe

A. 5,1
B. 4,1
C. 1,0
D. 3,1
Wybór niepoprawnej odpowiedzi wynika zazwyczaj z nieporozumienia dotyczącego sposobu obliczania przełożenia całkowitego. Niektórzy mogą mylić pojedyncze wartości przełożeń z ich kombinacją, co prowadzi do błędnych wniosków. Przełożenie 4,1 jest wynikiem pomnożenia przełożenia skrzyni biegów i tylnego mostu, a nie prostym odczytem jednego z tych przełożeń. Na przykład, wybierając 3,1, można pomyśleć, że to tylko wartość z przełożenia tylnego mostu, jednak całkowite przełożenie nigdy nie może być mniejsze niż największe z indywidualnych przełożeń, gdyż obie wartości są ze sobą powiązane działania na jeden układ napędowy. Z kolei wybór 1,0 może sugerować, że nie uwzględniono przełożenia tylnego mostu, co również jest błędne, ponieważ pomija kluczowy element układu napędowego. Aby uniknąć takich pomyłek, warto pamiętać, że w każdym układzie napędowym przełożenia powinny być zawsze analizowane w kontekście ich współdziałania i wpływu na osiągi pojazdu. Analiza przełożeń jest szczególnie istotna w projektowaniu skrzyń biegów oraz układów napędowych, gdzie zrozumienie podstawowych zasad inżynierii mechanicznej i dynamiki pojazdów ma kluczowe znaczenie dla uzyskania pożądanych parametrów jazdy.

Pytanie 25

Częstym symptomem wskazującym na poślizg sprzęgła jest

A. nierównomierna praca silnika na biegu jałowym
B. drgania pojawiające się podczas hamowania
C. spadek prędkości pojazdu w trakcie jazdy pod górkę
D. niemożność zmiany biegów
Brak możliwości zmiany biegów, drganie występujące w czasie hamowania oraz nierówna praca silnika na biegu jałowym to objawy, które mogą być mylone z problemami związanymi ze sprzęgłem, ale nie są bezpośrednio związane z jego poślizgiem. Kiedy pojazd nie może zmieniać biegów, zazwyczaj wynika to z problemów z mechanizmem zmiany biegów lub z uszkodzoną skrzynią biegów, a nie z poślizgiem sprzęgła. Drgania przy hamowaniu mogą wskazywać na problemy z układem hamulcowym, na przykład zużyte tarcze hamulcowe, co jest zupełnie innym zagadnieniem technicznym. Nierówna praca silnika na biegu jałowym może być spowodowana różnymi czynnikami, takimi jak niewłaściwe ustawienie zapłonu, uszkodzenie wtryskiwaczy lub problemy z układem dolotowym. Tego rodzaju błędne wnioski mogą prowadzić do nieprawidłowej diagnostyki problemu, co w rezultacie może skutkować nieefektywnym usuwaniem usterek. Właściwa diagnoza wymaga zrozumienia, jakie objawy rzeczywiście wskazują na poślizg sprzęgła i jakie inne elementy mogą wpływać na działanie pojazdu. Wiedza ta jest kluczowa dla mechaników oraz właścicieli pojazdów w celu skutecznej konserwacji i naprawy systemów napędowych.

Pytanie 26

Aby określić stopień zużycia oleju silnikowego, należy przeprowadzić pomiar

A. multimetrem
B. wiskozymetrem
C. pirometrem
D. refraktometrem
Pomiar zużycia oleju silnikowego nie może być skutecznie dokonany przy użyciu pirometru, refraktometru ani multimetru, ponieważ te urządzenia zostały zaprojektowane do zupełnie innych zastosowań. Pirometr, na przykład, jest urządzeniem służącym do pomiaru temperatury obiektów na odległość, co nie ma żadnego związku z określaniem właściwości oleju. Użycie pirometru w tym kontekście prowadzi do błędnych wniosków, jako że temperatura sama w sobie nie jest wskaźnikiem stanu oleju. Refraktometr mierzy współczynnik załamania światła, co jest przydatne w analizie cieczy, ale nie dostarcza informacji o lepkości oleju, która jest kluczowa dla określenia jego przydatności do dalszego użytku. Natomiast multimetr, używany głównie do pomiaru napięcia, natężenia i oporu, także nie ma zastosowania w ocenie stanu oleju. Niezrozumienie specyfiki tych narzędzi oraz ich właściwego zastosowania w kontekście diagnostyki olejów silnikowych może prowadzić do nieefektywnej konserwacji i potencjalnych uszkodzeń silnika. Dlatego kluczowe jest użycie odpowiedniego sprzętu, takiego jak wiskozymetr, aby uzyskać miarodajny wynik i podjąć decyzje dotyczące serwisowania silnika.

Pytanie 27

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. wykrycia deformacji oraz bicia tarcz hamulcowych
B. oceny stopnia zużycia elementów ciernych
C. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
D. wykrycia owalizacji bębnów hamulcowych
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 28

Czym są elementy wałka rozrządu?

A. gniazda
B. łożyska
C. krzywki
D. pierścienie
Krzywki to istotne elementy wałka rozrządu, które mają kluczowe znaczenie dla synchronizacji ruchu zaworów w silniku spalinowym. Ich głównym zadaniem jest przekształcanie obrotowego ruchu wałka w liniowy ruch zaworów, co pozwala na odpowiednie otwieranie i zamykanie zaworów w ustalonych momentach cyklu pracy silnika. Krzywki są zaprojektowane w taki sposób, aby zapewnić precyzyjne działanie oraz minimalizować tarcie, a ich kształt i rozmiar są dostosowane do specyfikacji danego silnika. W praktyce, projektanci silników bazują na standardach takich jak ISO 9001, co zapewnia wysoką jakość produkcji i niezawodność działania wałków rozrządu. W zastosowaniu motoryzacyjnym, odpowiedni dobór krzywek może znacząco wpłynąć na osiągi silnika, jego efektywność paliwową oraz emisję spalin, dlatego inżynierowie często korzystają z symulacji komputerowych oraz testów w warunkach rzeczywistych, aby zoptymalizować te elementy. Ostatecznie, krzywki są nie tylko kluczowym komponentem, ale również istotnym czynnikiem wpływającym na ogólną wydajność i kulturę pracy silnika.

Pytanie 29

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. ograniczenie momentu obrotowego przekazywanego na koła
B. modyfikacja prędkości kół napędowych
C. ochrona załączonego biegu przed rozłączeniem
D. wyrównanie prędkości obrotowych załączanych elementów
Nieprawidłowe podejście do funkcji synchronizatora często prowadzi do nieporozumień w zakresie jego roli w skrzyni biegów. Zmiana prędkości kół napędowych nie jest bezpośrednim zadaniem synchronizatora, ponieważ jego funkcja polega na dostosowywaniu prędkości obrotowych wewnętrznych elementów skrzyni biegów, a nie na regulacji prędkości finalnych, które osiągają koła. Podobnie, zmniejszenie momentu obrotowego przekazywanego na koła jest niewłaściwym zrozumieniem działania synchronizatora, który nie ma na celu redukcji momentu, lecz zapewnienie właściwego połączenia elementów przy zachowaniu odpowiednich wartości momentów obrotowych. Zabezpieczenie włączonego biegu przed rozłączeniem również nie jest rolą synchronizatora. Chociaż elementy skrzyni biegów są projektowane z myślą o minimalizacji ryzyka przypadkowego rozłączenia, to jednak głównym celem synchronizatora pozostaje synchronizacja prędkości obrotowych. Powszechnym błędem jest mylenie funkcji synchronizatora z funkcjami innych elementów skrzyni biegów, co prowadzi do nieprawidłowego pojmowania mechanizmu działania całego układu. Właściwe zrozumienie tych zagadnień jest kluczowe dla inżynierów mechaników oraz techników zajmujących się naprawą i konserwacją skrzyń biegów.

Pytanie 30

Układ, który napełnia się płynem eksploatacyjnym oznaczonym jako R 134a, to

A. klimatyzacji
B. hamulcowy
C. chłodzący
D. wspomagania
Odpowiedzi związane z wspomaganiem, hamulcami oraz układem chłodzącym są błędne, ponieważ każda z tych funkcji wymaga zastosowania innych płynów eksploatacyjnych. Wspomaganie, na przykład, często korzysta z płynów hydraulicznych, które różnią się znacząco w składzie chemicznym od czynników chłodniczych. Płyny te mają za zadanie umożliwić łatwiejsze manewrowanie pojazdem, a ich głównym składnikiem są substancje o właściwościach smarnych i niskiej lepkości, co nie ma związku z chłodzeniem. Z kolei układ hamulcowy korzysta z płynów hamulcowych, które muszą charakteryzować się wysoką temperaturą wrzenia oraz odpornością na wilgoć, aby zapewnić skuteczność hamowania. Zastosowanie R 134a w tym kontekście mogłoby prowadzić do poważnych awarii. Natomiast układ chłodzenia silnika wykorzystuje płyn chłodniczy, który ma za zadanie regulować temperaturę pracy silnika, zapobiegając jego przegrzaniu. Płyn chłodniczy jest mieszanką wody i substancji chemicznych, które obniżają temperaturę zamarzania oraz podnoszą temperaturę wrzenia, co jest krytyczne dla efektywności układu. Każdy z tych płynów ma specyficzne wymagania dotyczące właściwości fizykochemicznych oraz zastosowania, dlatego ważne jest, aby dobrze zrozumieć ich rolę oraz nie stosować zamiennie substancji o różnych funkcjach.

Pytanie 31

Trudności w włączaniu biegów mogą być spowodowane

A. zużyciem łożysk w skrzyni biegów
B. zużyciem zębatek w skrzyni biegów
C. niewystarczającym skokiem jałowym pedału sprzęgła
D. nadmiernym skokiem jałowym pedału sprzęgła
Utrudnione włączanie biegów może być mylnie interpretowane jako wynik zbyt małego skoku jałowego pedału sprzęgła lub zużycia kół zębatych w skrzyni biegów. Zbyt mały skok jałowy pedału sprzęgła może rzeczywiście prowadzić do problemów, jednak w takim przypadku kierowca zazwyczaj odczuwa nadmierne wibracje i trudności z całkowitym rozłączeniem sprzęgła, co sprawia, że włączanie biegów staje się bardziej oporne, ale nie jest to najczęstsza przyczyna. Zużycie kół zębatych w skrzyni biegów, pomimo że może prowadzić do zgrzytów i hałasów podczas zmiany biegów, nie jest bezpośrednio związane z trudnościami w włączaniu biegów, gdyż zazwyczaj objawia się to w inny sposób. Wiele osób myli różne objawy, co prowadzi do nieprawidłowych wniosków. Kluczowe jest zrozumienie, że problemy z biegami często są wynikiem złożonego działania wielu elementów, w tym również stanu technicznego sprzęgła oraz płynu hydraulicznego. Dlatego ważne jest, aby podczas diagnostyki samochodu uwzględniać wszystkie możliwe czynniki, a nie skupiać się tylko na jednym elemencie. Właściwa konserwacja oraz regularne przeglądy techniczne mogą znacząco wpłynąć na unikanie takich problemów.

Pytanie 32

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. od zewnętrznej strony do wnętrza
B. od wnętrza do zewnętrznej strony
C. po kolei od strony skrzyni biegów
D. po kolei od strony napędu wałka rozrządu
Metody dokręcania śrub głowicy silnika, które zakładają kolejność od zewnątrz do środka lub inne nieprawidłowe podejścia, mogą prowadzić do poważnych konsekwencji konstrukcyjnych oraz funkcjonalnych. Dokręcanie od zewnątrz do środka nie zapewnia równomiernego rozkładu sił, co może prowadzić do lokalnych odkształceń głowicy oraz uszczelki. Nierównomierne dociśnięcie powoduje, że niektóre obszary mogą być zbyt mocno dociskane, podczas gdy inne pozostaną luźne, co sprzyja powstawaniu przecieków oleju i płynu chłodzącego. Ponadto, dokręcanie w kolejności niezgodnej z zaleceniami producenta, np. od strony skrzyni biegów lub od napędu wałka rozrządu, może prowadzić do uszkodzenia gwintów, co w konsekwencji wymaga kosztownej naprawy lub wymiany elementów. W przemyśle motoryzacyjnym stosowane są określone procedury i standardy, które dokładnie definiują, w jaki sposób powinno się dokręcać elementy. Lekceważenie tych procedur przez mechaników, w celu zaoszczędzenia czasu lub w wyniku niedostatecznej wiedzy, jest częstym błędem, który skutkuje nie tylko awariami mechanicznymi, ale również zwiększonymi kosztami eksploatacyjnymi pojazdów. Dlatego kluczowe jest, aby zawsze przestrzegać ustalonych zasad dokręcania w silnikach, stosując się do zaleceń producenta oraz branżowych standardów, aby zapewnić bezpieczeństwo i niezawodność działania pojazdu.

Pytanie 33

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. średnicówką mikrometryczną
B. mikrometrem
C. przymiarem kreskowym
D. suwmiarką modułową
Użycie suwmiarki modułowej do pomiaru średnicy zewnętrznej sworznia tłokowego może prowadzić do błędów pomiarowych z powodu ograniczonej precyzji narzędzia. Suwmiarka, chociaż może być wystarczająca do pomiarów o większych tolerancjach, nie zapewnia tak wysokiej dokładności jak mikrometr, co jest kluczowe w kontekście weryfikacji elementów o znaczeniu krytycznym, takich jak sworznie tłokowe, które muszą precyzyjnie pasować do ich gniazd. Średnicówka mikrometryczna, mimo że może wydawać się odpowiednia, nie jest narzędziem przeznaczonym do pomiaru średnicy zewnętrznej, lecz wewnętrznej, co czyni ją nieodpowiednim wyborem w tej konkretnej sytuacji. Przymiar kreskowy, chociaż również użyteczny w pomiarach, nie pozwala na uzyskanie wymaganej precyzji, co w kontekście weryfikacji wymiarowej siłowników, może doprowadzić do poważnych problemów w późniejszym etapie produkcji. Zrozumienie różnic między tymi narzędziami i ich zastosowaniem jest kluczowe, aby unikać pomyłek, które mogą prowadzić do błędnych wniosków na temat wymiarów i tolerancji elementów mechanicznych.

Pytanie 34

Co oznacza oznaczenie TWI umieszczone na oponie?

A. graniczne zużycie bieżnika
B. przeznaczenie opony do pojazdu terenowego
C. typ materiału użytego do produkcji bieżnika
D. dostosowanie opony do sezonu zimowego
Oznaczenie TWI (Tread Wear Indicator) na oponie jest kluczowym wskaźnikiem informującym kierowców o granicznym zużyciu bieżnika. W momencie, gdy bieżnik opony osiągnie poziom wskazany przez TWI, oznacza to, iż opona jest zużyta do minimum dopuszczalnego poziomu, co może negatywnie wpływać na bezpieczeństwo jazdy. Praktyczne zastosowanie TWI polega na regularnym monitorowaniu stanu opon, co jest kluczowe dla zapewnienia optymalnej przyczepności, zwłaszcza w trudnych warunkach drogowych. Warto pamiętać, że minimalna głębokość bieżnika, zgodna z europejskimi normami, wynosi 1,6 mm, jednak zaleca się wymianę opon już przy głębokości 3 mm, aby uniknąć potencjalnych zagrożeń. Właściwe zarządzanie zużyciem opon nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do dłuższej żywotności pojazdu i zmniejszenia kosztów eksploatacyjnych.

Pytanie 35

Układ przeniesienia napędu w klasycznej wersji składa się

A. ze skrzyni biegów, wału, piast
B. ze sprzęgła, skrzyni biegów, półosi oraz piast kół
C. ze sprzęgła, skrzyni biegów, wału, przekładni głównej, mechanizmu różnicowego, półosi oraz piast kół
D. z silnika, skrzyni biegów, mechanizmu różnicowego
Klasyczny układ przeniesienia napędu w autach to naprawdę ważny temat. W skrócie, to taki system, który przenosi moment obrotowy z silnika na koła. Składa się z paru kluczowych elementów, takich jak sprzęgło, skrzynia biegów, wał napędowy, przekładnia główna, mechanizm różnicowy, półosie i piasty kół. Sprzęgło to ten element, który pozwala na rozłączenie silnika, co jest szczególnie przydatne przy zmianie biegów. Skrzynia biegów z kolei dostosowuje prędkość silnika do prędkości jazdy, co jest mega ważne, żeby auto działało oszczędnie i miało dobre osiągi. Wał napędowy przenosi tę moc do kół – w autach z napędem tylnym do tylnych, a w 4x4 do wszystkich. Przekładnia główna i mechanizm różnicowy są kluczowe, żeby koła mogły obracać się w odpowiednich prędkościach, szczególnie w zakrętach. Półosie i piasty kół zamieniają ten moment obrotowy na ruch kół. W codziennej jeździe na pewno doceniasz, jak ważne jest, żeby każdy z tych elementów działał jak należy, bo to zapewnia bezpieczeństwo i komfort. Te układy są zgodne z normami ISO, co daje pewność ich niezawodności i efektywności.

Pytanie 36

Aby dokonać weryfikacji i pomiarów wału korbowego, na początku należy

A. rozmontować korbowody
B. zdjąć pokrywy czopów i wyjąć wał korbowy z silnika
C. rozebrać tłoki
D. usunąć zanieczyszczenia z wału
Dla skutecznej weryfikacji wału korbowego kluczowym krokiem jest jego wymontowanie, co wiąże się z demontażem pokryw czopów. Odpowiedzi sugerujące, że najpierw należy zdemontować tłoki lub korbowody, nie uwzględniają procesu demontażu w odpowiedniej kolejności. Zaczynanie od demontażu tłoków nie tylko utrudnia dostęp do wału, ale także może prowadzić do uszkodzenia innych elementów silnika, co jest sprzeczne z dobrą praktyką inżynieryjną. Podobnie, demontaż korbowodów powinien nastąpić po usunięciu wału, ponieważ korbowody są bezpośrednio związane z wałem korbowym. Odpowiedzi te sugerują niewłaściwe podejście do systematycznego demontażu silnika, które jest kluczowe dla zminimalizowania ryzyka uszkodzeń. Ponadto, brak doświadczenia w demontażu silników może prowadzić do nieprawidłowych wniosków dotyczących stanu technicznego pozostałych komponentów. Właściwa sekwencja demontażu jest standardem w branży, a zignorowanie tego może prowadzić do kosztownych napraw i opóźnień w pracy. Właściwe zrozumienie technik demontażu, w tym stosowanie odpowiednich narzędzi i metod, jest zatem kluczowe dla każdego mechanika, który chce utrzymać silnik w dobrym stanie technicznym.

Pytanie 37

Jakim narzędziem dokonujemy pomiaru średnicy czopa głównego wału korbowego?

A. czujnikiem zegarowym
B. mikrometrem
C. sprawdzianem pierścieniowym
D. średnicówką trójpunktową
Mikrometr jest narzędziem pomiarowym o wysokiej precyzji, które umożliwia dokładne mierzenie średnicy czopa głównego wału korbowego. Jego konstrukcja, oparta na śrubie mikrometrycznej, pozwala na odczyt wartości z dokładnością do 0,01 mm, co jest kluczowe w zastosowaniach motoryzacyjnych i mechanicznych, gdzie tolerancje wymiarowe są bardzo ograniczone. Mikrometry są powszechnie stosowane do pomiaru średnic wałów, co zapewnia ich odpowiednią jakość oraz precyzyjne dopasowanie w silnikach. W praktyce, użycie mikrometru polega na umieszczeniu narzędzia wokół czopa i delikatnym dokręceniu śruby, aż do momentu, gdy mikrometr zacznie stawiać opór. Odczyt na skali mikrometru dostarcza bezpośrednich informacji o średnicy. Dodatkowo, mikrometry są kalibrowane zgodnie z normami ISO, co zapewnia ich wiarygodność w procesie pomiarowym. W przypadku pomiaru średnicy czopa głównego wału, dokładność oraz precyzja oferowane przez mikrometr są nieodzowne, aby uniknąć błędów, które mogłyby prowadzić do niewłaściwego montażu lub uszkodzenia silnika.

Pytanie 38

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Zgodnie z instrukcjami producenta silnika
B. Kolejno, zaczynając od strony rozrządu
C. Od lewej do prawej
D. W dowolnej sekwencji
Dokręcanie śrub mocujących głowicę silnika zgodnie z zaleceniami producenta jest kluczowe dla zapewnienia odpowiedniej szczelności i stabilności jednostki napędowej. Każdy silnik może mieć specyficzne wymagania dotyczące momentu obrotowego oraz kolejności dokręcania, co jest zazwyczaj określone w dokumentacji technicznej. Zastosowanie się do tych zaleceń pozwala na równomierne rozłożenie naprężeń na śrubach, co zminimalizuje ryzyko ich uszkodzenia oraz ewentualnych nieszczelności. Przykładowo, w silnikach z głowicą aluminiową często stosuje się sekwencyjne dokręcanie, aby uniknąć odkształceń materiału. Ignorowanie tych zasad może prowadzić do poważnych awarii, takich jak uszkodzenie uszczelki pod głowicą, co z kolei generuje wysokie koszty naprawy. Dlatego zawsze należy konsultować się z instrukcją serwisową i stosować odpowiednie narzędzia, aby zapewnić, że śruby są dokręcone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 39

W funkcjonowaniu podnośników hydraulicznych stosowane jest prawo

A. Boyle'a-Mariott'a
B. Hooke'a
C. Kirchoffa
D. Pascala
Odpowiedzi wskazujące na inne prawa, takie jak prawo Kirchoffa czy prawo Boyle'a-Mariott'a, mogą wydawać się związane z obszarem inżynierii, jednak w kontekście podnośników hydraulicznych są zupełnie nieadekwatne. Prawo Kirchoffa dotyczy zachowania prądów i napięć w obwodach elektrycznych, co nie ma zastosowania w systemach hydraulicznych. Z kolei prawo Boyle'a-Mariott'a odnosi się do gazów i ich ciśnienia w zamkniętej objętości, co również nie jest tematem podnośników hydraulicznych, które operują cieczami, a nie gazami. Prawo Hooke'a, związane z deformacją ciał sprężystych, również nie jest właściwe w kontekście hydrauliki, gdyż nie opisuje zasad działania cieczy ani przekazywania sił. Wybór niewłaściwej odpowiedzi często wynika z błędnego skojarzenia funkcji danego prawa z działaniem podnośników. Dlatego kluczowe jest zrozumienie specyfiki każdego z tych praw oraz ich zastosowania w odpowiednich dziedzinach nauki i inżynierii. Zrozumienie i umiejętność właściwego przyporządkowania praw fizycznych do odpowiednich zjawisk jest niezbędne w pracy inżyniera i technika, co wpływa na jakość podejmowanych decyzji w praktyce.

Pytanie 40

Jakie jest wykończenie powierzchni cylindrów w silnikach spalinowych?

A. szlifowanie
B. honowanie
C. polerowanie
D. skrobanie
Szlifowanie jest procesem, który polega na usuwaniu materiału z powierzchni poprzez ścieranie za pomocą narzędzi z diamentowymi lub węglikowymi nasypami. Choć może być stosowane w obróbce cylindrów, nie jest to najbardziej odpowiednia metoda do osiągnięcia wymaganej jakości powierzchni. Szlifowanie może prowadzić do zbytniego usunięcia materiału, co w efekcie może zniekształcić geometrię cylindra oraz negatywnie wpłynąć na jego właściwości użytkowe. Skrobanie z kolei to technika, która polega na ręcznym lub mechanicznym usuwaniu nadmiaru materiału z powierzchni. Nie jest to metoda optymalna dla cylindrów silników, ponieważ nie zapewnia odpowiedniej precyzji oraz nie jest w stanie uzyskać pożądanej chropowatości. Polerowanie, choć skuteczne w uzyskiwaniu gładkich powierzchni, nie pozwala na usunięcie wnętrza cylindrów w sposób potrzebny do ich obróbki wykończeniowej. Użytkownicy często mylą te techniki, co prowadzi do wyboru niewłaściwych metod obróbczych, które mogą skutkować nieprawidłowym działaniem silników oraz ich przedwczesnym zużyciem. Zrozumienie różnic między tymi metodami jest kluczowe dla zapewnienia trwałości i efektywności pracy silników spalinowych.