Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 kwietnia 2025 12:35
  • Data zakończenia: 15 kwietnia 2025 12:55

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. zjawiska indukcji
B. wyrównywania potencjałów połączeń
C. tłumienia impulsów napięcia
D. zmiany częstotliwości sygnału
Wysokie napięcia w punktach przejściowych, gniazdach abonenckich oraz w stacji głównej telewizji kablowej mogą być mylnie interpretowane przez pryzmat kilku zjawisk elektrycznych. Wyrównywanie potencjałów połączeń, chociaż istotne w kontekście bezpieczeństwa, nie jest bezpośrednią przyczyną powstawania wysokich napięć. Proces ten ma na celu zminimalizowanie różnic potencjałów, a nie wytwarzanie ich. Tłumienie impulsów napięcia odnosi się głównie do ochrony przed nagłymi wzrostami napięcia, a nie do generowania wysokich napięć. W praktyce, gdy napięcie jest tłumione, jego amplituda maleje, co jest zjawiskiem pożądanym w kontekście ochrony urządzeń. Zmiana częstotliwości sygnału dotyczy transmisji danych i nie wpływa bezpośrednio na pojawianie się wysokich napięć; częstotliwość sygnału jest istotna dla odpowiedniego przesyłania informacji, ale nie generuje ona wyższych napięć w punktach przejściowych. W związku z tym, posługiwanie się tymi pojęciami w kontekście wysokich napięć może prowadzić do błędnych wniosków. Kluczowe jest zrozumienie, że zjawisko indukcji, będące podstawą wielu technologii, jest głównym źródłem powstawania niepożądanych napięć i powinno być uwzględniane w projektowaniu systemów elektrycznych oraz telekomunikacyjnych, zgodnie z obowiązującymi normami i zasadami bezpieczeństwa.

Pytanie 2

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. oscyloskop jednokanałowy
B. analyzer widma
C. miernik zniekształceń
D. woltomierz cyfrowy
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.

Pytanie 3

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. utracie z pamięci danych.
B. zimnych lub przegrzanych lutach.
C. braku kontaktu w złączach typu wysuwanego.
D. pęknięciu ścieżek łączących.
Wybór odpowiedzi dotyczącej pęknięcia ścieżek połączeniowych wskazuje na błędne zrozumienie przyczyn problemów z regulacją geometrii oraz balansu bieli. Pęknięcia w ścieżkach mogą prowadzić do całkowitego braku sygnału, ale niekoniecznie powodują utratę funkcji w menu, jak w przypadku opisanego problemu. Zimne lub przegrzane luty są inną powszechną przyczyną awarii, jednak objawy, które opisano w pytaniu, są bardziej zgodne z uszkodzeniem pamięci niż z problemem lutowniczym. Zimne luty mogą powodować niestabilność w działaniu, ale nie prowadzą do całkowitej utraty danych z pamięci. Brak kontaktu w złączach typu wysuwanego może wprawdzie wpływać na odbiór sygnału, ale również nie powinien wpływać na funkcje w menu. Wybierając błędne odpowiedzi, można wpaść w pułapkę myślenia przyczynowo-skutkowego, gdzie błędnie interpretowane objawy prowadzą do niewłaściwych diagnoz. Kluczowe jest zrozumienie, że problemy z pamięcią mogą być wywołane przez kilka różnych czynników, a ich efekty będą się różnić od symptomów wskazujących na uszkodzenia fizyczne połączeń. Umiejętność poprawnego identyfikowania tych symptomów jest niezbędna w diagnostyce sprzętu RTV.

Pytanie 4

Który z kabli jest odpowiedni do przesyłania sygnału video z kamery analogowej?

A. YTDY
B. YTKSy
C. RG58
D. RG59
Kabel RG59 jest powszechnie używany do przesyłania sygnału video z kamer analogowych, głównie ze względu na jego niską tłumienność oraz dobrą jakość sygnału na długich odległościach. RG59 charakteryzuje się impedancją 75 ohmów, co jest standardem dla większości systemów wideo, w tym telewizji kablowej i systemów CCTV. Dzięki zastosowaniu odpowiednich materiałów dielektrycznych, kabel ten skutecznie minimalizuje straty sygnału, co jest kluczowe w przypadku przesyłania obrazu w wysokiej rozdzielczości. Przykładem praktycznego zastosowania RG59 może być instalacja systemu monitoringu w obiektach komercyjnych, gdzie kamery są rozmieszczone w znacznych odległościach od rejestratorów. W takich sytuacjach, zapewnienie jakości obrazu i stabilności sygnału jest niezbędne do efektywnej pracy systemu. Decydując się na RG59, instalatorzy mogą również stosować złącza BNC, które zapewniają łatwe i bezpieczne połączenie, eliminując ryzyko zakłóceń czy utraty jakości sygnału.

Pytanie 5

Jaką minimalną przestrzeń należy utrzymać (<i>dla kabla o długości przekraczającej 35 m – nie odnosi się to do ostatnich 15 m</i>) pomiędzy zasilaniem a nieekranowaną skrętką komputerową w konfiguracji bez separatora?

A. 20 mm
B. 50 mm
C. 200 mm
D. 100 mm
Wybór 50 mm, 100 mm lub 20 mm jako minimalnych odległości jest błędny, ponieważ te wartości nie spełniają wymagań dotyczących ochrony przed zakłóceniami elektromagnetycznymi. W praktyce, mniejsze odległości mogą prowadzić do poważnych problemów z jakością sygnału w sieciach komputerowych. Zbyt bliskie umiejscowienie przewodów zasilających i nieekranowanych kabli sieciowych stwarza ryzyko indukcji elektromagnetycznej, co może prowadzić do zakłóceń w przesyłanych danych, zwiększając liczbę błędów transmisji oraz powodując spadki wydajności. Typowym błędem myślowym jest przekonanie, że mniejsze odległości są wystarczające przy odpowiedniej jakości kabli – jednak jakość kabli nie jest jedynym czynnikiem, a wpływ zakłóceń elektromagnetycznych może być znaczny. Warto zaznaczyć, że różne normy branżowe, takie jak ANSI/TIA-568, jasno określają wymagania dotyczące odległości, które należy zachować, aby zapewnić niezawodność instalacji. Dlatego kluczowe jest przestrzeganie tych standardów, aby uniknąć potencjalnych problemów w przyszłości.

Pytanie 6

Brak koloru żółtego w telewizorze może być spowodowany uszkodzeniami w torze kolorystycznym

A. czerwonego lub zielonego
B. zielonego lub niebieskiego
C. zielonego i niebieskiego
D. niebieskiego i czerwonego
Hmm, niestety, inne odpowiedzi są błędne, bo źle rozumieją, jak działają kolory w systemie RGB. Wiele osób myśli, że problemy w torze niebieskim lub czerwonym mogą prowadzić do braku koloru żółtego, ale to nie tak działa. Żółty powstaje z czerwonego i zielonego, a niebieski nie ma na to wpływu. Więc jeśli ktoś myśli, że problem leży w torach niebieskim czy czerwonym, to nie do końca rozumie, jak RGB działa. W telewizorach każda barwa to wynik intensywności światła z tych trzech kolorów. Jak brakuje żółtego, to zazwyczaj jest problem z czerwonym lub zielonym. W diagnostyce sprzętu wideo kluczowe jest zrozumienie, które kolory się na siebie nakładają. Często mylimy różne problemy z kolorami i przypisujemy je do niewłaściwych torów, co może prowadzić do niepotrzebnych wydatków na naprawy bądź wymianę części, które nie są wcale uszkodzone. Dlatego tak ważne jest, żeby znać podstawy kolorymetrii i zasady działania wyświetlaczy, bo to naprawdę ułatwia diagnostykę i naprawę elektroniki.

Pytanie 7

Aby określić charakterystykę diody prostowniczej, konieczne jest użycie zasilacza, amperomierza oraz

A. amperometru
B. oscyloskopu
C. woltomierza
D. generatora
Aby wyznaczyć charakterystykę diody prostowniczej, niezbędne jest mierzenie napięcia oraz prądu, które są kluczowymi parametrami do określenia jej właściwości. Woltomierz służy do pomiaru napięcia na diodzie, natomiast amperomierz do pomiaru prądu przepływającego przez nią. Te dwa pomiary są niezbędne do skonstruowania charakterystyki prądowo-napięciowej (I-V), która obrazowo pokazuje, jak dioda reaguje na różne wartości napięcia i prądu. Zrozumienie tej charakterystyki jest istotne w zastosowaniach inżynieryjnych, ponieważ pozwala na dobór odpowiednich komponentów w obwodach elektronicznych, takich jak zasilacze czy układy prostownicze. W praktyce, dobry woltomierz powinien mieć odpowiednią klasę dokładności, aby zapewnić precyzyjne pomiary, co jest zgodne z najlepszymi praktykami w branży elektronicznej, gdzie jakość i dokładność pomiarów są kluczowe dla prawidłowego działania urządzeń.

Pytanie 8

Jakie urządzenie należy zastosować do mierzenia natężenia prądu w obwodzie elektrycznym?

A. omomierz
B. amperomierz
C. woltomierz
D. watomierz
Amperomierz to przyrząd pomiarowy, który służy do pomiaru natężenia prądu elektrycznego w obwodzie. Zasada jego działania opiera się na wykorzystaniu efektu elektromagnetycznego. Amperomierze są podstawowymi narzędziami w elektrotechnice, które pozwalają na monitorowanie przepływu prądu, co jest kluczowe dla analizy i diagnozowania pracy obwodów elektrycznych. Przykład zastosowania to pomiar natężenia prądu w obwodzie zasilającym silnik elektryczny, co pozwala na określenie, czy silnik pracuje w normie i czy nie jest przeciążony. W standardowych praktykach przemysłowych stosuje się amperomierze cyfrowe, które oferują większą precyzję i dodatkowe funkcje, takie jak pomiar średniego i maksymalnego natężenia prądu oraz rejestrowanie zmian w czasie. Dobrą praktyką jest także stosowanie amperomierzy z odpowiednimi zakresami pomiarowymi, aby uniknąć uszkodzenia urządzenia oraz zapewnić dokładność pomiarów. Znajomość działania amperomierza i jego zastosowań jest niezbędna dla każdego technika czy inżyniera zajmującego się elektrycznością.

Pytanie 9

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Aktywuje filtr fal odbitych w odbiorniku.
B. Modyfikuje zakres częstotliwości filtra w.cz.
C. Poprawia warunki funkcjonowania odbiornika.
D. Pogarsza warunki pracy odbiornika.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 10

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. analizować parametry sygnału przy użyciu analizatora widma
B. zmierzyć poziom sygnału w kanale zwrotnym
C. zmierzyć impedancję falową kabla
D. zbadać parametry kabla za pomocą reflektometru
Mierzenie poziomu sygnału w kanale zwrotnym, choć może dostarczyć pewnych informacji o jakości sygnału, nie jest skuteczną metodą lokalizacji przerwań w kablach. Tego typu pomiar koncentruje się głównie na analizie sygnału, który już dotarł do odbiornika, co nie pozwala na dokładne określenie miejsca awarii. Co więcej, różnice w poziomie sygnału mogą wynikać z wielu czynników, takich jak zakłócenia elektromagnetyczne czy inne problemy w sieci, co czyni tę metodę nieprecyzyjną. Z kolei pomiar impedancji falowej kabla jest istotny dla oceny dopasowania kabla do systemu, ale nie dostarcza informacji o lokalizacji uszkodzenia. Niepoprawne zrozumienie roli impedancji może prowadzić do błędnych wniosków o stanie kabla. Używanie analizatora widma również nie jest optymalne do lokalizacji przerwań, ponieważ jego głównym celem jest analiza widma sygnału, a nie lokalizacja uszkodzeń. Warto zauważyć, że wszystkie te podejścia mogą prowadzić do mylnych interpretacji i opóźnień w naprawach, co wpływa na jakość świadczonych usług. W branży telekomunikacyjnej kluczowe jest stosowanie właściwych narzędzi, takich jak reflektometry, które umożliwiają efektywne diagnozowanie problemów.

Pytanie 11

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. analizatora sieci strukturalnych
B. miernika z pomiarem MER
C. testera wytrzymałości dielektrycznej
D. multimetru z pomiarem R
Analizator sieci strukturalnych to zaawansowane narzędzie, które jest kluczowe do oceny poprawności instalacji sieci komputerowej. Dzięki zastosowaniu tego urządzenia, technicy mogą przeprowadzać kompleksową analizę parametrów, takich jak tłumienie, refleksja mocy oraz jakość sygnału w sieciach telekomunikacyjnych. Analizatory te są zgodne z normami branżowymi, takimi jak TIA/EIA-568, które określają wymagania dotyczące instalacji kabli strukturalnych. W praktyce, analizator pozwala na diagnostykę problemów, które mogą wystąpić w trakcie użytkowania sieci, co wpływa na jej wydajność i stabilność. Przykładowo, podczas instalacji sieci w biurze, technik może użyć analizatora do sprawdzenia, czy wszystkie kable są prawidłowo podłączone i czy nie występują straty sygnału, co mogłoby prowadzić do problemów z połączeniami internetowymi. Tego typu narzędzia są niezbędne dla zapewnienia wysokiej jakości usług oraz minimalizacji ryzyka awarii sieci.

Pytanie 12

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. buty na izolowanej podeszwie
B. fartuch bawełniany
C. okulary ochronne
D. rękawice ochronne
Na pierwszy rzut oka można sądzić, że okulary ochronne, rękawice ochronne i buty na izolowanej podeszwie również mogą być odpowiednimi elementami odzieży ochronnej podczas prac serwisowych. Jednak ich zastosowanie nie jest wystarczające w kontekście wylutowywania podzespołów elektronicznych. Okulary ochronne są ważne do ochrony oczu przed odpryskami i substancjami chemicznymi, jednak nie chronią one całego ciała przed zanieczyszczeniem oraz niepełnym zabezpieczeniem odzieży. Rękawice ochronne mogą być niezbędne, gdy pracujemy z substancjami niebezpiecznymi, jednak w przypadku wylutowywania, ich stosowanie może być niewygodne i obniżać precyzję manipulacji delikatnymi komponentami. Wiele osób może również mylnie sądzić, że buty na izolowanej podeszwie są wystarczające do ochrony w takim środowisku; owszem, chronią one przed porażeniem prądem, ale nie zabezpieczają w wystarczającym stopniu przed chemikaliami czy odpadami, które mogą być wytwarzane podczas prac serwisowych. Dlatego kluczowe jest zrozumienie, że odpowiedni fartuch bawełniany stanowi najbardziej wszechstronną i skuteczną ochronę, zapewniając jednocześnie komfort i bezpieczeństwo. Efektywna odzież ochronna powinna być zgodna z zaleceniami BHP oraz standardami branżowymi, co w praktyce oznacza, że fartuch bawełniany jest najodpowiedniejszym rozwiązaniem w tym przypadku.

Pytanie 13

Termin "adres MAC" odnosi się do adresu

A. komputera przydzielonego przez serwer DHCP.
B. karty sieciowej przypisanego przez producenta urządzenia.
C. bramy domowej.
D. serwera DHCP.
Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego urządzenia, takiego jak karta sieciowa, przez producenta. Składa się z 48-bitowej liczby, zazwyczaj zapisywanej w postaci sześciu grup po dwa znaki szesnastkowe. Adresy MAC są używane w warstwie łącza danych modelu OSI do identyfikacji urządzeń w sieci lokalnej. Dzięki unikalności adresu MAC, urządzenia mogą komunikować się bez konfliktów. Przykładowo, router w sieci lokalnej używa adresów MAC do kierowania pakietów do właściwych odbiorców. Warto zauważyć, że adresy MAC są kluczowe w protokołach takich jak Ethernet i Wi-Fi, gdzie identyfikacja urządzeń jest niezbędna do prawidłowego funkcjonowania sieci. Standard IEEE 802.3 dla Ethernetu oraz IEEE 802.11 dla Wi-Fi jasno określają, jak adresy MAC są tworzone i używane. W praktyce, znajomość adresów MAC jest niezbędna przy konfigurowaniu zabezpieczeń w sieci, takich jak filtrowanie MAC, które pozwala administratorom na ograniczenie dostępu do sieci tylko do autoryzowanych urządzeń.

Pytanie 14

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
C. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
D. Zasilacz symetryczny oraz cyfrowy multimetr
Wybór przyrządów pomiarowych jest kluczowy dla uzyskania prawidłowych wyników w testach wzmacniaczy. Odpowiedzi, które nie uwzględniają zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu, pomijają istotne elementy wymagane do przeprowadzenia analizy charakterystyki przenoszenia. Zasilacz symetryczny jest niezbędny, aby zapewnić wzmacniaczowi stabilne napięcie zasilające, co jest kluczowe w kontekście pomiaru jego wydajności. Generator funkcyjny jest także istotny, ponieważ pozwala na wytwarzanie sygnałów o różnych kształtach i częstotliwościach, co umożliwia ocenę, jak wzmacniacz odpowiada na zmiany parametrów sygnału. Pominięcie oscyloskopu, który jest narzędziem do wizualizacji sygnałów, prowadzi do utraty możliwości obserwacji i analizy dynamiki wzmacniacza. Dodatkowo, wybór multimetru cyfrowego czy zasilacza napięcia stałego nie dostarcza wymaganych możliwości do kompleksowej analizy. Multimetr cyfrowy, choć przydatny w pomiarach napięcia i prądu, nie jest wystarczający do oceny charakterystyki przenoszenia, gdyż nie pozwala na analizę sygnałów w funkcji czasu, co jest istotne w przypadku wzmacniaczy operacyjnych, które reagują na zmiany sygnałów w czasie. Dlatego kluczowe jest zastosowanie pełnego zestawu odpowiednich narzędzi do przeprowadzenia rzetelnych badań.

Pytanie 15

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. izolacji wewnętrznej.
B. ekranu.
C. żyły.
D. izolacji zewnętrznej.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 16

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku współczynnika prostokątności
B. wzrostu częstotliwości środkowej fo
C. wzrostu współczynnika prostokątności
D. spadku częstotliwości środkowej fo
Zrozumienie wpływu dobroci Q na filtry RLC jest kluczowe, aby odpowiednio interpretować konsekwencje projektowe. Pierwsza z niepoprawnych odpowiedzi sugeruje, że zwiększenie dobroci Q mogłoby prowadzić do zwiększenia częstotliwości środkowej f0, co jest nieprawidłowe. W rzeczywistości wartość f0 jest określona przez komponenty RLC i nie zmienia się w wyniku zmiany dobroci Q. Zwiększenie Q nie wpływa na częstotliwość centralną, lecz na charakterystykę pasma przenoszenia. Kolejna odpowiedź sugerująca zmniejszenie częstotliwości środkowej f0 również jest mylna, jako że zmiana dobroci Q nie ma wpływu na jej wartość. W rzeczywistości, zwiększenie dobroci Q prowadzi do większej wyrazistości filtru, ale nie zmienia jego centralnej częstotliwości. Dlatego też, koncepcja współczynnika prostokątności jest nieodłącznie związana z dobrocią Q, a jego zmiana wpływa na szerokość pasma przenoszenia. Należy również zwrócić uwagę na to, że w praktyce stosuje się różne metody obliczania i regulacji Q, aby osiągnąć pożądane efekty w różnych zastosowaniach, takich jak filtry w radiotechnice czy systemy audio. Typowym błędem w analizie charakterystyki filtrów RLC jest mylenie dobroci Q z innymi parametrami, co może prowadzić do niepoprawnych wniosków dotyczących działania układów elektronicznych.

Pytanie 17

Które z poniższych urządzeń nie jest wykorzystywane w lokalnej sieci komputerowej?

A. Switch.
B. Multiswitch.
C. Hub.
D. Router.
Multiswitch to urządzenie, które jest zazwyczaj stosowane w systemach telewizyjnych, zwłaszcza w instalacjach satelitarnych, a nie w lokalnych sieciach komputerowych. Jego główną funkcją jest rozdzielanie sygnału z jednej anteny satelitarnej do wielu odbiorników. W przeciwieństwie do urządzeń takich jak router, switch czy hub, które są kluczowe w infrastrukturze sieciowej i służą do zarządzania przepływem danych pomiędzy różnymi urządzeniami w sieci, multiswitch nie ma zastosowania w transferze danych między komputerami. W lokalnej sieci komputerowej zwykle używa się routerów do łączenia różnych segmentów sieci oraz switchy i hubów do łączenia urządzeń w ramach tej samej sieci. Dzięki zrozumieniu różnicy w przeznaczeniu tych urządzeń, można lepiej dopasować odpowiednie technologie do swoich potrzeb, co jest kluczowe dla efektywnego zarządzania siecią. Istotne jest, aby pamiętać, że wybór właściwych urządzeń do budowy lokalnej sieci komputerowej powinien być oparty na zrozumieniu ich funkcji i zastosowania w kontekście infrastrukturze IT.

Pytanie 18

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. I2C
B. GPIB
C. RS-485
D. RS-232
RS-485 to standard komunikacji szeregowej, który umożliwia różnicową transmisję sygnałów, co oznacza, że dane są przesyłane za pomocą dwóch przewodów, co pozwala na eliminację zakłóceń elektrycznych. W przeciwieństwie do RS-232, który przesyła sygnały jako pojedynczy sygnał względem masy, RS-485 wykorzystuje różnicę napięć pomiędzy dwoma przewodami, co zapewnia lepszą odporność na zakłócenia i możliwość dłuższych połączeń. Przykłady zastosowań RS-485 obejmują systemy automatyki przemysłowej, sieci czujników oraz kontrolę dostępu, gdzie wymagana jest komunikacja na dużych odległościach, nawet do 1200 metrów, oraz obsługa wielu urządzeń w jednej sieci. Standard RS-485 jest szczególnie ceniony w aplikacjach, gdzie istotne jest zachowanie integralności danych w trudnych warunkach elektromagnetycznych. Dobrą praktyką w projektowaniu systemów opartych na RS-485 jest stosowanie odpowiednich terminacji na końcach linii transmisyjnej, co minimalizuje odbicia sygnału i poprawia jakość komunikacji.

Pytanie 19

Aby zrealizować instalację telewizyjną podtynkową, należy

A. układać przewody w dowolny sposób, pamiętając, aby trasy przewodów się nie krzyżowały
B. układać przewody w pionie i poziomie, dociskając je do ściany
C. układać przewody wyłącznie po najkrótszej trasie
D. układać przewody tylko w kierunku pionowym i poziomym, uwzględniając kąt zgięcia kabla
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych kwestii. Prowadzenie przewodów „dowolnie” z założeniem, że im bardziej skomplikowana trasa, tym lepiej, jest podejściem, które może prowadzić do wielu problemów. Taka koncepcja ignoruje podstawowe zasady organizacji instalacji, co może skutkować nieefektywną transmisją sygnału oraz zwiększonym ryzykiem zakłóceń. Przewody telewizyjne są wrażliwe na zmiany w otoczeniu, a ich trasy powinny być starannie zaplanowane, aby uniknąć niepotrzebnych skrzyżowań. Niespójne prowadzenie przewodów może prowadzić do interferencji, które pogarszają jakość odbioru sygnału. Dodatkowo, prowadzenie przewodów „wyłącznie najkrótszą drogą” również nie jest optymalne, ponieważ pomija ważne aspekty związane z odpowiednim zabezpieczeniem przed czynnikami zewnętrznymi oraz wygodą użytkowania. W praktyce, najlepsze podejście wymaga równowagi między efektywnością a bezpieczeństwem, co oznacza, że przewody powinny być prowadzone w sposób dostosowany do warunków lokalnych oraz z uwzględnieniem przyszłych potrzeb. Nie można również zapominać o dobrej praktyce polegającej na dociskaniu przewodów do ściany, co może wprowadzać dodatkowe napięcia i prowadzić do uszkodzeń. Zrozumienie tych zasad jest kluczowe dla efektywnej i trwałej instalacji telewizyjnej.

Pytanie 20

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. wzmacniacza obrazu
B. wielkiej i pośredniej częstotliwości
C. odchylania poziomego i pionowego
D. separatora sygnałów
Odpowiedź 'wielkiej i pośredniej częstotliwości' jest poprawna, ponieważ moduł ten jest kluczowy w procesie odbioru sygnału telewizyjnego z anteny. W systemach telewizyjnych, częstotliwości pośrednie (IF) są używane do konwersji sygnału odbieranego z anteny na poziom, który może być łatwiej przetwarzany przez odbiornik. Jeśli ten moduł jest uszkodzony, sygnał z anteny nie jest właściwie demodulowany, co prowadzi do braku obrazu. Natomiast sygnał z tunera satelitarnego oraz z kamery VHS-C są już na poziomie, który nie wymaga dalszej obróbki w zakresie częstotliwości pośrednich, dlatego są wyświetlane poprawnie. Przykładem zastosowania tej wiedzy może być diagnozowanie problemów z odbiorem telewizji naziemnej, gdzie kluczowe jest sprawdzenie, czy sygnał pośredni jest prawidłowo przetwarzany. Wiedza ta jest zgodna z praktykami serwisowymi, gdzie szczegółowa analiza sygnałów IF jest standardem w naprawach i diagnostyce odbiorników telewizyjnych.

Pytanie 21

Który z niżej wymienionych elementów <u><strong>nie wpływa</strong></u> na jakość odbioru sygnału telewizji cyfrowej?

A. Zjawisko burzy
B. Stan kabla antenowego
C. Odległość od stacji nadawczej
D. Temperatura otoczenia
Temperatura zewnętrzna rzeczywiście nie ma wpływu na odbiór sygnału telewizji naziemnej, ponieważ sygnał telewizyjny jest transmitowany na określonych częstotliwościach radiowych, które są stosunkowo odporne na zmiany temperatury. W praktyce, czynniki takie jak odległość od nadajnika oraz stan przewodu antenowego mają kluczowe znaczenie dla jakości odbioru. Na przykład, im większa odległość od nadajnika, tym sygnał staje się słabszy z powodu rozpraszania i tłumienia w atmosferze. Z tego powodu, odpowiednia lokalizacja anteny oraz jej ustawienie są kluczowe dla uzyskania optymalnej jakości odbioru. Warto również pamiętać, że podczas instalacji systemów antenowych, stosuje się różne techniki i technologie, takie jak wzmacniacze sygnału, aby zminimalizować problemy związane z odległością. Dodatkowo, dobre praktyki branżowe zalecają regularne sprawdzanie stanu przewodów i złączy, aby zredukować potencjalne straty sygnału. W związku z tym, zrozumienie, że temperatura zewnętrzna nie wpływa na odbiór, pozwala skupić się na istotnych aspektach zapewniających właściwą jakość sygnału.

Pytanie 22

Zerowanie omomierza to proces polegający na

A. do wyboru odpowiedniego zakresu do przewidywanej wartości pomiarowej
B. dostosowaniu rezystancji bocznika
C. ustawieniu "0 Ohm" przy zwartych zaciskach pomiarowych
D. ustawieniu "0 Ohm" przy rozwartych zaciskach pomiarowych
Zerowanie omomierza to kluczowy proces kalibracji, który zapewnia dokładność pomiarów rezystancji. Ustawienie '0 Ohm' przy zwartych zaciskach pomiarowych oznacza, że omomierz jest w stanie określić, że rezystancja wewnętrzna urządzenia oraz wszelkie inne wpływy zewnętrzne są minimalne. Takie działanie eliminuje błędy pomiarowe, które mogą wynikać z oporu drutu, złączy czy innych komponentów. W praktyce, zanim przystąpimy do pomiaru rezystancji elementów, takich jak oporniki czy cewki, zawsze powinniśmy wykonać zerowanie omomierza. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie kalibracji urządzeń pomiarowych, aby zapewnić ich poprawne działanie i dokładność w pomiarze. Jeśli omomierz nie zostanie odpowiednio zerowany, wyniki mogą być znacząco zafałszowane, co prowadzi do błędnych ocen stanu urządzeń elektronicznych. Z tego względu, przestrzeganie procedur zerowania jest niezbędne dla każdego technika czy inżyniera pracującego z pomiarami elektrycznymi.

Pytanie 23

Skrót CCTV odnosi się do telewizji

A. kablowej
B. przemysłowej
C. satelitarnej
D. naziemnej
CCTV, czyli Closed-Circuit Television, odnosi się do systemu telewizji przemysłowej, który wykorzystuje kamery do nadzoru i monitorowania określonych obszarów. Systemy te działają w zamkniętej sieci, co oznacza, że przesyłane obrazy nie są dostępne publicznie, co zwiększa poziom bezpieczeństwa. Telewizja przemysłowa znajduje zastosowanie w różnych miejscach, takich jak sklepy, biura, parkingi czy obiekty przemysłowe, gdzie monitoring wzmacnia ochronę przed kradzieżą, wandalizmem czy innymi przestępstwami. Przykłady zastosowania to instalacja kamer monitorujących w strefach o podwyższonym ryzyku, takich jak wejścia do budynków użyteczności publicznej, co pozwala na szybszą reakcję służb porządkowych w razie incydentu. W kontekście standardów branżowych, wiele systemów CCTV jest zgodnych z normami ISO/IEC, co zapewnia ich wysoką jakość i niezawodność. Dobrze zaprojektowany system CCTV powinien również uwzględniać aspekty takie jak oświetlenie, kąt widzenia kamer oraz przechowywanie nagrań, co jest kluczowe dla skutecznego monitoringu.

Pytanie 24

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
B. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
C. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
D. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 25

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. czasowych
B. pamięci statycznych
C. programowalnych
D. pamięci dynamicznych
Wybór odpowiedzi dotyczącej pamięci, niezależnie czy to dynamiczne, statyczne, czy jakieś czasowe, to błąd. Te układy mają zupełnie inną funkcję niż programowalne układy logiczne. Pamięci dynamiczne (czyli DRAM) i statyczne (SRAM) to układy, które służą do przechowywania danych, a nie do wykonywania operacji logicznych. Zwykle używamy ich w komputerach i innych urządzeniach elektronicznych. Z kolei układy czasowe, jak te nasze zegarowe, zajmują się synchronizowaniem operacji w systemach digitalnych, ale nie mają tej fajnej możliwości programowania logiki jak PLD. Często mylimy te wszystkie funkcje i skupiamy się na tym, co już znamy, nie myśląc o ich rzeczywistym zastosowaniu. W praktyce rozróżnienie tych układów jest niezwykle ważne dla skutecznego projektowania systemów elektronicznych. Programowalne układy logiczne dają nam swobodę w projektowaniu, podczas gdy pamięci mają już ustaloną funkcję i nie możemy ich zmieniać po wyprodukowaniu.

Pytanie 26

U osoby, która została porażona prądem elektrycznym, występuje zatrzymanie akcji serca oraz brak oddechu. W trakcie udzielania pierwszej pomocy należy wykonać masaż serca oraz sztuczne oddychanie w następującym tempie

A. 2 oddechy przy 30 uciskach na serce
B. 5 oddechów przy 5 uciskach na serce
C. 5 oddechów przy 30 uciskach na serce
D. 2 oddechy przy 5 uciskach na serce
Odpowiedź '2 oddechy na 30 ucisków na serce' jest zgodna z aktualnymi wytycznymi dotyczącymi resuscytacji krążeniowo-oddechowej (RKO) w przypadku dorosłych. Zgodnie z wytycznymi American Heart Association oraz Europejskiej Rady Resuscytacji, stosuje się stosunek 30 ucisków klatki piersiowej do 2 oddechów ratunkowych. Uciskanie serca ma na celu zapewnienie krążenia krwi w organizmie, a sztuczne oddychanie dostarcza tlen do płuc osoby poszkodowanej. Taki schemat działania jest niezbędny, aby zminimalizować ryzyko uszkodzenia mózgu i innych organów spowodowanego brakiem tlenu. Przykładem praktycznym może być sytuacja, w której świadek zdarzenia musi szybko zareagować, aby podjąć RKO, co znacząco zwiększa szanse na przeżycie osoby poszkodowanej. Warto również pamiętać o tym, że po wykonaniu 30 ucisków, należy upewnić się, że drogi oddechowe są drożne przed podaniem oddechów ratunkowych, co jest kluczowe dla skuteczności resuscytacji.

Pytanie 27

Nagłe zmiany temperatury (np. z powodu pieców czy otwartych okien) mogą powodować zakłócenia w działaniu detektora umieszczonego w jego pobliżu?

A. światła
B. dymu
C. czadu
D. ruchu
Wybór dymu, światła lub czadu jako odpowiedzi na pytanie o wpływ gwałtownych zmian temperatury na detektory nie oddaje rzeczywistego mechanizmu działania tych urządzeń. Detektory dymu działają na zupełnie innych zasadach, najczęściej polegających na wykrywaniu cząsteczek dymu w powietrzu, co czyni je mniej wrażliwymi na zmiany temperatury. Takie detektory mają swoje specyficzne wymagania dotyczące instalacji, które są bardziej związane z wentylacją i obecnością źródeł dymu, a nie z nagłymi skokami temperatury. Podobnie, detektory światła bazują na fotokomorze, która reaguje na natężenie światła, a więc ich działanie nie jest bezpośrednio związane z temperaturą otoczenia. W przypadku detektorów czadu, ich funkcjonalność opiera się na pomiarze stężenia tlenku węgla, a nie na zmianach temperatury. Typowym błędem myślowym jest mylenie różnych typów detektorów i ich zasad działania. Aby skutecznie zainstalować systemy alarmowe, kluczowe jest zrozumienie, jakie czynniki wpływają na ich działanie, co jest istotne nie tylko dla zapewnienia bezpieczeństwa, ale także dla efektywności operacyjnej całego systemu. Zarówno normy, jak i dobre praktyki w branży zabezpieczeń podkreślają znaczenie dobrego doboru i rozmieszczenia detektorów, aby maksymalizować ich skuteczność w odpowiednich warunkach.

Pytanie 28

Jakie jest zastosowanie symetryzatora antenowego?

A. do przesyłania sygnałów z kilku anten do jednego odbiornika
B. w celu zmiany charakterystyki kierunkowej anteny
C. do dopasowania impedancyjnego anteny i odbiornika
D. aby zwiększyć zysk energetyczny anteny
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 29

Mostek Graetza stanowi przykład

A. prostownika
B. generatora
C. zasilacza
D. stabilizatora
Mostek Graetza, znany również jako mostek prostowniczy, jest układem elektronicznym składającym się z czterech diod, który służy do prostowania prądu zmiennego na prąd stały. Jego działanie polega na tym, że diody przewodzą prąd tylko w jednym kierunku, co pozwala na eliminację ujemnych połówek fali prądu zmiennego. W rezultacie, na wyjściu mostka uzyskujemy stały sygnał, którego amplituda jest dwukrotnie większa niż w przypadku pojedynczego prostownika. Mostek Graetza znajduje szerokie zastosowanie w zasilaczach, gdzie konieczne jest przekształcenie prądu zmiennego z sieci na prąd stały, który można wykorzystać do zasilania urządzeń elektronicznych. Dodatkowo, w przypadku zastosowań w systemach audio i w urządzeniach elektronicznych, mostki prostownicze są kluczowe dla zapewnienia stabilnych napięć. Dobrze zaprojektowany mostek prostowniczy zapewnia nie tylko efektywność, ale także bezpieczeństwo, zmniejszając ryzyko przeciążenia układu. W branży obowiązują określone standardy dotyczące doboru komponentów oraz projektowania układów prostowniczych, co gwarantuje ich niezawodność i długoterminową funkcjonalność.

Pytanie 30

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. ograniczonej widoczności
B. wietrznej pogody
C. wyładowań atmosferycznych
D. niskiej temperatury
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 31

Co oznacza skrót DISEqC?

A. adapter sieciowy do przesyłania sygnałów satelitarnych
B. konwerter satelitarny przeznaczony do hybrydowych sieci kablowych
C. protokół komunikacyjny do zarządzania urządzeniami satelitarnymi
D. modulator jedno wstęgowy używany w zbiorczych systemach telewizyjnych
Wszystkie inne odpowiedzi mogą wydać się w porządku, ale żadna z nich porządnie nie wyjaśnia, czym tak właściwie jest DISEqC. Jeśli ktoś mówi, że to konwerter satelitarny do hybrydowych sieci kablowych, to się myli – bo DISEqC to nie sprzęt, a właśnie ten protokół do komunikacji. Konwertery satelitarne to tylko sprzęt, który może korzystać z tego protokołu. Inna odpowiedź, która mówi o modulatorze jedno wstęgowym, też nie ma sensu, bo DISEqC nie zajmuje się modulowaniem sygnałów, tylko ich przekazywaniem i kontrolowaniem. Mówiąc o adapterze sieciowym do transmisji sygnałów satelitarnych, też jest nieprecyzyjnie, bo DISEqC nie jest adapterem, tylko protokołem, który różne urządzenia mogą używać do wymiany informacji. Te wszystkie błędy prowadzą do tego, że nie rozumiemy, jak ważne jest DISEqC w zarządzaniu urządzeniami satelitarnymi. Niezbędne jest zrozumienie tego protokołu, jeśli chce się dobrze obsługiwać systemy satelitarne, bo to fundament nowoczesnych rozwiązań w tej dziedzinie.

Pytanie 32

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyrównać
B. wyzerować
C. zwiększyć
D. zmniejszyć
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 33

Który z parametrów odnosi się do wartości 20 Mpx, podanej w specyfikacji cyfrowego aparatu fotograficznego?

A. Optyczne powiększenie obrazu
B. Cyfrowe powiększenie obrazu
C. Rozdzielczość matrycy światłoczułej
D. Czas reakcji migawki
Wartość 20 Mpx (megapikseli) odnosi się do rozdzielczości matrycy światłoczułej w cyfrowym aparacie fotograficznym. Oznacza to, że matryca składa się z 20 milionów pikseli, co bezpośrednio wpływa na jakość zdjęć, które aparat może rejestrować. Im wyższa rozdzielczość, tym więcej szczegółów można uchwycić na zdjęciu, co jest szczególnie istotne w kontekście druku dużych formatów oraz przy edytowaniu zdjęć w postprodukcji. W praktyce, aparat o rozdzielczości 20 Mpx pozwala na wykonanie wydruków o wymiarach sięgających 50x75 cm bez zauważalnej utraty jakości. Standardy branżowe wskazują, że dla większości zastosowań amatorskich rozdzielczości w przedziale 16-24 Mpx są wystarczające, natomiast w zastosowaniach profesjonalnych zalecane są wyższe rozdzielczości. Warto również zauważyć, że wysoka rozdzielczość nie zawsze oznacza lepszą jakość obrazu, ponieważ na ostateczny efekt wpływają także inne czynniki, takie jak jakość obiektywu czy algorytmy przetwarzania obrazu. Dlatego przy wyborze aparatu warto zwrócić uwagę na całościową specyfikację techniczną urządzenia.

Pytanie 34

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
B. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
C. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
D. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 35

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 25 dBµV, MER 29 dB
B. Poziom 55 dBµV, MER 24 dB
C. Poziom 65 dBµV, MER 12 dB
D. Poziom 29 dBµV, MER 14 dB
Wartości poziomu sygnału i MER są kluczowymi wskaźnikami dla oceny jakości sygnału telewizyjnego. W przypadku poziomu 65 dBµV oraz MER 12 dB, pomimo że poziom sygnału jest na wyższym poziomie, MER jest zbyt niski, co sugeruje znaczne zakłócenia w sygnale. Wysoki poziom sygnału nie zawsze przekłada się na dobrą jakość odbioru. W rzeczywistości, zbyt wysoki poziom sygnału w połączeniu z niskim MER może prowadzić do przesterowania odbiornika, co skutkuje niestabilnym obrazem lub jego całkowitym brakiem. Z kolei poziom 25 dBµV z MER 29 dB wydaje się być dobry pod względem jakości, jednak poziom sygnału jest zdecydowanie za niski dla stabilnego odbioru telewizji naziemnej. Odbiorniki telewizyjne wymagają minimalnego poziomu sygnału, aby mogły prawidłowo przetwarzać dane. Podobnie, poziom 29 dBµV z MER 14 dB jest również nieodpowiedni. Niski MER przy jednocześnie niskim poziomie sygnału wskazuje na poważne problemy z zakłóceniami, co również prowadzi do nieprzewidywalnych efektów w odbiorze. W kontekście praktycznym, dla zapewnienia odpowiedniej jakości sygnału, istotne jest, aby zarówno poziom sygnału, jak i MER były zgodne z najlepszymi praktykami branżowymi. Użytkownicy często mylą te wskaźniki, sądząc, że wyższy poziom sygnału zawsze oznacza lepszą jakość, co w rzeczywistości nie jest prawdą. Z tego względu, kluczowe jest zrozumienie synergii pomiędzy poziomem sygnału a jakością odbioru oraz dostosowanie instalacji do tych wymagań.

Pytanie 36

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dBA
B. dBmV
C. dBµV
D. dB
Wykorzystanie jednostek takich jak dBA lub dBmV w kontekście pomiaru stosunku poziomu sygnału do szumu w instalacjach telewizyjnych jest niepoprawne. dBA to jednostka, która odnosi się do poziomu głośności sygnału z uwzględnieniem wrażliwości ludzkiego ucha na różne częstotliwości, co czyni ją nieadekwatną w kontekście pomiarów sygnału telewizyjnego. Z kolei dBmV to jednostka wyrażająca napięcie w miliwoltach w stosunku do 1 V, używana głównie w kontekście systemów telekomunikacyjnych i nie jest odpowiednia do mierzenia stosunku sygnału do szumu, który wymaga odniesienia do mocy. dBµV, choć również związane z napięciem, koncentruje się na poziomie sygnału w kontekście telekomunikacji, ale nie oddaje pełnego obrazu stosunku sygnału do szumu. Typowym błędem myślowym w tym kontekście jest utożsamianie różnych jednostek miary, co może prowadzić do nieporozumień w ocenie jakości sygnału. Właściwe rozumienie jednostek miary i ich zastosowania jest kluczowe w projektowaniu i diagnozowaniu systemów telewizyjnych, co podkreśla znaczenie edukacji w tym zakresie dla specjalistów w dziedzinie telekomunikacji.

Pytanie 37

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. wzrostu napięcia źródła zasilania
B. większego zużycia energii
C. przeciążenia oraz zniszczenia instalacji
D. większego zużycia mocy
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 38

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. modem.
B. bramkę.
C. switch.
D. router.
Switch, czyli przełącznik, jest urządzeniem sieciowym, które umożliwia łączenie segmentów sieci LAN w jedną większą sieć. Działa na warstwie drugiej modelu OSI, co oznacza, że przesyła dane na podstawie adresów MAC. Głównym zadaniem switcha jest inteligentne kierowanie ruchu sieciowego, co pozwala na efektywne zarządzanie pasmem i minimalizację kolizji. Dzięki temu każdy podłączony do switcha komputer może komunikować się z innymi urządzeniami w sieci w sposób bezpieczny i szybki. Przykładem zastosowania switcha jest mała firma, w której kilka komputerów, drukarek i serwerów jest połączonych w jedną sieć. Switch umożliwia im współdzielenie zasobów oraz komunikację bez potrzeby wysyłania niepotrzebnych danych do wszystkich urządzeń. W branży standardem jest stosowanie switchy zarządzanych, które oferują zaawansowane funkcje, takie jak VLAN, QoS i monitorowanie ruchu, co pozwala administratorom na lepsze zarządzanie siecią.

Pytanie 39

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. niesymetryczne (unbalanced)
B. symetryczne (balanced)
C. sygnalizacyjne YKSY
D. sygnalizacyjne YKSwXs
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 40

Podłączenie urządzenia elektronicznego klasy I do gniazda elektrycznego bez bolca ochronnego może prowadzić do

A. skrócenia okresu użytkowania
B. uszkodzenia urządzenia
C. wzrostu temperatury pracy urządzenia
D. pojawienia się napięcia na obudowie
Podłączenie urządzenia do gniazdka bez bolca ochronnego nie prowadzi do skrócenia czasu eksploatacji, ponieważ czas pracy urządzenia zależy głównie od jego jakości, użytkowania oraz warunków pracy. W przypadku braku bolca ochronnego występuje jednak ryzyko, że podczas awarii napięcie może pojawić się na obudowie, co jest znacznie bardziej niebezpieczne. Uszkodzenie urządzenia może zdarzyć się, ale nie jest to bezpośredni skutek braku bolca – wiele urządzeń może działać poprawnie przez pewien czas, zanim dojdzie do awarii. Wzrost temperatury pracy urządzenia w efekcie podłączenia bez uziemienia mógłby wystąpić w przypadku zbyt dużego obciążenia, ale nie jest to kwestia związana z brakiem bolca ochronnego. Kluczowe jest zrozumienie, że odpowiednie uziemienie ma na celu nie tylko ochronę samego urządzenia, ale przede wszystkim bezpieczeństwo użytkownika. Ignorowanie norm dotyczących klasyfikacji i bezpieczeństwa urządzeń elektrycznych może prowadzić do groźnych sytuacji, w tym porażenia prądem. Dlatego tak ważne jest, aby zwracać uwagę na szczegóły instalacji elektrycznej i stosować się do najlepszych praktyk, aby zapewnić bezpieczeństwo i niezawodność pracy urządzeń.