Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 24 maja 2025 18:43
  • Data zakończenia: 24 maja 2025 18:56

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Kompasu
B. Miernika sygnału
C. Kątomierza
D. Multimetru
Multimetr nie jest przyrządem stosowanym do ustawiania anten satelitarnych, ponieważ jego główne funkcje dotyczą pomiaru napięcia, prądu oraz rezystancji. W kontekście instalacji anten satelitarnych kluczowe jest precyzyjne ustawienie kierunku anteny, aby maksymalizować odbiór sygnału. W tym celu wykorzystuje się inne urządzenia, takie jak mierniki sygnału, które umożliwiają bezpośredni pomiar jakości i siły sygnału satelitarnego. Dodatkowo, kompas może być pomocny przy orientacji anteny względem południa, co jest istotne przy ustawianiu anteny na odpowiednią satelitę. Kątomierz z kolei może służyć do precyzyjnego ustawienia kąta nachylenia anteny. W praktyce instalatorzy anten korzystają z tych narzędzi, aby zapewnić optymalne warunki odbioru, co jest kluczowe dla uzyskania wysokiej jakości sygnału telewizyjnego. Dobrą praktyką jest również stosowanie odpowiednich standardów instalacji, takich jak zalecenia producentów anten, co pozwala na uzyskanie najlepszych rezultatów.

Pytanie 2

Router to urządzenie wykorzystywane w warstwie

A. sesji
B. prezentacji
C. aplikacji
D. sieci
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 3

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. dalmiar.
B. multimetr.
C. reflektometr.
D. spektrometr.
Reflektometr to narzędzie stosowane w telekomunikacji, które umożliwia lokalizację uszkodzeń w kablach przez analizę odbicia sygnału. W przypadku kabla telekomunikacyjnego, reflektometr wykorzystuje zjawisko odbicia fali elektromagnetycznej, która jest wysyłana w kierunku kabla. Kiedy fala napotyka na przerwę lub uszkodzenie, część sygnału odbija się z powrotem do reflektometru, co pozwala na określenie miejsca przerwy. Przykładem zastosowania reflektometru może być lokalizacja uszkodzenia w kablu zainstalowanym w terenie, co jest kluczowe dla minimalizacji przestojów w pracy sieci. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie monitorowania i konserwacji kabli optycznych, a reflektometr jest nieocenionym narzędziem w tym kontekście. Dzięki jego zastosowaniu technicy mogą szybko i skutecznie zidentyfikować problem, co zwiększa efektywność operacyjną oraz zadowolenie klientów.

Pytanie 4

Bezpiecznik topikowy stanowi komponent, który chroni przed efektami

A. spadku napięcia zasilającego
B. przepięć w instalacji elektrycznej
C. nagromadzenia ładunku elektrostatycznego
D. zwarć w obwodzie elektrycznym
Bezpiecznik topikowy jest kluczowym elementem zabezpieczeń elektrycznych, zapobiegającym skutkom zwarć w obwodzie elektrycznym. Działa na zasadzie przerywania obwodu, gdy prąd przepływający przez niego przekroczy określoną wartość. W przypadku zwarcia, prąd składający się z dużych wartości może prowadzić do przegrzania przewodów, co skutkuje uszkodzeniem urządzeń i zwiększa ryzyko pożaru. Bezpieczniki topikowe są powszechnie stosowane w instalacjach domowych i przemysłowych, zgodnie z normami takimi jak PN-EN 60269. Dobrze dobrany bezpiecznik topikowy chroni nie tylko instalację, ale również podłączone urządzenia, takie jak komputery czy sprzęt RTV. W przypadku awarii, wymiana bezpiecznika jest prostym zadaniem, które można wykonać samodzielnie, co czyni je praktycznym rozwiązaniem. Zrozumienie roli bezpiecznika topikowego w systemach zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 5

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
B. Połączenie przewodu za pomocą tulejek zaciskowych
C. Zainstalowanie w miejscu uszkodzenia złączki typu F
D. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
Zainstalowanie w miejscu uszkodzenia złączki typu F to najlepszy sposób na naprawę przerwanego kabla antenowego, gdyż złączki te są standardem w transmisji sygnału telewizyjnego i radiowego. Gwarantują one niskie straty sygnału oraz stabilne połączenie. Złączki typu F są zaprojektowane z myślą o minimalizacji refleksji sygnału, co jest kluczowe dla zachowania jakości odbioru. Przykładowo, gdy stosujemy złączkę F, zapobiegamy niepożądanym zakłóceniom, które mogą wystąpić przy innych metodach łączenia kabli. W instalacjach antenowych, standardem jest używanie kabli koncentrycznych, a zastosowanie złączek typu F pozwala na łatwe połączenie z urządzeniami, takimi jak dekodery czy telewizory. Warto również pamiętać o regularnym sprawdzaniu stanu połączeń i wymianie uszkodzonych elementów, co jest zgodne z najlepszymi praktykami utrzymania instalacji RTV.

Pytanie 6

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. aktywnym inwersyjnym
B. nasycenia
C. aktywnym
D. zatkania (odcięcia)
Odpowiedzi, które wskazują na zatkanie, nasycenie lub aktywny inwersyjny, opierają się na błędnych zrozumieniach działania tranzystora bipolarnego. W stanie zatkania, zarówno złącze BE, jak i CB są spolaryzowane zaporowo, co oznacza, że nie ma przepływu prądu, a tranzystor nie przewodzi. To podejście jest sprzeczne z rzeczywistością przedstawioną w pytaniu, gdzie złącze BE jest w stanie przewodzenia. Z kolei stan nasycenia występuje, gdy obydwa złącza są spolaryzowane w kierunku przewodzenia, co prowadzi do maksymalnego przepływu prądu kolektora. To również nie odpowiada sytuacji opisanej w pytaniu. Aktywny inwersyjny tryb pracy odnosi się do sytuacji, w której tranzystor jest używany w konfiguracji inwersyjnej, co nie ma miejsca w przypadku podanych warunków. Typowe błędy myślowe w tym kontekście to mylenie polaryzacji złączy oraz niezrozumienie, że zależność między prądem bazy a prądem kolektora jest kluczowym aspektem pracy tranzystora w trybie aktywnym. Aby poprawnie zrozumieć działanie tranzystora, kluczowe jest przyswojenie zasad jego polaryzacji oraz roli złącza BE w procesie wzmacniania sygnału.

Pytanie 7

Telewizor nie odbiera żadnych sygnałów z zewnętrznej anteny w transmisji naziemnej, ale poprawnie prezentuje obraz z tunera satelitarnego podłączonego do niego za pomocą przewodu EUROSCART oraz z kamery VHS-C. Wymienione objawy sugerują, że uszkodzony jest moduł

A. separatora impulsów
B. wzmacniacza wizji
C. odchylania poziomego i pionowego
D. wielkiej i pośredniej częstotliwości
Dobra robota! Wskazanie na uszkodzenie modułu wielkiej i pośredniej częstotliwości trafiło w sedno. Ten moduł jest kluczowy do tego, żeby telewizor mógł właściwie demodulować sygnały z anteny. Kiedy telewizor działa z tunera satelitarnego albo z kamery VHS-C, ale nie łapie sygnału z anteny, to raczej coś jest nie tak z obwodami do odbioru sygnału z telewizji naziemnej. To właśnie ten moduł zajmuje się dostosowywaniem częstotliwości sygnału, żeby telewizor mógł go zrozumieć. W praktyce, uszkodzenia mogą być spowodowane zepsuciem komponentów, takich jak kondensatory czy scalaki, co prowadzi do braku obrazu. Warto regularnie sprawdzać antenę i zmierzyć sygnał, żeby zobaczyć, czy wszystko działa jak powinno.

Pytanie 8

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. połączyć go z Internetem.
B. włożyć nośnik USB.
C. zestawić z tunerem satelitarnym.
D. spiąć z odtwarzaczem Blu-ray.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 9

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 100 mV
B. 300 mV
C. 150 mV
D. 1000 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 10

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola elektrycznego
B. pola magnetycznego
C. zmiany natężenia dźwięku
D. zmiany temperatury
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 11

Jakie zabezpieczenie przed uszkodzeniem lutowanego elementu powinno być użyte podczas przyłączenia tranzystora CMOS do płyty głównej telewizora?

A. Pokrycie końcówek tranzystora pastą termoprzewodzącą
B. Wykorzystanie spoiwa o niższej temperaturze topnienia do lutowania
C. Założenie opaski uziemiającej na rękę
D. Noszenie okularów ochronnych
Założenie opaski uziemiającej na rękę to naprawdę ważna sprawa, kiedy lutujemy tranzystory CMOS. Te elementy są mega wrażliwe na wyładowania elektrostatyczne, więc lepiej nie ryzykować. Użycie opaski zmniejsza ryzyko zgromadzenia ładunku, który może zniszczyć układy scalone. Nawet małe ładunki mogą spowodować ESD i to zazwyczaj kończy się zniszczeniem tranzystora lub sprawia, że działa on nie tak, jak powinien. W branży mówi się o standardach, takich jak IEC 61340-5-1, które podkreślają, jak ważna jest ochrona przed ESD w miejscach, gdzie mamy do czynienia z wrażliwymi komponentami. Takie opaski powinny być na stałe w procedurach roboczych w laboratoriach i na liniach produkcyjnych, żeby zapewnić bezpieczeństwo sprzętu i sprawność pracy. A no i jeszcze warto pamiętać o matach ESD oraz odpowiedniej odzieży roboczej – to wszystko razem tworzy system ochronny przed złymi ładunkami.

Pytanie 12

Jakiego rodzaju układ scalony jest oznaczany symbolem UCY7400?

A. Analogowy wykonany w technologii CMOS
B. Cyfrowy wykonany w technologii CMOS
C. Analogowy wykonany w technologii TTL
D. Cyfrowy wykonany w technologii TTL
Odpowiedzi związane z technologią CMOS lub analogowymi układami scalonymi są błędne i wynikają z częstych nieporozumień na temat klasyfikacji układów scalonych. CMOS jest znany przede wszystkim z tego, że zużywa mało energii i często wykorzystuje się go w miejscach, gdzie potrzeba dużo bramek i bardziej złożonych układów, jak mikroprocesory czy układy pamięci. Niektórzy mogą mylić układy TTL z CMOS, bo obie technologie mogą występować w nowoczesnych systemach cyfrowych. Ale UCY7400 to jednoznacznie układ TTL, więc nie korzysta on z zalet CMOS. Dodatkowo, pomylenie układów analogowych z cyfrowymi, gdy mówimy o UCY7400, prowadzi do poważnych błędów w zrozumieniu ich funkcji. Układy analogowe pracują na sygnałach ciągłych i służą do amplifikacji sygnałów czy obróbki różnych sygnałów. UCY7400, jako układ cyfrowy, po prostu nie pasuje do tych zastosowań. Ważne jest, żeby znać różnice między tymi technologiami oraz ich zastosowaniami, szczególnie przy projektowaniu układów elektronicznych. Dlatego dobrze jest zapoznać się z ich właściwościami, żeby w przyszłości nie popełniać takich pomyłek.

Pytanie 13

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. BNC
B. RJ11
C. SMA
D. RJ45
Kamera IP to urządzenie, które wykorzystuje protokół internetowy do przesyłania obrazu i dźwięku przez sieć. Złącze RJ45 jest standardowym interfejsem dla kabli Ethernet, który zapewnia szybkie połączenie sieciowe. Używanie złącza RJ45 w kamerach IP umożliwia łatwe podłączenie ich do sieci lokalnej, co jest kluczowe dla zdalnego monitorowania i zarządzania systemem dozorowym. Przykładowo, instalacja kamery IP w systemie przeciwpożarowym lub monitoringu budynku pozwala na łatwe przesyłanie obrazu do centralnego rejestratora lub zdalnego komputera. Złącza RJ45 są również zgodne z normą TIA/EIA-568, co zapewnia ich wysoką wydajność i niezawodność w przesyłaniu danych. W praktyce, użycie kabli kategorii 5e lub 6, które są kompatybilne z RJ45, umożliwia przesyłanie sygnałów wideo w wysokiej rozdzielczości, co jest kluczowe w nowoczesnych systemach monitoringu.

Pytanie 14

Automatyczne wyłączanie telewizora z lampą kineskopową w różnych interwałach czasowych oraz towarzyszący mu chwilowy błysk ekranu w jednym z podstawowych kolorów wskazuje na

A. zwarcia międzyelektrodowe
B. usterkę toru odchylania poziomego
C. przerwę w torze zasilania
D. uszkodzenie toru odchylania poziomego
Wybór odpowiedzi związanej z uszkodzeniem toru odchylania poziomego jest błędny, ponieważ objawy samoczynnego wyłączania się telewizora z kineskopem nie są typowe dla tego rodzaju awarii. Uszkodzenie toru odchylania poziomego prowadziłoby raczej do zniekształcenia obrazu, takiego jak zniekształcenie geometrii ekranowej, a nie do nagłego wyłączania się urządzenia. W przypadku toru odchylania poziomego, problemy mogą objawiać się jako smużenie obrazu albo niewłaściwe odchylenie wiązki elektronów, co nie prowadzi do rozbłysku kolorów na ekranie. Ponadto, zwarcia międzyelektrodowe są bardziej prawdopodobne, gdyż skutkują one nagłą zmianą w pracy kineskopu, co może powodować krótkotrwałe rozbłyski. Podobnie, odpowiedzi dotyczące przerwy w torze zasilania nie są adekwatne, ponieważ przerwy w zasilaniu prowadziłyby do całkowitego wyłączenia telewizora, a nie do jego nieregularnego wyłączania się po krótkim czasie. Typowym błędem myślowym jest zakładanie, że zjawisko rozbłysku na ekranie jest związane z problemami z zasilaniem lub torami odchylania, kiedy w rzeczywistości jest to rezultat zwarcia w kineskopie. Dlatego kluczowe jest zrozumienie specyfiki problemu i umiejętność różnicowania objawów związanych z różnymi rodzajami uszkodzeń w telewizorach kineskopowych.

Pytanie 15

Jakie oznaczenie mają terminale w urządzeniach systemów alarmowych, które służą do podłączenia obwodu sabotażowego?

A. CLK
B. COM
C. TMP
D. KPD
Oznaczenie TMP (tamper) odnosi się do zacisków, które są wykorzystywane do podłączenia obwodu sabotażowego w systemach alarmowych. Obwód sabotażowy jest kluczowym elementem zabezpieczeń, ponieważ jego zadaniem jest monitorowanie integralności samego urządzenia. Gdy dojdzie do manipulacji, np. otwarcia obudowy czujnika lub innego urządzenia, obwód sabotażowy zostaje przerwany, co aktywuje alarm. Zastosowanie obwodu TMP jest powszechną praktyką w systemach zgodnych z normami EN 50131, które definiują wymagania dla systemów alarmowych. Przykładowo, w instalacjach alarmowych używanych w obiektach komercyjnych czy przemysłowych, zastosowanie zacisków TMP zapewnia wysoki poziom ochrony przed nieautoryzowanym dostępem. Właściwe podłączenie tych zacisków przyczynia się do zwiększenia skuteczności całego systemu alarmowego, co jest kluczowe w kontekście ochrony mienia.

Pytanie 16

Aby zweryfikować ciągłość instalacji, należy użyć

A. woltomierza
B. omomierza
C. watmierz
D. amperomierza
Omomierz to urządzenie pomiarowe, które jest kluczowe w procesie sprawdzania ciągłości instalacji elektrycznej. Jego głównym zadaniem jest pomiar rezystancji elektrycznej, co pozwala na ocenę, czy dany przewód lub obwód są poprawnie połączone i czy nie mają przerw. W praktyce, omomierz jest używany do weryfikacji ciągłości połączeń uziemiających, a także do testowania przewodów w instalacjach elektrycznych przed ich uruchomieniem. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji oraz ciągłości przewodów jest niezbędnym krokiem w procesie odbioru instalacji elektrycznych. Użycie omomierza pozwala na wykrycie potencjalnych problemów, które mogłyby prowadzić do awarii systemów elektrycznych lub stanowić zagrożenie dla bezpieczeństwa. Dobrą praktyką jest przeprowadzanie takich pomiarów regularnie, szczególnie w instalacjach narażonych na czynniki atmosferyczne lub mechaniczne uszkodzenia. Rezultaty pomiarów powinny być dokumentowane w celu zapewnienia zgodności z obowiązującymi normami i przepisami.

Pytanie 17

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Programowanie
B. Regulacja parametrów
C. Pomiary sprawdzające
D. Czyszczenie
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 18

Aby zweryfikować ciągłość kabla sygnałowego w systemie kontroli dostępu, jakie urządzenie należy wykorzystać?

A. omomierza
B. woltomierza
C. amperomierza
D. watomierza
Omomierz jest narzędziem, które służy do pomiaru oporu elektrycznego, co czyni go idealnym do sprawdzania ciągłości połączeń elektrycznych, w tym kabli sygnałowych. W kontekście instalacji systemów kontroli dostępu, ciągłość kabla jest kluczowa, ponieważ wszelkie przerwy lub uszkodzenia mogą prowadzić do awarii systemu lub nieprawidłowego działania. Przykładowo, w przypadku zastosowania omomierza, możemy zmierzyć opór na końcach kabla. Jeśli opór wynosi zero lub bardzo blisko zera omów, oznacza to, że kabel jest ciągły i nie ma przerwań. W sytuacji, gdy pomiar wykazuje wysoką wartość oporu, może to wskazywać na uszkodzenie kabla, co wymaga jego wymiany lub naprawy. Normy branżowe, takie jak IEC 60364, zalecają regularne sprawdzanie ciągłości połączeń, co jest istotne dla zapewnienia niezawodności systemów zabezpieczeń. Dlatego omomierz jest podstawowym narzędziem w diagnostyce i konserwacji instalacji elektrycznych, w tym systemów kontroli dostępu.

Pytanie 19

W jakiej kolejności należy wykonać czynności związane z wymianą kamery w systemie telewizji dozorowej?

A.B.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
odłączenie rejestratora od zasilania,
archiwizacja nagrań,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
C.D.
archiwizacja nagrań,
odłączenie przewodów od kamery,
odłączenie rejestratora od zasilania,
wymiana kamery,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji,
podłączenie rejestratora do zasilania.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie rejestratora do zasilania,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji.

A. B.
B. D.
C. A.
D. C.
Wybór niewłaściwej odpowiedzi wynika z niepełnego zrozumienia procesu wymiany kamery w systemie telewizji dozorowej. Ważne jest, aby zrozumieć, że podczas takich operacji kluczowe jest zachowanie kolejności, która zapewnia zarówno bezpieczeństwo sprzętu, jak i integritet danych. Niewłaściwe podejście do wymiany kamery, takie jak pominięcie archiwizacji nagrań, może prowadzić do ich utraty, co w przypadkach krytycznych może być katastrofalne. Również, jeśli rejestrator nie zostanie odłączony od zasilania, istnieje ryzyko zwarcia, które może uszkodzić zarówno rejestrator, jak i nową kamerę. Często błędne odpowiedzi opierają się na założeniu, że można działać w sposób ad-hoc, co jest niebezpieczne w kontekście pracy z elektroniką. Niedostateczna uwaga nad właściwym odłączeniem przewodów może prowadzić do nadwyrężenia kabli lub uszkodzenia gniazd, co skutkuje kosztownymi naprawami. Należy również pamiętać, że po każdej wymianie sprzętu należy przeprowadzić testy w celu weryfikacji poprawności działania systemu. Właściwa kolejność działań nie jest kwestią przypadkową, lecz opiera się na standardach branżowych, które mają na celu ochronę zarówno użytkowników, jak i sprzętu.

Pytanie 20

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
B. analogowy na zakresie U=20 V i Rwe=100 kOhm
C. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
D. analogowy na zakresie U=200 V i Rwe=10 kOhm
Wybór innych opcji woltomierzy może prowadzić do nieprecyzyjnych pomiarów z kilku powodów. Użycie woltomierza cyfrowego na zakresie U=200 V z rezystancją wewnętrzną Rwe=10 MOhm może wydawać się logicznym wyborem, jednak zbyt wysoki zakres napięcia nie pozwala na wystarczającą precyzję w pomiarze wartości bliskich 18 V. W takich przypadkach, lepszym rozwiązaniem jest użycie woltomierza o niższym zakresie, co zapewnia wyższą rozdzielczość pomiarową. Z kolei analogowy woltomierz na zakresie U=200 V z rezystancją Rwe=10 kOhm ma znacznie niższą rezystancję wewnętrzną, co skutkuje znacznym obciążeniem obwodu. W praktyce, obniżenie rezystancji wewnętrznej woltomierza prowadzi do błędnych pomiarów, ponieważ wprowadza dodatkowy prąd do obwodu, co zakłóca działanie czujnika. Analogowe woltomierze są również mniej precyzyjne w porównaniu do cyfrowych, co w kontekście pomiarów wysokorezystancyjnych jest kluczowe. Zastosowanie woltomierza analogowego na zakresie U=20 V z Rwe=100 kOhm również nie jest optymalne; chociaż ma on niższy zakres, jego rezystancja wewnętrzna nadal jest za mała w porównaniu do wymagań pomiarowych. W pomiarach, gdzie istotne jest zachowanie dokładności i minimalizacja zakłóceń, kluczowe jest stosowanie odpowiednich narzędzi pomiarowych, co czyni wybór woltomierza z wysoką rezystancją wewnętrzną i odpowiednim zakresem wartości kluczowym dla uzyskania wiarygodnych wyników.

Pytanie 21

Całkowity koszt materiałów potrzebnych do zamontowania systemu alarmowego w lokum to 2 000 zł. Wydatki na montaż wynoszą 50% wartości materiałów. Zarówno materiały, jak i montaż są obciążone stawką VAT w wysokości 22%. Jaka będzie całkowita kwota wydatków na instalację?

A. 3 660 zł
B. 2 440 zł
C. 2 000 zł
D. 3 000 zł
Całkowity koszt wykonania instalacji alarmowej można obliczyć poprzez zsumowanie kosztów materiałów oraz wykonania, a następnie dodanie podatku VAT. Koszt materiałów wynosi 2000 zł, a koszt wykonania to 50% ceny materiałów, czyli 1000 zł (2000 zł * 0,5). Łączny koszt przed opodatkowaniem wynosi więc 3000 zł (2000 zł + 1000 zł). Aby obliczyć kwotę z VAT, należy pomnożyć łączny koszt przez stawkę VAT, co daje 660 zł (3000 zł * 0,22). Całkowity koszt po uwzględnieniu VAT wynosi zatem 3660 zł (3000 zł + 660 zł). Zrozumienie tego procesu jest kluczowe dla właściwego planowania budżetu. W praktyce, dokładne obliczenia kosztów są niezwykle ważne w branży budowlanej i instalacyjnej, gdzie nieprecyzyjne oszacowanie wydatków może prowadzić do znaczących przekroczeń budżetowych. Prawidłowe podejście do kalkulacji kosztów materiałów i robocizny pozwala na efektywne zarządzanie projektami budowlanymi oraz utrzymanie zgodności z regulacjami dotyczącymi VAT.

Pytanie 22

Podczas instalacji komputerowej na zewnątrz budynku, należy użyć kabla w izolacji

A. gumowej lub polietylenowej z żyłami aluminiowymi
B. gumowej lub polietylenowej z żyłami miedzianymi
C. papierowej z żyłami aluminiowymi
D. papierowej z żyłami miedzianymi
Wybór kabla gumowego lub polietylenowego z żyłami miedzianymi do instalacji komputerowej na zewnątrz obiektu jest zgodny z najlepszymi praktykami w branży elektroinstalacyjnej. Kabel gumowy charakteryzuje się wysoką odpornością na działanie niekorzystnych warunków atmosferycznych, takich jak wilgoć, promieniowanie UV oraz zmienne temperatury. Polietylen natomiast jest materiałem, który zapewnia doskonałą izolację, a jednocześnie jest odporny na działanie chemikaliów. Żyły miedziane cechują się lepszą przewodnością elektryczną w porównaniu do żył aluminiowych, co przekłada się na mniejsze straty energii oraz lepszą efektywność przesyłania sygnałów. Takie kable są często stosowane w zastosowaniach zewnętrznych, takich jak przyłącza do urządzeń zewnętrznych, monitoringu czy instalacji oświetleniowych. Zgodnie z normą PN-EN 60529, kable powinny mieć odpowiednią klasę ochrony przed szkodliwymi warunkami atmosferycznymi, co potwierdza, że wybór gumy lub polietylenu jest zasadne w kontekście chęci zapewnienia trwałości i bezpieczeństwa instalacji elektronicznych na zewnątrz.

Pytanie 23

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. gaśnicy proszkowej
B. hydronetki wodnej
C. gaśnicy pianowej
D. koca azbestowego
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 24

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o wyższej rezystancji i tej samej mocy
B. o identycznej rezystancji i niższej mocy
C. o identycznej rezystancji i wyższej mocy
D. o niższej rezystancji i tej samej mocy
Ta odpowiedź jest prawidłowa, ponieważ w przypadku zastępowania rezystora istotne jest, aby zachować jego rezystancję oraz zwiększyć moc. Rezystor o rezystancji 1 kΩ i mocy 1 W oznacza, że przy maksymalnej mocy 1 W, rezystor ten może pracować bez przegrzewania się. Gdybyśmy chcieli zastąpić go innym rezystorem, powinniśmy wybrać taki o tej samej rezystancji (1 kΩ), aby nie zmieniać parametrów obwodu. Zwiększona moc pozwoli na bezpieczniejsze i bardziej stabilne działanie w przypadku, gdy obwód będzie wymagał większej mocy. Standardowe praktyki inżynieryjne zalecają zawsze dobierać komponenty z marginesem bezpieczeństwa, co oznacza, że wybór rezystora o większej mocy (np. 2 W lub 5 W) minimalizuje ryzyko uszkodzenia elementu oraz wydłuża jego żywotność. Przykłady zastosowania obejmują układy zasilające, gdzie elementy są narażone na zmienne obciążenia, a także w aplikacjach audio, gdzie stabilność działania jest kluczowa.

Pytanie 25

Jakie jest zastosowanie symetryzatora antenowego?

A. w celu zmiany charakterystyki kierunkowej anteny
B. do dopasowania impedancyjnego anteny i odbiornika
C. aby zwiększyć zysk energetyczny anteny
D. do przesyłania sygnałów z kilku anten do jednego odbiornika
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 26

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. dozorowej
B. satelitarnej
C. naziemnej
D. kablowej
Standard DVB-C (Digital Video Broadcasting - Cable) jest kluczowym standardem wykorzystywanym w telekomunikacji kablowej, który umożliwia przesyłanie sygnałów telewizyjnych i multimedialnych przez sieci kablowe. Umożliwia on kodowanie oraz kompresję sygnałów wideo, co pozwala na efektywne wykorzystanie pasma i dostarczenie wielu kanałów telewizyjnych w wysokiej jakości. DVB-C opiera się na modulacji QAM (Quadrature Amplitude Modulation), co pozwala na przesyłanie danych o wysokiej prędkości. W praktyce, standard ten jest szeroko stosowany przez/operatorów telewizji kablowej na całym świecie, co pozwala na poprawę jakości transmisji oraz zwiększenie liczby dostępnych programów telewizyjnych. Przykładowo, wiele europejskich krajów korzysta z DVB-C jako standardu dla telewizji kablowej, oferując abonentom różnorodne pakiety kanałów oraz usługi VOD (Video on Demand). Dodatkowo, DVB-C wspiera interaktywność oraz usługi dodatkowe, co jest istotnym atutem w nowoczesnych instalacjach telewizyjnych.

Pytanie 27

Podczas konserwacji systemu telewizyjnego, oceniając jakość sygnału w gniazdku abonenckim, co należy zmierzyć?

A. moc
B. napięcie
C. prąd
D. MER i BER
Odpowiedź MER i BER jest prawidłowa, ponieważ są to kluczowe wskaźniki jakości sygnału w instalacjach telewizyjnych. MER (Modulation Error Ratio) oraz BER (Bit Error Rate) służą do oceny jakości sygnału cyfrowego. MER mierzy stosunek błędów modulacji do sygnału, a jego wysoka wartość wskazuje na dobrą jakość sygnału, co jest kluczowe dla prawidłowego odbioru sygnału telewizyjnego. Z kolei BER informuje nas o liczbie błędnych bitów w transmisji, co pozwala na ocenę stabilności i niezawodności połączenia. W praktyce, podczas konserwacji systemów telewizyjnych, technicy powinni używać dedykowanych mierników, które umożliwiają pomiar tych wartości. Przykładowo, w systemach DVB-T/T2, stosowanie wartości MER powyżej 30 dB jest zalecane dla zapewnienia wysokiej jakości odbioru. Dobre praktyki w tym zakresie obejmują również regularne sprawdzanie parametrów sygnału w różnych porach dnia, aby zidentyfikować potencjalne problemy związane z zakłóceniami w otoczeniu.

Pytanie 28

Czym jest funkcja AF w radiu?

A. Odbieranie informacji drogowych
B. Automatyczna regulacja głośności
C. Automatyczne dostrajanie
D. Odbieranie lokalnych audycji
Nieprawidłowe odpowiedzi odnoszą się do różnych aspektów użytkowania odbiorników radiowych, które nie mają związku z funkcją AF. Odbiór komunikatów drogowych, chociaż istotny w kontekście radiowym, nie jest bezpośrednio związany z funkcją automatycznego dostrojenia. W rzeczywistości, komunikaty drogowe są zazwyczaj transmitowane na specjalnych częstotliwościach i mogą być odbierane niezależnie od jakości sygnału, niezależnie od tego, czy funkcja AF jest aktywna. Odbiór programów lokalnych również nie dotyczy automatycznego dostrojenia, ponieważ funkcja AF ma na celu poprawę jakości sygnału, a nie ograniczenie go do lokalnych nadajników. Automatyczna regulacja siły głosu, choć ważna w kontekście zarządzania poziomem dźwięku, nie ma związku z funkcją AF, która odnosi się stricte do jakości odbioru sygnału. W praktyce, błędem jest mylenie tych funkcji z automatycznym dostrojeniem, co może prowadzić do nieporozumień w temacie technologii radiowych. Użytkownicy powinni zrozumieć, że funkcja AF jest kluczowa dla zapewnienia ciągłości odbioru i jakości sygnału, a nie działa na zasadzie lokalizacji czy regulacji głośności.

Pytanie 29

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. ekrany z uziemieniem
B. chodniki izolacyjne
C. kaski ochronne
D. fartuchy ochronne
Ekrany z uziemieniem są kluczowym elementem ochrony przed falami elektromagnetycznymi, które mogą być emitowane przez różne urządzenia elektryczne i elektroniczne. Uziemienie ekranów pozwala na odprowadzenie nadmiaru ładunku elektrycznego do ziemi, co skutecznie minimalizuje ryzyko narażenia pracowników na szkodliwe skutki promieniowania. W praktyce, ekrany te mogą być stosowane w pomieszczeniach biurowych, laboratoriach oraz wszędzie tam, gdzie występuje znaczna emisja fal elektromagnetycznych. Przykładem zastosowania są stanowiska pracy w laboratoriach analitycznych, gdzie sprzęt pomiarowy wymaga osłony przed zakłóceniami elektromagnetycznymi. Dobre praktyki w branży zalecają regularne kontrole poziomów promieniowania oraz stosowanie odpowiednich środków ochrony osobistej, co obejmuje także monitorowanie skuteczności ekranów z uziemieniem. Warto również podkreślić, że stosowanie takich rozwiązań jest zgodne z normami ochrony zdrowia i bezpieczeństwa w miejscu pracy, co jest kluczowe dla zapewnienia komfortowych warunków pracy.

Pytanie 30

Brak koloru żółtego w telewizorze może być spowodowany uszkodzeniami w torze kolorystycznym

A. czerwonego lub zielonego
B. niebieskiego i czerwonego
C. zielonego lub niebieskiego
D. zielonego i niebieskiego
Hmm, niestety, inne odpowiedzi są błędne, bo źle rozumieją, jak działają kolory w systemie RGB. Wiele osób myśli, że problemy w torze niebieskim lub czerwonym mogą prowadzić do braku koloru żółtego, ale to nie tak działa. Żółty powstaje z czerwonego i zielonego, a niebieski nie ma na to wpływu. Więc jeśli ktoś myśli, że problem leży w torach niebieskim czy czerwonym, to nie do końca rozumie, jak RGB działa. W telewizorach każda barwa to wynik intensywności światła z tych trzech kolorów. Jak brakuje żółtego, to zazwyczaj jest problem z czerwonym lub zielonym. W diagnostyce sprzętu wideo kluczowe jest zrozumienie, które kolory się na siebie nakładają. Często mylimy różne problemy z kolorami i przypisujemy je do niewłaściwych torów, co może prowadzić do niepotrzebnych wydatków na naprawy bądź wymianę części, które nie są wcale uszkodzone. Dlatego tak ważne jest, żeby znać podstawy kolorymetrii i zasady działania wyświetlaczy, bo to naprawdę ułatwia diagnostykę i naprawę elektroniki.

Pytanie 31

Instalacja sieci komputerowej z wykorzystaniem kabla U/UTP jest instalacją

A. nieekranowaną
B. ekranowaną podwójnie
C. ekranowaną
D. światłowodową
Wybór odpowiedzi dotyczących ekranowania kabli, takich jak ekranowana podwójnie, ekranowana, czy światłowodowa, pokazuje nieporozumienie dotyczące podstawowych właściwości kabli U/UTP. Kable ekranowane, w przeciwieństwie do U/UTP, posiadają dodatkową warstwę ochronną, która pomaga w minimalizowaniu zakłóceń elektromagnetycznych. Ekranowanie jest niezbędne w warunkach, gdzie występuje wysoki poziom zakłóceń, takich jak w pobliżu silnych źródeł elektromagnetycznych. Jednak, w większości typowych zastosowań, gdzie kabel U/UTP jest wykorzystywany, nie ma potrzeby stosowania ekranów, co czyni je bardziej praktycznym i ekonomicznym rozwiązaniem. Z kolei odpowiedź dotycząca kabli światłowodowych jest również błędna, ponieważ kable U/UTP są zbudowane na zupełnie innej zasadzie, gdzie dane przesyłane są za pomocą sygnałów elektrycznych, a nie optycznych. Kable światłowodowe oferują większe prędkości i odległości transmisji, ale są droższe i wymagają bardziej skomplikowanej instalacji. Kluczowe błędy myślowe w analizie tego pytania mogą obejmować mylenie wymagań dotyczących konkretnej instalacji oraz nieznajomość specyfikacji technicznych poszczególnych rodzajów kabli. Ważne jest, aby na etapie projektowania sieci komputerowej rozważyć warunki środowiskowe, jakie będą panować w miejscu instalacji, aby odpowiednio dobrać typ kabla, co pozwoli na uzyskanie optymalnej wydajności i niezawodności sieci.

Pytanie 32

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. potencjometrem
B. cewką regulowaną
C. filtr z regulowaną indukcyjnością
D. kondensatorem dostrojczym
Kondensator dostrojczy jest elementem elektronicznym, który jest używany do regulacji częstotliwości obwodów rezonansowych w aplikacjach takich jak radioodbiorniki, nadajniki i systemy komunikacyjne. Działa na zasadzie zmiany pojemności, co wpływa na częstotliwość rezonansową obwodu LC (indukcyjność i kondensator). Przykładem zastosowania kondensatora dostrojczego może być dostrajanie fal radiowych w odbiornikach radiowych, gdzie użytkownik może dostosować pojemność kondensatora, aby odbierać różne stacje. W branży elektronicznej, szczególnie w projektowaniu filtrów pasmowych czy oscylatorów, stosowanie kondensatorów dostrojczych jest standardem, ponieważ pozwala na precyzyjne dostrojenie sygnałów do odpowiednich częstotliwości. Ponadto, dobrą praktyką jest zazwyczaj korzystanie z kondensatorów o wysokiej jakości dielektrycznej, co minimalizuje straty energii i poprawia stabilność działania urządzenia. W kontekście obwodów elektronicznych, znajomość właściwości kondensatorów dostrojczych i ich zastosowań jest kluczowa dla inżynierów i techników zajmujących się elektroniką.

Pytanie 33

Do styku oznaczonego jako TMP w czytniku kart umiejscowionym przy wejściu należy podłączyć

A. szeregowo do zasilania czytnika
B. do linii antysabotażowej systemu alarmowego
C. równolegle do zasilania czytnika
D. do zacisku uziemiającego w centrali
Odpowiedź wybierająca podłączenie styku TMP do linii antysabotażowej systemu alarmowego jest prawidłowa, ponieważ styk ten jest zaprojektowany w celu wykrywania prób sabotażu czytnika. Podłączenie do linii antysabotażowej zapewnia, że wszelkie nieautoryzowane manipulacje przy czytniku lub jego odłączenie zostaną natychmiast zasygnalizowane systemowi alarmowemu. Taka konfiguracja jest zgodna z dobrymi praktykami ochrony obiektów, która zakłada, że urządzenia zabezpieczające powinny być monitorowane pod kątem ich integralności. Na przykład, w przypadku, gdy ktoś spróbuje usunąć czytnik z miejsca montażu, linia antysabotażowa wykryje to zdarzenie, co pozwoli na natychmiastowe powiadomienie odpowiednich służb. Implementacja tego rozwiązania w systemach zabezpieczeń jest standardem w branży, co potwierdzają normy takie jak EN 50131, które regulują kwestie bezpieczeństwa instalacji alarmowych.

Pytanie 34

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. hełm ochronny
B. rękawice elektroizolacyjne
C. obuwie elektroizolacyjne
D. odzież ochronną
Wybór rękawic elektroizolacyjnych, hełmu ochronnego lub obuwia elektroizolacyjnego, mimo że są to elementy ochrony osobistej, nie jest adekwatny do konkretnego kontekstu prac serwisowych związanych z wlutowywaniem elementów elektronicznych we wzmacniaczu akustycznym. Rękawice elektroizolacyjne są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym, co jest istotne w sytuacjach pracy z napięciem, ale nie są one absolutnie wymagane w przypadku, gdy prace nie dotyczą elementów pod napięciem. Hełm ochronny ma zastosowanie w sytuacjach, gdzie istnieje ryzyko urazów głowy, jednak w typowym środowisku warsztatowym przy wlutowywaniu elementów, ryzyko to jest zminimalizowane. Obuwie elektroizolacyjne jest istotne w kontekście ochrony przed porażeniem, ale jego użycie nie jest konieczne, jeśli prace nie są wykonywane w obszarze zagrożonym wysokim napięciem. Niewłaściwe podejście do doboru środków ochrony osobistej może prowadzić do błędów w ocenie ryzyka, co z kolei zwiększa szansę na wystąpienie wypadków. Kluczowe jest zrozumienie, że każdy rodzaj ochrony powinien być dostosowany do specyfiki pracy, a ogólna zasada mówi, że zawsze należy stosować odpowiednią odzież ochronną, aby zapewnić bezpieczeństwo w miejscu pracy. W praktyce, niezastosowanie odzieży ochronnej może prowadzić do kontaktu z substancjami szkodliwymi, co może skutkować poważnymi konsekwencjami zdrowotnymi.

Pytanie 35

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. równolegle
B. w trójkąt
C. szeregowo
D. w gwiazdę
Łączenie czujek w sposób równoległy, trójkątny czy w gwiazdę to kiepski pomysł dla czujek PIR typu NC. Przy połączeniu równoległym każda czujka działa osobno, co może sprawić, że tylko jedna z nich włączy alarm. To może osłabić bezpieczeństwo, bo jeśli jedna czujka nie działa, to może się zdarzyć, że nie wyczuje ruchu. Metoda trójkątna zupełnie nie pasuje do alarmów i może być trudna w diagnozowaniu problemów. A jak dodasz połączenie w gwiazdę, to jeszcze więcej połączeń, co z kolei może sprawić, że system częściej się psuje. Błędne łączenie czujek bierze się często z niezrozumienia działania obwodów alarmowych. Ważne jest, żeby system działał tak, żeby alarm włączał się przy wykryciu intruza, a to można osiągnąć tylko przez połączenie szeregowe.

Pytanie 36

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. zasilacza
B. potencjometru
C. głośnika
D. wzmacniacza mocy
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 37

Jakie dodatkowe środki ochrony przeciwporażeniowej nie są wymagane podczas serwisowania urządzeń elektronicznych?

A. Uziemienie ochronne
B. Zerowanie ochronne
C. Wyłączniki różnicowoprądowe
D. Ekranowanie elektromagnetyczne
Ekranowanie elektromagnetyczne jest techniką stosowaną w celu ograniczenia wpływu pola elektromagnetycznego na urządzenia elektroniczne, jednak nie jest uznawane za środek ochrony przeciwporażeniowej, co czyni tę odpowiedź poprawną. W kontekście serwisowania urządzeń elektronicznych, kluczowymi środkami ochrony są uziemienie ochronne, wyłączniki różnicowoprądowe oraz zerowanie ochronne, które mają na celu ochronę przed porażeniem prądem elektrycznym. Uziemienie ochronne zapewnia bezpieczne odprowadzenie prądu do ziemi w przypadku uszkodzenia izolacji, co jest istotne w przypadku pracy z urządzeniami pod napięciem. Wyłączniki różnicowoprądowe wykrywają różnicę w prądzie między przewodami fazowym a neutralnym, co pozwala na szybkie odcięcie zasilania w przypadku wystąpienia nieprawidłowości. Zerowanie ochronne polega na podłączeniu obudowy urządzenia do uziemienia, co zwiększa bezpieczeństwo użytkowników. Ekranowanie elektromagnetyczne, mimo że jest ważne w kontekście minimalizacji zakłóceń w sygnałach, nie jest niezbędne dla ochrony przed porażeniem.

Pytanie 38

W instrukcji uruchomienia urządzenia znalazło się polecenie: "....dostroić obwód rezonansowy trymerem do częstotliwości....". Jakie jest inne określenie na trymer?

A. potencjometru
B. filtru z regulowaną indukcyjnością
C. kondensatora dostrojczego
D. cewki regulowanej
Kondensator dostrojczy, często nazywany trymerem, jest elementem elektronicznym, który pozwala na precyzyjne dostrajanie obwodów rezonansowych, szczególnie w aplikacjach radiowych i audio. Umożliwia on zmianę pojemności w sposób, który wpływa na częstotliwość rezonansową obwodu LC (cewka-kondensator). Przykładowo, w urządzeniach odbiorczych, takich jak radia, dostrajanie za pomocą kondensatora dostrojczego pozwala na selekcję konkretnej stacji radiowej poprzez precyzyjne ustawienie częstotliwości. W standardach projektowania obwodów analogowych, korzystanie z kondensatorów dostrojczych jest powszechną praktyką, związaną z zapewnieniem stabilności i dokładności w działaniu urządzeń. W kontekście inżynierii RF (radiofrekwencyjnej), poprawne dostrojenie obwodu rezonansowego jest kluczowe dla optymalizacji wydajności sygnałów oraz minimalizacji zakłóceń, co jest istotne dla jakości odbioru sygnałów radiowych.

Pytanie 39

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. pamięci statycznych
B. czasowych
C. pamięci dynamicznych
D. programowalnych
Wybór odpowiedzi dotyczącej pamięci, niezależnie czy to dynamiczne, statyczne, czy jakieś czasowe, to błąd. Te układy mają zupełnie inną funkcję niż programowalne układy logiczne. Pamięci dynamiczne (czyli DRAM) i statyczne (SRAM) to układy, które służą do przechowywania danych, a nie do wykonywania operacji logicznych. Zwykle używamy ich w komputerach i innych urządzeniach elektronicznych. Z kolei układy czasowe, jak te nasze zegarowe, zajmują się synchronizowaniem operacji w systemach digitalnych, ale nie mają tej fajnej możliwości programowania logiki jak PLD. Często mylimy te wszystkie funkcje i skupiamy się na tym, co już znamy, nie myśląc o ich rzeczywistym zastosowaniu. W praktyce rozróżnienie tych układów jest niezwykle ważne dla skutecznego projektowania systemów elektronicznych. Programowalne układy logiczne dają nam swobodę w projektowaniu, podczas gdy pamięci mają już ustaloną funkcję i nie możemy ich zmieniać po wyprodukowaniu.

Pytanie 40

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. generatora
B. wzmacniacza
C. filtra
D. zasilacza
Wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik sprawności energetycznej to kluczowe parametry wzmacniaczy. Wzmacniacze są urządzeniami elektrycznymi, których podstawowym zadaniem jest zwiększenie amplitudy sygnału elektrycznego. Wzmocnienie mocy odnosi się do zdolności wzmacniacza do podnoszenia mocy sygnału, co jest niezbędne w aplikacjach audio, telekomunikacyjnych czy radiowych. Moc wyjściowa określa, ile energii wzmacniacz może dostarczyć do obciążenia, co ma kluczowe znaczenie dla zapewnienia odpowiedniej jakości dźwięku lub sygnału. Pasmo przenoszenia natomiast definiuje zakres częstotliwości, w jakim wzmacniacz może efektywnie działać, co jest istotne w kontekście reprodukcji dźwięku czy przesyłania danych. Współczynnik sprawności energetycznej mierzy, jak efektywnie wzmacniacz przekształca moc zasilania na moc wyjściową, co jest istotne dla ograniczenia strat energii i poprawy wydajności systemu. Przykładem zastosowania wzmacniacza może być system audio, gdzie poprawne zgranie tych parametrów decyduje o jakości dźwięku i jego mocy. Zgodnie z normami branżowymi, jak np. normy IEC, ważne jest, aby wzmacniacze były projektowane z uwzględnieniem tych parametrów, aby spełniały wymagania użytkowników i zapewniały niezawodność w działaniu.