Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 31 maja 2025 10:21
  • Data zakończenia: 31 maja 2025 10:39

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Obwody SELV
C. Obwody PELV
D. Separacja elektryczna
Izolowanie stanowiska jako środek ochrony przed porażeniem prądem elektrycznym nie jest zalecane w pomieszczeniach z zainstalowaną wanną lub prysznicem, ponieważ takie miejsca są szczególnie narażone na kontakt z wodą, a tym samym zwiększone ryzyko porażenia. Praktyka izolowania stanowiska polega na tworzeniu fizycznych barier, które mają na celu zminimalizowanie ryzyka kontaktu z żywymi częściami. W kontekście pomieszczeń mokrych, jednak, kluczowe jest stosowanie bardziej zaawansowanych środków ochrony, które są zgodne z przepisami zawartymi w normach IEC 60364 oraz PN-EN 61140. Przykładem zabezpieczenia, które może być stosowane w takich warunkach, są obwody SELV, które zapewniają niskie napięcie bezpieczeństwa. W takich miejscach, gdzie ryzyko kontaktu z wodą jest wysokie, istotne jest również, aby instalacje były odpowiednio zabezpieczone i aby stosować osprzęt o podwyższonym stopniu ochrony, na przykład z klasą IP44 lub wyższą.

Pytanie 2

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
B. wprowadzeniu barier chroniących przed przypadkowym kontaktem
C. umieszczeniu elementów aktywnych poza zasięgiem ręki
D. zastosowaniu osłon chroniących przed zamierzonym dotykiem
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 3

Jaką wartość prądu znamionowego powinien mieć bezpiecznik chroniący uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeśli jest przeznaczony do pracy z obciążeniem rezystancyjnym o maksymalnej mocy 100 W?

A. 0,4 A
B. 1,0 A
C. 0,5 A
D. 0,8 A
Wybór niewłaściwej wartości prądu znamionowego bezpiecznika do zabezpieczenia uzwojenia pierwotnego transformatora bezpieczeństwa może prowadzić do niebezpieczeństwa przegrzania i uszkodzenia zarówno transformatora, jak i podłączonego obciążenia. Odpowiedzi 0,4 A, 0,8 A oraz 1,0 A są błędne z różnych powodów. Wartość 0,4 A jest zbyt niska, aby zapewnić odpowiednie zabezpieczenie; w przypadku obciążenia wynoszącego 100 W, prąd przy 230 V wynosi 0,435 A, a stosowanie bezpiecznika o nominale mniejszym od obliczonego naraża układ na ryzyko uszkodzenia przy normalnej pracy. Odpowiedź 0,8 A jest z kolei zbyt wysoka, co może prowadzić do sytuacji, w której bezpiecznik nie zadziała w przypadku rzeczywistych przeciążeń, ponieważ w sytuacji awaryjnej nie zabezpieczy on obwodu przed nadmiernym prądem. Analogicznie, 1,0 A również jest nieodpowiednie, ponieważ przekracza maksymalny prąd uzwojenia pierwotnego, co zwiększa ryzyko uszkodzenia. Ponadto, przy obliczeniach nie uwzględniono jakie kolizje mogą wystąpić w układzie z uwagi na różne warunki obciążenia, co jest kluczowe w praktycznych zastosowaniach elektrycznych. Przy wyborze wartości bezpiecznika istotne jest także uwzględnienie marginesów tolerancji, jakie stosują odpowiednie normy, takie jak PN-EN 60269. Prawidłowy dobór bezpiecznika jest zatem kluczowy dla zapewnienia efektywności oraz bezpieczeństwa działania całego systemu elektrycznego.

Pytanie 4

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy5 i Dy11
B. Dy3 i Dy9
C. Dy1 i Dy5
D. Dy7 i Dy11
Wybór innych grup połączeń transformatorów, takich jak Dy3, Dy9, Dy1, Dy7, czy Dy11 nie jest w pełni uzasadniony w kontekście zastosowań praktycznych, co prowadzi do zrozumienia nieprawidłowości w podejściu do wyboru odpowiedniej konfiguracji. Połączenie Dy3, oparte na trójkącie, jest wykorzystywane, gdy nie ma potrzeby redukcji harmonik, co skutkuje większymi stratami mocy w niektórych warunkach eksploatacyjnych. Z kolei Dy9, mimo że również ma swoje zastosowanie, nie jest rekomendowane do ogólnych zastosowań z uwagi na większe ryzyko wystąpienia problemów z jakością energii. Odpowiedzi takie jak Dy1 i Dy5 mogą prowadzić do nieefektywności, ponieważ Dy1 nie jest standardowym ani zalecanym połączeniem w normach, co przypisuje mu mniejsze zastosowanie w praktycznych systemach. Dy7 ma swoje specyficzne zastosowania, ale w kontekście ogólnych norm i praktyk, nie jest zalecanym wyborem. Istotne jest, aby przy podejmowaniu decyzji o wyborze połączeń brać pod uwagę nie tylko teoretyczne aspekty, ale także praktyczną efektywność, niezawodność oraz zgodność z normami branżowymi, co jest kluczowe w projektowaniu i eksploatacji systemów zasilania.

Pytanie 5

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Pęknięcie pierścieni zwierających pręty wirnika
B. Poluzowanie tabliczki zaciskowej
C. Nagle zwiększone napięcie zasilające
D. Nagle zmniejszone napięcie zasilające
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 6

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80

A. 37,72 A
B. 38,64 A
C. 32,66 A
D. 30,82 A
Wybór złej odpowiedzi może wynikać z różnych nieporozumień. Przede wszystkim, warto ogarnąć, że temperatura wpływa na to, jak dobrze przewody przewodzą prąd. W przypadku PVC, im wyższa temperatura, tym obciążalność jest niższa. Niektórzy ludzie mogą myśleć, że obciążalność zostaje taka sama lub spada tylko minimalnie, co nie prowadzi do dobrych obliczeń. A jak się zapomni o normach jak PN-IEC 60364, można łatwo pominąć ważne zasady przy projektowaniu. W praktyce, zwłaszcza w instalacjach przemysłowych, gdzie przewody mogą być mocno nagrzane, istotne jest, żeby dostosować obciążalność do rzeczywistych warunków. Ignorowanie tych rzeczy może skończyć się niebezpiecznie, nawet uszkodzeniami przewodów, co w skrajnych sytuacjach oznacza ryzyko pożaru. Myśląc, że temperatura powietrza nie robi dużej różnicy, można wprowadzić w błąd zabezpieczenia, więc ta wiedza o współczynnikach poprawkowych ma ogromne znaczenie dla każdego, kto działa w branży elektrycznej.

Pytanie 7

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Dostawca energii elektrycznej
B. Zarządca obiektu
C. Właściciel obiektu
D. Producent energii elektrycznej
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 8

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gB
B. aL
C. aM
D. gR
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 9

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. W sąsiedztwie pokrywy wentylatora
B. Na końcu obudowy w rejonie napędu
C. W centralnej części obudowy blisko skrzynki przyłączeniowej
D. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 10

Uzwojenie pierwotne transformatora jednofazowego jest zrobione z drutu nawojowego

A. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i wyższej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
Wybrane odpowiedzi mylą podstawowe zasady działania transformatorów. Uzwojenie pierwotne nie powinno być wykonane z drutu o większej średnicy ani mniejszej liczbie zwojów niż uzwojenie wtórne, ponieważ takie podejście skutkuje osłabieniem indukcji elektromagnetycznej. Przy mniejszej liczbie zwojów w uzwojeniu pierwotnym, pole magnetyczne generowane w rdzeniu byłoby niewystarczające do efektywnego przekazywania energii, co prowadziłoby do niskiej wydajności transformatora. Kolejnym błędem jest założenie, że większa średnica drutu w uzwojeniu pierwotnym sprzyja zwiększeniu efektywności. W rzeczywistości, cieńszy drut z większą liczbą zwojów pozwala na skoncentrowanie pola magnetycznego, co jest kluczowe dla działania transformatora. W przypadku stosowania drutu o większej średnicy, efektywność transformacji napięcia uległaby znacznemu pogorszeniu, a straty energii z powodu efektu Joule'a wzrosłyby. Ponadto, w kontekście inżynierii elektrycznej, projektowanie uzwojeń opiera się na zasadach indukcji elektromagnetycznej oraz na optymalizacji parametrów, co sprawia, że wiedza o liczbie zwojów oraz ich średnicy jest niezbędna do stworzenia efektywnego urządzenia. Użycie niewłaściwych wartości nie tylko obniża efektywność, ale również może prowadzić do awarii urządzenia.

Pytanie 11

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby zredukować prąd rozruchowy
B. Aby zwiększyć moment rozruchowy
C. Aby poprawić przeciążalność
D. Aby obniżyć prędkość obrotową
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 12

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zaśmiecenie komutatora pyłem węglowym
B. brak kontaktu szczotek z komutatorem
C. umiejscowienie szczotek poza obszarem neutralnym
D. zbyt mocny nacisk szczotek na komutator
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 13

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 0,8 IΔN
B. Od 0,5 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,2 IΔN
D. Od 0,3 IΔN do 1,0 IΔN
Zakresy prądów różnicowych, które są w niepoprawnych odpowiedziach, mogą powodować złe wnioski o tym, jak działają wyłączniki różnicowoprądowe. Odpowiedzi, które mówią o zakresach poniżej 0,5 IΔN, nie są dobre, bo mogą wywoływać fałszywe wyłączenia i stanowią zagrożenie dla ludzi. Wyłączniki są projektowane do działania w określonych warunkach, więc ich czułość musi być dopasowana do tego, co się dzieje w rzeczywistości. Na przykład, ustawienie na 0,3 IΔN może sprawić, że wyłącznik wyłączy się z powodu normalnych wahań prądu, a nie rzeczywistego zagrożenia. Z drugiej strony, za wysoki zakres, jak 1,2 IΔN, może stwarzać niebezpieczeństwo, bo nie uwzględnia, że ​​ochrona różnicowoprądowa ma za zadanie wykrywać małe prądy upływowe. Ważne, żeby użytkownicy wiedzieli, że wybór odpowiedniego wyłącznika różnicowoprądowego oraz zrozumienie jego parametrów jest kluczowe dla bezpieczeństwa, czy to w domach, czy w przemyśle.

Pytanie 14

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Przerwa w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu pierwotnym
C. Przerwa w uzwojeniu wtórnym
D. Zwarcie w uzwojeniu wtórnym
Odpowiedzi sugerujące przerwę w uzwojeniu wtórnym lub pierwotnym są błędne z kilku powodów. Przerwa w uzwojeniu wtórnym spowodowałaby brak napięcia na uzwojeniu wtórnym, co w tym przypadku nie jest zgodne z wynikami pomiarów. Zmierzona wartość napięcia wtórnego w wysokości 460 V wskazuje, że uzwojenie wtórne jest sprawne i nie ma przerwy. Podobnie, przerwa w uzwojeniu pierwotnym skutkowałaby brakiem napięcia na uzwojeniu pierwotnym, a zatem napięcie 230 V, które zmierzono, również wskazuje na jego sprawność. Dodatkowo, zwarcie w uzwojeniu wtórnym, które mogłoby występować, prowadziłoby do dużego przepływu prądu, co jest sprzeczne z obserwowanymi wynikami pomiarów. Zrozumienie działania transformatorów obniżających napięcie oraz ich struktury jest kluczowe dla diagnostyki takich uszkodzeń. Interpretacja wyników pomiarów wymaga znajomości podstawowych zasad rządzących przekładnią napięciową, które determinują stosunek napięć na uzwojeniach. Dlatego ważne jest, by przedstawić poprawne rozumienie stanu transformatora w kontekście jego funkcjonalności oraz wykonać odpowiednie testy w celu zweryfikowania stanu technicznego urządzenia.

Pytanie 15

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 4 lata
B. 2 lata
C. 1 rok
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 16

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 21 ?
B. 22 ?
C. 11 ?
D. 10 ?
Aby obliczyć całkowitą wartość rezystancji rozrusznika, należy najpierw zrozumieć, że przy rozruchu silnika prąd osiąga wartość dwukrotnie wyższą niż prąd znamionowy. W tym przypadku prąd rozruchowy wynosi 2 * I_N = 2 * 20 A = 40 A. Całkowita rezystancja układu, która pozwoli na osiągnięcie tego prądu przy napięciu znamionowym, może być obliczona za pomocą prawa Ohma: R = U / I. Podstawiając dane: R = 440 V / 40 A = 11 ?. Następnie, uwzględniając rezystancje twornika (R_t = 0,5 ?) oraz rezystancję wzbudzenia (R_W = 0,5 ?), możemy obliczyć całkowitą rezystancję rozrusznika jako: R_rozrusznika = R - (R_t + R_W) = 11 ? - 1 ? = 10 ?. Takie wyliczenie jest kluczowe przy projektowaniu obwodów rozruchowych i zapewnia, że silnik będzie uruchamiany w sposób bezpieczny i efektywny. W praktyce, prawidłowe dobranie rezystancji rozrusznika może znacznie wydłużyć żywotność sprzętu oraz zminimalizować ryzyko uszkodzeń.

Pytanie 17

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Zwiększenie temperatury przewodu
B. Obniżenie rezystancji pętli zwarciowej
C. Wzrost spadku napięcia na przewodach
D. Obniżenie obciążalności prądowej
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 18

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. sprawdzić ciągłość obwodu wirnika
B. odłączyć rezystory rozruchowe
C. zwierać uzwojenie stojana
D. wymienić szczotki
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 19

Skuteczność ochrony przeciwporażeniowej w sieci typu TN o napięciu 230/400 V jest zapewniona, gdy w czasie zwarcia L-PE (lub L-PEN) w odpowiednich warunkach środowiskowych dojdzie do

A. reakcji zabezpieczeń przeciwprzepięciowych
B. reakcji zabezpieczeń przednapięciowych
C. odłączenia obwodu przez przekaźnik termiczny
D. automatycznego wyłączenia zasilania
W przypadku sieci typu TN o napięciu 230/400 V, skuteczna ochrona przeciwporażeniowa w sytuacji zwarcia L-PE (lub L-PEN) polega na samoczynnym wyłączeniu zasilania. To działanie jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym, ponieważ szybkie odłączenie zasilania ogranicza czas narażenia ludzi na niebezpieczeństwo. W praktyce oznacza to, że w momencie wykrycia zwarcia, urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe lub wyłączniki automatyczne, powinny natychmiast zareagować i przerwać dopływ prądu do obwodu. Zgodnie z normą PN-EN 60364, czas wyłączenia zasilania powinien być dostosowany do specyfiki instalacji oraz warunków środowiskowych. W wielu przypadkach czas reakcji zabezpieczeń powinien wynosić nie więcej niż 0,4 sekundy dla systemów zasilających o napięciu do 400 V. W praktyce, aby zapewnić bezpieczeństwo użytkowników, niezwykle istotne jest regularne sprawdzanie i konserwacja urządzeń zabezpieczających, co zapobiega ich niesprawności w sytuacjach awaryjnych. Samoczynne wyłączenie zasilania to więc fundamentalny element ochrony przeciwporażeniowej, który powinien być brany pod uwagę na etapie projektowania oraz eksploatacji instalacji elektrycznych.

Pytanie 20

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667

A. 6 mm2
B. 10 mm2
C. 4 mm2
D. 16 mm2
Wybór niewłaściwego przekroju przewodów dla instalacji trójfazowej może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i efektywności energetycznej. W przypadku odpowiedzi 6 mm2, chociaż teoretycznie zbliżone do wartości 36 A, przekrój ten jest na granicy obciążalności, co w praktyce może powodować ryzyko przegrzewania się przewodów, a w konsekwencji ich uszkodzenia. Przekrój 4 mm2 jest zdecydowanie niewystarczający, ponieważ jego obciążalność wynosi tylko 25 A, co stanowi poważne zagrożenie dla instalacji, a w skrajnych przypadkach może prowadzić do pożaru. Wybór przekroju 16 mm2, mimo iż wydaje się bezpieczny, jest nieekonomiczny i niepraktyczny dla danego obciążenia, co skutkuje niepotrzebnymi kosztami materiałowymi. Wszystkie te błędy są wynikiem braku zrozumienia podstawowych zasad dotyczących doboru przekrojów przewodów, które powinny bazować na przewidywanych obciążeniach oraz specyfice instalacji. Zgodnie z wytycznymi norm, takich jak PN-IEC 60364, powinno się stosować przekroje adekwatne do warunków pracy, aby zapewnić bezpieczeństwo i efektywność energetyczną systemu. Odpowiednie podejście do doboru przekrojów jest kluczem do minimalizacji ryzyka awarii oraz zwiększenia trwałości systemu elektrycznego.

Pytanie 21

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-00 gF
B. WT/NH aM
C. WT/NH DC
D. WT-2 gTr
Wkładka topikowa WT/NH aM jest odpowiednia do zabezpieczania silników indukcyjnych przed skutkami zwarć, ponieważ charakteryzuje się dużą zdolnością do przerwania prądu oraz odpowiednim czasem zadziałania. W porównaniu do innych wkładek, aM (motor) zapewnia lepszą ochronę w przypadku prądów rozruchowych, które mogą być znacznie wyższe od normalnych wartości roboczych. W praktyce, takie wkładki są stosowane w układach zasilających silników elektrycznych, które podczas rozruchu mogą generować prądy nawet 5-7 razy większe od nominalnych. Dzięki właściwościom aM, wkładki te pozwalają na dłuższe tolerowanie tych wysokich prądów, co znacząco zwiększa bezpieczeństwo i nie powoduje niepotrzebnych wyłączeń. Dodatkowo, zgodnie z normą IEC 60269, wkładki aM są przystosowane do ochrony silników przed przeciążeniem, co czyni je idealnym wyborem w aplikacjach przemysłowych. Warto zaznaczyć, że stosowanie wkładek zabezpieczających powinno odbywać się zgodnie z zaleceniami producentów urządzeń oraz normami bezpieczeństwa, co zwiększa ich efektywność i niezawodność.

Pytanie 22

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat

A. C.
B. D.
C. A.
D. B.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań prawnych dotyczących pomiarów w instalacjach elektrycznych. Niektórzy mogą mylnie uważać, że pomiary skuteczności ochrony przeciwporażeniowej powinny być przeprowadzane częściej niż co 5 lat, co nie znajduje potwierdzenia w przepisach Prawa budowlanego. Częstsze wykonywanie tych pomiarów nie tylko generuje niepotrzebne koszty, ale także może prowadzić do zjawiska przestymulowania, gdzie wykonawcy, skupiając się na nadmiarowych interwencjach, zaniedbują istotne aspekty konserwacji i nadzoru. Ponadto, nieprawidłowe przekonanie o rocznych pomiarach rezystancji izolacji często powoduje pominięcie bardziej kompleksowych analiz stanu technicznego instalacji. Kluczowym jest zrozumienie, że pomiary te mają na celu potwierdzenie, iż instalacja spełnia wymogi bezpieczeństwa przez dłuższy czas, a nie tylko w krótkich interwałach. Najlepsze praktyki w obszarze ochrony przeciwporażeniowej zalecają stosowanie okresowych przeglądów zgodnych z ustalonym harmonogramem, co pozwala na efektywne zarządzanie bezpieczeństwem elektrycznym. W związku z tym, ignorowanie wytycznych dotyczących interwałów pomiarowych prowadzi do niepełnego obrazu stanu instalacji i może narażać użytkowników na poważne ryzyko. Zrozumienie tych zasad jest kluczowe dla skutecznego zarządzania bezpieczeństwem w obiektach edukacyjnych.

Pytanie 23

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Halotron
B. Tensometr
C. Piezorezystor
D. Pozystor
Pozystor, to element elektroniczny wykorzystywany głównie w obwodach elektronicznych jako czujnik temperatury. Choć może wydawać się atrakcyjny do pomiarów, to jednak nie jest odpowiedni do pomiaru momentu obrotowego, ponieważ nie może bezpośrednio mierzyć deformacji mechanicznych ani sił działających na wał. Jego działanie opiera się na zmianie oporu elektrycznego w reakcji na temperaturę, co nie ma związku z dynamiką momentu obrotowego. Halotron to kolejny typ czujnika, który jest wykorzystywany w pomiarach pola magnetycznego, a nie do analizy momentu obrotowego. Jego zasada działania opiera się na detekcji zmian w polu magnetycznym, co nie jest związane z pomiarem siły mechanicznej. Piezorezystor, mimo że może reagować na zmiany ciśnienia lub deformacji, również nie jest idealnym rozwiązaniem w kontekście pomiaru momentu obrotowego, ponieważ jego zastosowanie jest bardziej skoncentrowane na pomiarach w systemach ciśnienia. Przykłady zastosowania piezorezystorów obejmują czujniki ciśnienia, a nie pomiar momentu obrotowego. Typowe błędy w myśleniu, które prowadzą do wyboru nieodpowiednich czujników, obejmują mylenie charakterystyki pomiarowej z warunkami pracy oraz nieznajomość zastosowania konkretnego przetwornika w praktyce. Właściwy dobór przetwornika jest kluczowy dla uzyskania precyzyjnych i wiarygodnych rezultatów pomiarowych.

Pytanie 24

Jaką czynność można wykonać przy lokalizacji uszkodzeń w trakcie funkcjonowania instalacji oraz urządzeń elektrycznych w obszarach narażonych na wybuch?

A. Wymiana źródeł oświetlenia
B. Demontaż obudów urządzeń
C. Dokręcanie luźnych śrub w osłonach urządzeń
D. Pomiar temperatury zewnętrznych powierzchni obudów silników
Wymiana źródeł światła, otwieranie obudów urządzeń oraz dokręcanie poluzowanych śrub w osłonach urządzeń to czynności, które są niewłaściwe do wykonywania w strefach zagrożonych wybuchem. Wymiana źródeł światła często wiąże się z koniecznością demontażu osprzętu, co może zakłócić szczelność obudowy, a tym samym wprowadzić potencjalne źródło zapłonu. W strefach wybuchowych kluczowe jest utrzymanie integralności urządzeń oraz unikanie wszelkich działań, które mogą zwiększyć ryzyko. Otwieranie obudów urządzeń to kolejna czynność, która wiąże się z ryzykiem, ponieważ wprowadza do wnętrza obudowy powietrze z zewnątrz, co w przypadku obecności łatwopalnych substancji może prowadzić do niebezpiecznych sytuacji. Dokręcanie poluzowanych śrub również może stanowić problem, ponieważ zmiana stanu obudowy mogłaby wpłynąć na jej szczelność i zdolność do ochrony przed czynnikami zewnętrznymi. Często w takich strefach należy stosować odpowiednie procedury konserwacyjne, które są zgodne z wytycznymi producentów oraz standardami branżowymi, aby zminimalizować ryzyko wybuchu. Dlatego każda niesubordynacja wobec tych zasad może prowadzić do tragicznych konsekwencji, co podkreśla konieczność ścisłego przestrzegania wytycznych i stosowanie się do najlepszych praktyk w zakresie bezpieczeństwa elektrycznego.

Pytanie 25

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Częstościomierz
B. Fazomierz
C. Waromierz
D. Watomierz
Wybór pozostałych mierników, takich jak watomierz, częstościomierz i waromierz, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowań w kontekście pomiaru współczynnika mocy. Watomierz, mimo że mierzy zużycie energii, nie dostarcza informacji na temat relacji między mocą czynną a mocą pozorną. Jego pomiar koncentruje się na ilości energii przekazywanej w jednostce czasu, a więc nie bierze pod uwagę charakterystyki obciążenia indukcyjnego, co jest kluczowe przy ocenie współczynnika mocy. Częstościomierz z kolei mierzy częstotliwość sygnałów, co nie ma bezpośredniego związku z mocą, a więc nie może być użyty do analizy efektywności energetycznej silnika. Waromierz, używany do pomiaru wartości energii, również nie jest narzędziem adekwatnym do oceny współczynnika mocy, ponieważ jego zastosowanie ogranicza się głównie do analizy energii w kontekście statycznym, a nie dynamicznym. Typowym błędem myślowym jest założenie, że pomiar mocy elektrycznej i ocena współczynnika mocy są tożsame, co może prowadzić do wybierania niewłaściwych narzędzi pomiarowych i błędnej analizy wyników. Aby efektywnie zarządzać energią w instalacjach przemysłowych, kluczowe jest posługiwanie się odpowiednimi przyrządami, takimi jak fazomierz, które są zgodne z normami branżowymi i najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 26

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Wzrost rezystancji pętli zwarcia
B. Wzrost obciążalności prądowej instalacji
C. Obniżenie napięcia roboczego
D. Obniżenie wytrzymałości mechanicznej przewodów
Wybór odpowiedzi dotyczącej zwiększenia rezystancji pętli zwarcia jest błędny, ponieważ nie uwzględnia podstawowych zasad dotyczących przewodnictwa elektrycznego. Przewody DY, w przeciwieństwie do ADG, mają lepsze parametry przewodzenia prądu, co automatycznie wiąże się z obniżeniem rezystancji. Wykorzystanie przewodów o niższej rezystancji jest kluczowe dla bezpieczeństwa instalacji, ponieważ zmniejsza ryzyko przegrzania oraz skutków zwarcia. Zwiększenie rezystancji pętli zwarcia mogłoby prowadzić do niepożądanych skutków, takich jak zbyt wysokie napięcia podczas zwarcia, co zagraża bezpieczeństwu użytkowników. Kolejnym błędnym rozumowaniem jest przekonanie, że zmiana na przewody DY zmniejsza wytrzymałość mechaniczną przewodów. W rzeczywistości przewody DY mają lepsze właściwości mechaniczne, co czyni je bardziej odpornymi na uszkodzenia, a tym samym zwiększa ich żywotność. Co więcej, obniżenie napięcia roboczego nie ma związku z rodzajem zastosowanych przewodów, ponieważ napięcie robocze zależy od projektowanych parametrów instalacji oraz używanych urządzeń. Właściwy dobór przewodów nie tylko poprawia parametry techniczne instalacji, ale także zwiększa jej bezpieczeństwo i niezawodność, co jest zgodne z obowiązującymi normami i standardami branżowymi.

Pytanie 27

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 100 mA
B. 300 mA
C. 30 mA
D. 10 mA
Wybór wartości 30 mA, 100 mA lub 10 mA jako maksymalnego dopuszczalnego różnicowego prądu znamionowego dla wyłącznika różnicowoprądowego w kontekście ochrony przeciwpożarowej jest błędny. Prąd różnicowy 30 mA jest najczęściej stosowany w instalacjach do ochrony przed porażeniem elektrycznym ludzi, natomiast jego zastosowanie w kontekście ochrony przeciwpożarowej jest niewłaściwe. W tego typu sytuacjach, wyłączniki o wartości 30 mA mogą być niewystarczające, gdyż ich czułość nie jest zaprojektowana do detekcji prądów, które mogą prowadzić do zapłonu. Podobnie, wartości 100 mA i 10 mA również nie są adekwatne w kontekście ochrony przeciwpożarowej. Wyłączniki 100 mA mogą być stosowane w instalacjach przemysłowych, ale ich zastosowanie również nie zapewnia odpowiedniego poziomu ochrony przed ryzykiem pożaru, ponieważ nie są przeznaczone do wykrywania niewielkich prądów upływowych, które mogą być początkiem pożaru. Ponadto, wyłącznik 10 mA, choć oferuje wysoką czułość dla ochrony ludzi, nie jest rekomendowany dla ogólnej ochrony przeciwpożarowej, ponieważ jego zastosowanie w instalacjach elektrycznych o dużym obciążeniu może prowadzić do częstych fałszywych alarmów. W praktyce, właściwy dobór wyłączników różnicowoprądowych powinien opierać się na analizie ryzyk i zgodności z odpowiednimi normami, takimi jak normy IEC 61008 oraz IEC 60947, które definiują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Właściwy dobór wartości prądu gwarantuje nie tylko bezpieczeństwo ludzi, ale również minimalizuje ryzyko strat materialnych związanych z pożarami wywołanymi przez instalacje elektryczne.

Pytanie 28

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. zwarciem pomiędzy fazami
B. przerwą w jednej z faz
C. zwarciem między fazą a przewodem PEN
D. przerwaniem ciągłości przewodu PEN
Zwarcie fazy z przewodem PEN prowadziłoby do nieprawidłowego rozkładu napięć, jednak nie jest to główny powód wzrostu napięcia powyżej 300 V na odbiornikach. W sytuacji zwarcia fazowego, napięcia na pozostałych fazach mogą spadać, ponieważ dochodzi do podziału prądów i obciążenia. Zwarcie międzyfazowe także wprowadza nieprawidłowości w dostawie energii, lecz skutkiem jest zazwyczaj wyzwolenie zabezpieczeń, co chroni urządzenia przed nadmiernym napięciem. Natomiast przerwa w jednej z faz skutkuje z kolei nierównomiernym rozkładem obciążenia w systemie trójfazowym, co może prowadzić do problemów z równowagą obciążenia, ale rzadko skutkuje wzrostem napięcia na odbiornikach do wartości niebezpiecznych. W przypadku układu TN-C kluczowe znaczenie ma ciągłość przewodu PEN, który jest odpowiedzialny za ochronę przed porażeniem. Brak tego przewodu może spowodować, że napięcie na odbiornikach będzie w sposób niekontrolowany rosło, co zagraża bezpieczeństwu użytkowników oraz urządzeń. Dlatego uznanie przerwania ciągłości przewodu PEN za główną przyczynę wzrostów napięcia w tym układzie jest kluczowe dla prawidłowego zrozumienia funkcjonowania instalacji elektrycznych oraz ich bezpieczeństwa.

Pytanie 29

W łazience mieszkania konieczna jest wymiana uszkodzonej oprawy oświetleniowej, która znajduje się w odległości 30 cm od strefy prysznica. Jaki minimalny stopień ochrony powinna posiadać nowa oprawa?

A. IPX7
B. IPX1
C. IPX2
D. IPX4
Wybór stopnia ochrony niższego niż IPX4, takiego jak IPX1, IPX2 czy IPX7, nie jest odpowiedni w kontekście wymagań dotyczących oświetlenia w pobliżu kabiny prysznicowej. Oznaczenie IPX1 wskazuje na odporność na krople wody padające w kierunku pionowym, co jest niewystarczające w warunkach łazienki, gdzie może występować intensywniejsze zachlapanie. IPX2 również nie zabezpiecza przed wodą, ponieważ chroni jedynie przed kroplami padającymi pod kątem do 15 stopni od pionu. Wybór IPX7, który przewiduje krótkotrwałe zanurzenie w wodzie, również nie jest w pełni uzasadniony, ponieważ nie ma potrzeby tak wysokiego stopnia ochrony w przypadku odległości 30 cm od kabiny prysznicowej. W praktyce, zastosowanie oprawy z niższym stopniem ochrony może prowadzić do uszkodzeń elektrycznych, a tym samym stwarzać zagrożenie dla użytkowników. Dlatego kluczowe jest zrozumienie, że odpowiedni stopień ochrony powinien być dostosowany do specyficznych warunków panujących w danym pomieszczeniu, co jest zgodne z normami bezpieczeństwa elektrycznego oraz wytycznymi producentów.

Pytanie 30

Osoby zajmujące się naprawą instalacji elektrycznych w budynkach mieszkalnych powinny posiadać

A. zaświadczenie o przeszkoleniu wystawione przez osobę mającą uprawnienia
B. zaświadczenie o przeszkoleniu wydane przez administratora budynku
C. uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym
D. pisemne zezwolenie na pracę od kierownika robót
Odpowiedź "uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym" jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami dotyczącymi bezpieczeństwa pracy, osoby zajmujące się instalacjami elektrycznymi muszą posiadać odpowiednie kwalifikacje, które są dokumentowane przez świadectwa kwalifikacyjne. Tego typu świadectwa są wydawane na podstawie ukończenia specjalistycznych szkoleń oraz zdania egzaminów, które potwierdzają znajomość przepisów, norm i standardów dotyczących instalacji elektrycznych. Przykładem może być świadectwo wydawane przez Urząd Dozoru Technicznego, które jest wymagane do przeprowadzania prac w obiektach, gdzie stosuje się urządzenia elektryczne pod napięciem. Dzięki posiadaniu takich uprawnień, technicy elektrycy zapewniają bezpieczeństwo nie tylko sobie, ale również użytkownikom budynków. Posiadanie świadectwa kwalifikacyjnego jest zatem kluczowe dla profesjonalizmu w branży oraz zgodności z obowiązującym prawem, co przekłada się na bezpieczne i efektywne wykonywanie zadań w zakresie instalacji i konserwacji systemów elektrycznych.

Pytanie 31

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Fazomierza
B. Waromierza
C. Watomierza
D. Częstościomierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 32

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
B. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
C. zasilania ich z gniazd z ochronnym bolcem uziemiającym
D. wcześniejszego zweryfikowania efektywności ochrony w instalacji
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 33

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 50 mm2
B. 25 mm2
C. 35 mm2
D. 20 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 34

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. 2 000 Ω
C. Około 1 660 Ω
D. Około 830 Ω
Największa dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego IN = 30 mA i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 35

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 1 720 Ω
B. 17,2 Ω
C. 172 Ω
D. 1,72 Ω
Obliczenie rezystancji przewodu może prowadzić do różnych nieporozumień, zwłaszcza gdy błędnie interpretuje się wartości lub stosuje się niewłaściwe wzory. W przypadku odpowiedzi 17,2 Ω, można zauważyć, że jest to wynik, który można uzyskać, myląc jednostki lub nieprawidłowo stosując wzór. Użycie niewłaściwych jednostek lub przeliczeń może prowadzić do znacznych błędów w obliczeniach. Rezystancja przewodu o długości 1 km i przekroju 10 mm² nie może być tak wysoka, ponieważ przy danych wartościach materialnych i geometrycznych wynikiem powinno być zaledwie 1,72 Ω. Z kolei odpowiedzi takie jak 1 720 Ω oraz 172 Ω wskazują na poważne błędy w obliczeniach, które mogą wynikać z całkowitego zignorowania proporcji długości do przekroju poprzecznego lub błędnego przeliczenia jednostek. Tego rodzaju błędy myślowe są częste przy obliczeniach rezystancji, zwłaszcza w przypadkach, gdy nie uwzględnia się odpowiednich parametrów materiałowych. W praktykach inżynieryjnych kluczowe jest prawidłowe zrozumienie i zastosowanie wzorów, a także dbałość o poprawne przeliczenie jednostek, aby uniknąć sytuacji, które mogą prowadzić do nieefektywności w systemach elektrycznych oraz nieplanowanych awarii w instalacjach. Dobre praktyki inżynieryjne zalecają systematyczne sprawdzanie obliczeń oraz korzystanie z wartości tabelarycznych materiałów, aby zapewnić ich poprawność.

Pytanie 36

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Wzrost wartości napięcia z sieci zasilającej.
B. Brak jednej z faz zasilania.
C. Przerwa w przewodzie ochronnym w sieci zasilającej.
D. Zwiększenie częstotliwości napięcia zasilającego.
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 37

Jak często powinno się przeprowadzać przeglądy okresowe sprzętu ochronnego, takiego jak: drążki izolacyjne do manipulacji, kleszcze oraz uchwyty izolacyjne, a także dywaniki i chodniki gumowe?

A. Co 1 rok
B. Co 3 lata
C. Co 5 lat
D. Co 2 lata
Odpowiedzi sugerujące rzadziej przeprowadzane badania okresowe, takie jak co 5 lat, co 3 lata czy co 1 rok, opierają się na błędnym zrozumieniu znaczenia regularnych przeglądów sprzętu ochronnego. Zwłaszcza w przypadku urządzeń izolacyjnych, jak drążki czy kleszcze, standardy bezpieczeństwa wyraźnie wskazują, że ich właściwości izolacyjne mogą ulegać degradacji z czasem, nawet przy normalnym użytkowaniu. Przeprowadzanie badań co 5 lat może prowadzić do sytuacji, w której sprzęt, który powinien już zostać wymieniony, nadal jest używany, co stwarza ogromne ryzyko porażenia prądem. Co więcej, odpowiedzi sugerujące przeglądy co 3 lata lub co 1 rok również mogą nie spełniać wymogów bezpieczeństwa, ponieważ nie uwzględniają specyfiki i intensywności użytkowania sprzętu w różnych warunkach. W praktyce, nieprzestrzeganie zalecanych cykli przeglądów może skutkować zarówno uszkodzeniem sprzętu, jak i narażeniem pracowników na niebezpieczeństwo. Właściwe zrozumienie tych zasad jest kluczowe dla ochrony zdrowia i życia osób pracujących w branży elektrycznej, a także dla zachowania zgodności z obowiązującymi normami i przepisami prawa, co jest niezwykle istotne w kontekście odpowiedzialności prawnej i etycznej pracodawców.

Pytanie 38

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. ochronny PE
B. neutralny N
C. fazowy LI
D. fazowy L2
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 39

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. w piwnicach w otwartych skrzynkach
B. na strychu w otwartych skrzynkach
C. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach
D. w lokalach mieszkalnych tylko w zamkniętych szafkach
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 40

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,3 IN do 0,8 IN
B. Od 0,3 IN do 1,0 IN
C. Od 0,5 IN do 1,2 IN
D. Od 0,5 IN do 1,0 IN
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.