Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik fotografii i multimediów
  • Kwalifikacja: AUD.02 - Rejestracja, obróbka i publikacja obrazu
  • Data rozpoczęcia: 25 maja 2025 01:21
  • Data zakończenia: 25 maja 2025 01:36

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Technikę oświetlenia konturowego przedmiotu fotografowanego osiąga się poprzez umiejscowienie głównego źródła światła

A. przed obiektem, które świeci w kierunku tła
B. za obiektem, które świeci w kierunku obiektywu
C. przed obiektem, które świeci w kierunku obiektywu
D. za obiektem, które świeci w kierunku tła
Technika oświetlenia konturowego, znana również jako oświetlenie konturowe, polega na umiejscowieniu źródła światła za fotografowanym obiektem, skierowanym w stronę obiektywu. Takie ustawienie światła umożliwia uzyskanie wyraźnych konturów oraz efektu trójwymiarowości, co jest szczególnie istotne w fotografii produktowej oraz portretowej. Użycie tej techniki pozwala na stworzenie dramatycznego kontrastu, gdyż światło przechodzące przez obiekt podkreśla jego krawędzie, a jednocześnie tło pozostaje w cieniu. Przykładem zastosowania oświetlenia konturowego może być fotografia biżuterii, gdzie refleksy świetlne na metalach i kamieniach szlachetnych są kluczowe dla uzyskania atrakcyjnego efektu wizualnego. Standardy branżowe zalecają również wykorzystanie różnych źródeł światła, takich jak lampy LED czy softboxy, by osiągnąć pożądany efekt. Dobrze zrealizowane oświetlenie konturowe znacząco podnosi jakość zdjęć i może być decydującym czynnikiem w procesie sprzedaży produktów.

Pytanie 2

W Adobe Photoshop proces wyszczuplania modeli wykonuje się przy wykorzystaniu narzędzia

A. rozmycie kształtów
B. rozmycie inteligentne
C. filtr skraplanie
D. filtr renderowanie
Rozmycie kształtu to technika stosowana do wygładzania konturów obiektów, ale nie jest przeznaczona do wyszczuplania modeli. Używając tego narzędzia, można jedynie osiągnąć efekt rozmycia, co w kontekście mody czy portretów nie przynosi zamierzonego efektu korekcji sylwetki. Filtr renderowanie, z kolei, służy do tworzenia efektów wizualnych, takich jak grafika 3D czy generowanie cieni, co również nie ma związku z procesem wyszczuplenia, a jedynie wzbogaca kompozycję graficzną. Rozmycie inteligentne to narzędzie do selektywnego rozmywania obszarów zdjęcia, ale jego zastosowanie nie przynosi rezultatów w kontekście zmian proporcji modeli. Każda z tych technik koncentruje się na innych aspektach edycji grafiki, co może prowadzić do błędnego zrozumienia ich funkcji. Użytkownicy często mylą cele tych narzędzi i stosują je w niewłaściwy sposób, co skutkuje nieefektywną edycją. Kluczowe jest zrozumienie, że tylko odpowiednie narzędzie, takie jak filtr skraplanie, jest w stanie efektywnie realizować zamierzone korekcje w zakresie proporcji i sylwetek, co jest niezbędne w profesjonalnej pracy z obrazem.

Pytanie 3

W technice fotografii studyjnej spill oznacza

A. ustawienie świateł w trójkąt oświetleniowy dla portretu
B. niepożądane rozproszenie światła na obszary, które powinny pozostać nieoświetlone
C. celowe prześwietlenie tła dla uzyskania efektu high-key
D. połączenie dwóch źródeł światła dla uzyskania efektu kluczowego
Odpowiedź dotycząca spill w fotografii studyjnej jest prawidłowa, ponieważ spill odnosi się do niepożądanego rozproszenia światła na obszary, które powinny pozostać nieoświetlone. W praktyce oznacza to, że światło, które powinno oświetlać jedynie wyznaczone elementy kompozycji (takie jak model czy obiekt), przypadkowo pada na inne fragmenty tła, co może prowadzić do nieestetycznych efektów. Aby uniknąć spill, fotografowie często korzystają z modyfikatorów światła, takich jak softboxy czy reflektory, które kierują światło dokładnie tam, gdzie to potrzebne. Dobre praktyki w fotografii studyjnej sugerują również użycie odpowiednich kątów oraz odległości między źródłami światła a obiektami, co pozwala na kontrolę nad tym, jak światło się rozprzestrzenia. Przykładem może być ustawienie świateł w taki sposób, aby uniknąć przypadkowego oświetlania tła, co jest kluczowe dla uzyskania czystych i profesjonalnych zdjęć.

Pytanie 4

Jaką wartość ma ogniskowa standardowego obiektywu w aparacie średnioformatowym?

A. 18 mm
B. 80 mm
C. 180 mm
D. 50 mm
Ogniskowa obiektywu standardowego dla aparatu średnioformatowego wynosi zazwyczaj 80 mm, co odpowiada kątowi widzenia zbliżonemu do ludzkiego oka. Obiektywy o takiej ogniskowej są idealne do szerokiego zakresu fotografii, od portretów po fotografię krajobrazową. Dzięki dobrze zbalansowanej ogniskowej, obiektyw ten umożliwia uzyskanie naturalnych proporcji w obrazie, co jest kluczowe w przypadku portretów, gdzie istotne jest przedstawienie modeli w realistyczny sposób. W praktyce obiektywy 80 mm są często wykorzystywane w studiach fotograficznych, jako że pozwalają na osiągnięcie efektu pięknego bokeh przy odpowiednim otworze przysłony, co dodaje głębi zdjęciom. W kontekście standardów branżowych, aparat średnioformatowy z obiektywem o tej ogniskowej może być uważany za wszechstronny wybór, zdolny do uchwycenia detali oraz szerokich kompozycji w wysokiej jakości. Kluczowym elementem jest również świadomość, że w przypadku aparatów średnioformatowych, ogniskowa 80 mm jest bardziej zbliżona do 50 mm w formacie małoobrazkowym, co czyni ją wygodną dla fotografów przyzwyczajonych do pracy z mniejszymi matrycami.

Pytanie 5

Urządzenie, które ma wbudowaną przystawkę pozwalającą na skanowanie materiałów przezroczystych w formatach od 35 mm do 4 × 5 cali, to skaner

A. do slajdów
B. 3D
C. do kodów kreskowych
D. bębnowy
Skaner do slajdów to urządzenie zaprojektowane specjalnie do cyfrowego przetwarzania materiałów transparentnych, takich jak slajdy filmowe czy diapozyty. Charakteryzuje się wbudowaną przystawką, która umożliwia skanowanie formatów od 35 mm do 4 × 5 cala. Dzięki temu użytkownicy mogą przekształcać analogowe slajdy w cyfrowe obrazy o wysokiej rozdzielczości, co jest szczególnie przydatne dla fotografów, archiwistów oraz entuzjastów historii fotografii. W praktyce, skanery te są wykorzystywane do archiwizacji starych slajdów, tworzenia kopii zapasowych oraz do digitalizacji materiałów, które mogą być następnie edytowane lub udostępniane online. Użytkowanie skanera do slajdów nie tylko ułatwia dostęp do przestarzałych materiałów, ale również przyczynia się do ich zachowania i ochrony przed degradacją. Standardy jakości skanowania, takie jak rozdzielczość optyczna, mają kluczowe znaczenie w pracy ze skanerami do slajdów, wpływając na końcowy efekt wizualny przetwarzanych obrazów."

Pytanie 6

Powiększalnik pozwalający na uzyskiwanie kolorowych kopii w technice subtraktywnej dysponuje głowicą filtracyjną z filtrami korekcyjnymi w kolorach:

A. purpurowa, żółta, niebieskozielona
B. czerwona, zielona, niebieska
C. czerwona, żółta, niebieska
D. purpurowa, zielona, niebieska
Wybór filtrów w niepoprawnych odpowiedziach wskazuje na błędne zrozumienie zasad działania druku subtraktywnego. Na przykład, filtr czerwoną nie może skutecznie współpracować z filtrem zielonym, ponieważ oba te kolory znajdują się na przeciwnych końcach spektrum kolorów, co skutkuje nieskuteczną absorpcją światła. Z tego powodu, użycie tych filtrów jednocześnie prowadzi do niewłaściwego odwzorowania kolorów i pogorszenia jakości wydruków. Ponadto, w przypadku filtrów purpurowych i niebieskich, ich współdziałanie z innymi kolorami również nie przynosi oczekiwanych rezultatów, gdyż mogą one eliminować zbyt wiele długości fal, co ogranicza paletę kolorów. Kluczowe jest zrozumienie, że w druku subtraktywnym każdy filtr powinien współpracować z innymi w sposób, który umożliwia uzyskanie pełnego spektrum kolorów. Metaliczne i jaskrawe kolory, takie jak np. ciemnozielony czy purpurowy, mogą również prowadzić do mylnych wniosków o ich przydatności jako filtrów w kontekście odwzorowania barw. Dlatego fundamentalne jest, aby podczas wyboru filtrów kierować się nie tylko ich nazwami, ale przede wszystkim ich właściwościami optycznymi oraz ich zdolnością do absorbowania odpowiednich długości fal świetlnych.

Pytanie 7

Ujęcie postaci ludzkiej na zdjęciu od kolan do góry określa plan

A. amerykański
B. globalny
C. całkowity
D. zbliżony
Odpowiedź 'amerykański' jest poprawna, ponieważ termin ten odnosi się do charakterystycznego ujęcia, które obejmuje postać ludzką od kolan w górę, szczególnie w kontekście portretów. Ujęcie amerykańskie jest szeroko stosowane w fotografii i filmie, zwłaszcza w produkcjach, które chcą uchwycić ekspresję twarzy oraz detale górnej części ciała, zachowując przy tym odpowiednią kompozycję. Przykładem zastosowania tego planu jest fotografia portretowa, gdzie artysta pragnie ukazać emocje i cechy osobiste modela, stosując kadr, który nie tylko skupia się na twarzy, ale również na postawie ciała. W standardach fotograficznych, ujęcie amerykańskie wprowadza równowagę między bliskością a kontekstem otoczenia, co czyni je idealnym dla przedstawienia osobistych historii. Warto również zauważyć, że ten typ ujęcia zyskał popularność w produkcjach filmowych lat 30. XX wieku, co przyczyniło się do jego uznania jako jednego z kluczowych elementów klasycznej narracji wizualnej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zwiększenie mocy błysku lamp błyskowych w studio pozwala na

A. lepsze ustawienie ostrości
B. uzyskanie większej głębi ostrości
C. skrócenie czasu ekspozycji
D. wydłużenie czasu ekspozycji
Nie do końca to jest tak, że większa energia błysku lamp błyskowych nie poprawia ostrości. Ostrość to głównie kwestia ustawień obiektywu i odległości do obiektu. Większy błysk może sprawić, że obraz będzie lepiej ostry, ale nie ma na to dużego wpływu na dokładne ustawienie. A jeśli wydłużymy czas naświetlania, to są inne ryzyka, jak prześwietlenie, a do tego mogą pojawić się niechciane artefakty, jeśli coś się rusza. Dłuższy czas naświetlania lepiej się sprawdza przy słabym świetle, gdzie chcemy uchwycić detale, a nie przy mocnych lampach. Głębia ostrości bardziej zależy od ustawień przysłony niż od mocy błysku. Jest też kwestia, że krótszy czas naświetlania może prowadzić do niedoświetlenia, bo lampy błyskowe nie zawsze nadążają za szybkością migawki. Korzystanie z błysku w krótkim czasie naświetlania wymaga, żeby wiedzieć, że nie każda lampa potrafi dać tak mocny błysk, żeby zrównoważyć krótki czas. I jeszcze jedno – efekty błysku są różne w zależności od sprzętu, a umiejętne ich użycie wymaga praktyki i znajomości zasad ekspozycji oraz przysłony.

Pytanie 11

Konturowe oświetlenie fotografowanego obiektu można uzyskać przez ustawienie światła głównego

A. za obiektem w kierunku tła
B. przed obiektem w kierunku tła
C. przed obiektem w stronę obiektywu
D. za obiektem w stronę obiektywu
Oświetlenie konturowe fotografowanego obiektu uzyskuje się poprzez strategiczne umiejscowienie światła głównego za obiektem w kierunku obiektywu. Taka konfiguracja pozwala na uwydatnienie krawędzi obiektu, co tworzy efekt trójwymiarowości i głębi. Gdy światło pada z tyłu, częściowo oświetla kontury obiektu, jednocześnie odcinając go od tła, co skutkuje wyraźniejszym zarysowaniem formy. Zastosowanie tej techniki jest szczególnie cenione w portrecie oraz fotografii produktowej, gdzie kluczowe jest podkreślenie charakterystycznych detali. Przykładem może być sytuacja, w której fotografujemy osobę na tle zachodzącego słońca, co pozwala na stworzenie dramatycznego efektu świetlnego. Standardy branżowe zalecają korzystanie z tej metody w celu uzyskania atrakcyjnych wizualnie zdjęć, w których obiekt wyróżnia się na tle, a jednocześnie prezentuje się w sposób estetyczny i harmonijny.

Pytanie 12

W profesjonalnym procesie skanowania slajdów i negatywów współczynnik Dmax określa

A. maksymalną głębię kolorów wyrażoną w bitach
B. maksymalną gęstość optyczną, jaką skaner może poprawnie odczytać
C. maksymalną rozdzielczość skanowania wyrażoną w dpi
D. maksymalny rozmiar skanowanego oryginału
Odpowiedzi, które określają maksymalną rozdzielczość skanowania, maksymalny rozmiar skanowanego oryginału oraz maksymalną głębię kolorów, zawierają istotne nieporozumienia dotyczące definicji Dmax. Rozdzielczość skanowania, wyrażana w dpi (punktach na cal), odnosi się do szczegółowości obrazu, a nie do zdolności odczytu gęstości optycznej. Jest to kluczowy parametr, ale nie ma bezpośredniego związku z Dmax. Również maksymalny rozmiar skanowanego oryginału dotyczy przede wszystkim fizycznych wymiarów materiałów, które skanery mogą obsługiwać, co nie wpływa na ich zdolność do odczytu gęstości optycznej. Z kolei głębia kolorów, mierzona w bitach, wskazuje na ilość kolorów, które skaner może zarejestrować w jednym pikselu, co także nie jest bezpośrednio związane z Dmax. Zrozumienie tych różnic jest kluczowe, ponieważ nieprawidłowe interpretacje mogą prowadzić do wyboru niewłaściwego sprzętu do konkretnego zadania. W praktyce, nie każdy skaner o wysokiej rozdzielczości będzie miał dobrą gęstość Dmax, co może skutkować utratą jakości obrazu, zwłaszcza w przypadku skanowania negatywów czy slajdów. Dbanie o zrozumienie tych specyfikacji jest istotne w pracy profesjonalisty w zakresie cyfrowej obróbki obrazu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Matryca bez siatki filtru mozaikowego, w której sposób pobierania informacji o kolorach jest taki sam jak w tradycyjnym barwnym materiale warstwowym, to

A. LIVEMOS
B. Foveon X3
C. CCD
D. CMOS
Wybór innych odpowiedzi może wynikać z błędnych zrozumień działania matryc obrazowych. CMOS to technologia, która koncentruje się na efektywności energetycznej i szybkości przetwarzania obrazu, lecz działa tylko na zasadzie jednego filtra koloru na piksel, co ogranicza zdolność do dokładnego odwzorowania barw w porównaniu do Foveon X3. CCD, z kolei, to starsza technologia, która również stosuje filtry mozaikowe, co wpływa negatywnie na jakość kolorów. W przypadku matrycy CCD, przetwarzanie obrazu jest bardziej wymagające pod względem energetycznym, a także mniej elastyczne w kontekście różnych warunków oświetleniowych. LIVEMOS to technologia stosowana głównie w aparatach bezlusterkowych i w smartfonach, która jednak również opiera się na konwencjonalnych filtrach, co czyni ją mniej skuteczną w kontekście jakości barw w porównaniu z technologią Foveon X3. Te niepoprawne wybory mogą wynikać z mylnego wyobrażenia o możliwości działania tych matryc oraz ich zastosowania w praktyce fotograficznej, co jest kluczowe dla uzyskania wysokiej jakości obrazów.

Pytanie 15

W profesjonalnym procesie kalibracji kolorów parametr whitepoint oznacza

A. maksymalną wartość luminancji osiąganą przez monitor
B. punkt odniesienia do korekcji balansu bieli na zdjęciu
C. temperaturę barwową określającą wygląd bieli na urządzeniu wyjściowym
D. najjaśniejszy punkt na krzywej gamma monitora
Zrozumienie, czym jest parametr whitepoint, jest kluczowe w kontekście kalibracji kolorów. Wybór punktu odniesienia do korekcji balansu bieli na zdjęciu, choć związany z poprawnym odwzorowaniem kolorów, nie oddaje istoty whitepoint. Balans bieli to proces, który ma na celu dostosowanie kolorów w obrazie, aby neutralne kolory były wiernie odwzorowane, ale nie jest to to samo, co określenie bieli na poziomie sprzętowym. Kolejna niepoprawna koncepcja, mówiąca o najjaśniejszym punkcie na krzywej gamma monitora, prowadzi do mylnego wrażenia, że whitepoint odnosi się do luminancji. W rzeczywistości gamma to krzywa, która opisuje, jak luminancja jest przekształcana w sygnale wyświetlanym przez monitor, a nie bezpośrednio definiuje jego whitepoint. Co więcej, maksymalna wartość luminancji osiągana przez monitor to kwestia wydajności wyświetlacza, a nie parametru określającego biel. Zrozumienie tych różnic jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do nieprawidłowego postrzegania kolorów w projektach graficznych czy fotograficznych. Właściwe ustawienia whitepoint mają ogromne znaczenie dla spójności kolorystycznej, dlatego warto poświęcić czas na ich dokładne zrozumienie i kalibrację.

Pytanie 16

W trakcie realizacji reprodukcji obrazu, aparat fotograficzny powinien być ustawiony w taki sposób, aby oś optyczna obiektywu była

A. prostopadła do płaszczyzny oryginału i pokrywała się z jego środkiem
B. równoległa do płaszczyzny oryginału
C. równoległa do kierunku promieni światła w oświetleniu bocznym
D. skośna do płaszczyzny oryginału
Wybór równoległej osi optycznej obiektywu do płaszczyzny oryginału wprowadza wiele problemów, które mogą skutkować zniekształceniem obrazu. Gdy oś optyczna jest równoległa, może to prowadzić do błędów perspektywy, co sprawia, że obiekty na fotografii nie odwzorowują rzeczywistych proporcji. Przykładem tego błędu może być sytuacja, w której fotografia architektury nie oddaje prawidłowych kątów i proporcji budynku. Kiedy oś obiektywu jest skośna, znacznie zwiększa się ryzyko powstawania efektywnych zniekształceń, które w przypadku reprodukcji dzieł sztuki mogą zafałszować ich kolory i detale. Ustawienie obiektywu prostopadle do płaszczyzny oryginału pozwala na dokładne odwzorowanie kształtów i kolorów, co jest szczególnie istotne w kontekście dokumentacji artystycznej. Odpowiednie ustawienie aparatu jest zatem kluczowe dla zachowania jakości wizualnej oraz autentyczności reprodukcji, a błędne układy mogą prowadzić do poważnych niedopatrzeń i utraty wartości artystycznej. Dlatego tak ważne jest zapoznanie się z zasadami kompozycji oraz technikami fotografii reprodukcyjnej, aby uniknąć typowych pułapek związanych z nieodpowiednim ustawieniem aparatu.

Pytanie 17

Właściwa temperatura barwowa światła dziennego w południe wynosi około

A. 2800 K
B. 7500 K
C. 3200 K
D. 5500 K
Temperatura barwowa światła ma kluczowe znaczenie w wielu aspektach oświetlenia, ale nieprawidłowe odpowiedzi na to pytanie mogą prowadzić do nieporozumień i błędnych wniosków. Na przykład 3200 K to temperatura typowa dla oświetlenia żarowego, często używanego w fotografii studyjnej. Choć może wydawać się, że jest to odpowiednie źródło światła dla różnych zastosowań, w rzeczywistości wprowadza ono ciepły odcień, który może zniekształcać rzeczywiste kolory obiektów. Oświetlenie o temperaturze 7500 K, z kolei, jest zbyt chłodne, co może prowadzić do przesycenia niebieskich tonów w zdjęciach lub w projektach graficznych. W praktyce, stosowanie takich źródeł światła może powodować, że kolory będą wydawały się sztuczne i mniej atrakcyjne. Podobnie, temperatura 2800 K, która również jest typowa dla lamp żarowych, wytwarza zbyt ciepłe światło, co nie jest optymalne w wielu kontekstach, w szczególności tam, gdzie dokładność odwzorowania kolorów ma kluczowe znaczenie. Zrozumienie, jak działają różne temperatury barwowe, jest więc fundamentalne w kontekście projektowania oświetlenia i jego zastosowania w praktyce. Zbyt często osoby nie znające tego tematu mogą przypisywać równą wartość różnym źródłom światła, co jest błędem i może prowadzić do nieestetycznych efektów w projektach fotograficznych czy architektonicznych. Odpowiednia temperatura barwowa jest kluczowa dla uzyskania pożądanych efektów wizualnych.

Pytanie 18

Kiedy w wizjerze aparatu fotograficznego dostrzegalna jest faktura lub wzór składający się z wielu małych elementów umiejscowionych blisko siebie, to na fotografii może pojawić się efekt

A. szumu
B. mory
C. paralaksy
D. flary
Flara to efekt optyczny, który powstaje na skutek bezpośredniego odbicia światła od soczewek aparatu, co prowadzi do pojawienia się jasnych plam lub promieni świetlnych na zdjęciach. Choć może to być problem w fotografii, nie jest związane z obecnością regularnych wzorów w kadrze, jak to ma miejsce w przypadku mory. Szum to zjawisko, które występuje w zdjęciach, szczególnie w warunkach słabego oświetlenia, i odnosi się do przypadkowych, niepożądanych artefaktów, które zniekształcają obraz. Szum nie jest wynikiem interferencji wzorów, lecz raczej problemem związanym z czułością matrycy i jakością przetwarzania sygnału. Paralaksa odnosi się do zjawiska, które występuje, gdy obserwator postrzega różne położenia obiektów z różnych punktów widzenia, co jest istotne w kontekście pomiarów odległości lub w sytuacjach wykorzystujących dwa obiektywy do tworzenia efektu trójwymiarowego. Wszystkie te efekty mają swoje miejsce w fotografii, ale nie są bezpośrednio związane z problemem mory, który wynika z interferencji wzorów na poziomie pikseli. Zrozumienie różnicy między tymi efektami jest kluczowe dla poprawnego interpretowania wyników pracy fotografa oraz unikania typowych błędów w kadrze.

Pytanie 19

System Bellows Factor w fotografii analogowej oznacza

A. stopień kompresji obrazu na materiale negatywowym
B. wartość rozproszenia światła przy użyciu filtrów efektowych
C. współczynnik korekcji ekspozycji przy stosowaniu mieszka fotograficznego
D. współczynnik załamania światła w obiektywach szerokokątnych
Zrozumienie różnych aspektów fotografii analogowej może być skomplikowane, zwłaszcza jeśli chodzi o terminy techniczne. W przypadku załamania światła w obiektywach szerokokątnych, chodzi o zjawisko, które nie ma bezpośredniego związku z systemem Bellows Factor. To, co rzeczywiście ma miejsce, to rozpraszanie i zniekształcenie obrazu, ale to nie to jest celem Bellows Factor. Odpowiedzi dotyczące stopnia kompresji obrazu na materiale negatywowym oraz wartości rozproszenia światła przy użyciu filtrów efektowych również są błędne. Kompresja obrazu odnosi się do efektów wywoływanych przez różne rodzaje obiektywów i ich zastosowanie, a nie do korekcji ekspozycji związanej z używaniem mieszka. Z kolei rozproszenie światła przy użyciu filtrów efektowych jest zupełnie odrębną kwestią, dotyczącą manipulacji światłem w celu uzyskania określonych efektów artystycznych, ale nie ma związku z korekcją ekspozycji w kontekście zmiany odległości między obiektywem a matrycą. To może prowadzić do mylnych wniosków u osób, które nie mają pełnego zrozumienia tych pojęć. Kluczowe jest, aby pamiętać, że poprawna ekspozycja to wynik prawidłowego zrozumienia zarówno parametrów obiektywu, jak i odległości, co podkreśla znaczenie znajomości Bellows Factor w praktycznej fotografii analogowej.

Pytanie 20

Przy tworzeniu planu sesji zdjęciowej do fotografowania w technice wysokiego klucza, co należy wziąć pod uwagę?

A. ciemne tło, oświetlenie skierowane
B. jasne tło, oświetlenie skierowane
C. ciemne tło, oświetlenie rozproszone
D. jasne tło, oświetlenie rozproszone
Fotografia w technice wysokiego klucza charakteryzuje się jasnymi, dobrze oświetlonymi obrazami, w których dominują jasne tony. Wybór jasnego tła jest kluczowy, ponieważ pomaga w uzyskaniu efektu lekkości i przestronności, który jest istotny w tej technice. Oświetlenie rozproszone, które można osiągnąć na przykład poprzez użycie softboxów lub parasoli, pozwala na uzyskanie delikatnych cieni oraz równomierne oświetlenie obiektu. Dzięki temu, przejrzystość i detale w zdjęciach są lepiej widoczne, co jest szczególnie ważne w fotografii portretowej czy produktowej. Przykładem zastosowania tej techniki może być fotografia ślubna, gdzie ważne jest uchwycenie radosnych chwil w jasnej i przyjemnej atmosferze. Wybierając oświetlenie i tło, zawsze należy pamiętać o harmonii między nimi, co pozwoli na uzyskanie estetycznych i profesjonalnych efektów. W praktyce, technika ta jest powszechnie wykorzystywana w komercyjnej fotografii, na przykład w reklamach, gdzie jasność obrazu przyciąga uwagę potencjalnych klientów.

Pytanie 21

Aby wydrukować zdjęcia przeznaczone na wystawy, należy wybrać papier fotograficzny o gramaturze

A. 200-350g/m2
B. 100-150g/m2
C. 80-110g/m2
D. 70-90g/m2
Wybór papieru fotograficznego o zbyt niskiej gramaturze, jak 100-150 g/m2, 80-110 g/m2 czy 70-90 g/m2, nie jest odpowiedni do wydruków przeznaczonych do celów wystawowych. Papier o mniejszej gramaturze jest bardziej podatny na wyginanie, zginanie oraz uszkodzenia, co może prowadzić do zniekształceń obrazu podczas transportu i eksponowania. Wydruki na takim papierze mają tendencję do blaknięcia i mogą nie zapewniać odpowiedniego odwzorowania kolorów, co jest kluczowe w profesjonalnych prezentacjach. Ponadto, mniejsze gramatury mogą wpływać negatywnie na postrzeganą jakość dzieła, co jest istotne przy ocenie przez krytyków i zwiedzających. Warto również zauważyć, że w branży fotograficznej dość powszechnie przyjmuje się, że wydruki powinny być wykonane na papierze o gramaturze co najmniej 200 g/m2, by zapewnić właściwe wsparcie dla obrazu i estetyki. Typowym błędem jest myślenie, że niższa gramatura oznacza tańsze rozwiązanie, co w rzeczywistości może prowadzić do marnotrawstwa zasobów w postaci konieczności ponownego drukowania lub naprawy uszkodzonych wydruków. W kontekście wystawienniczym, nieodpowiedni wybór papieru może skutkować negatywnym postrzeganiem pracy artysty oraz obniżeniem jej wartości rynkowej.

Pytanie 22

Który typ kart pamięci charakteryzuje się obecnie najszybszym transferem danych?

A. xD Picture Card
B. microSD
C. CFexpress Type B
D. SD UHS-I
SD UHS-I, microSD i xD Picture Card to starsze standardy kart pamięci, które nie mogą równać się z wydajnością CFexpress Type B. SD UHS-I, choć jest w stanie osiągnąć prędkości do 104 MB/s, jest znacznie wolniejszy w porównaniu do CFexpress Type B. W praktyce oznacza to, że podczas transferu dużych plików, takich jak wideo w wysokiej rozdzielczości, użytkownicy mogą napotkać opóźnienia oraz ograniczenia w przepustowości. Co więcej, microSD również ma ograniczenia, szczególnie w przypadku tradycyjnych modeli, które nie wspierają standardu UHS. Podobnie, xD Picture Card, który był popularny w przeszłości, został niemal całkowicie wycofany z rynku, a jego prędkości transferu są znacznie niższe niż nowoczesnych alternatyw. Wybierając jedną z tych starszych kart, można napotkać trudności z ich kompatybilnością z nowoczesnym sprzętem oraz ograniczoną wydajność w zadaniach wymagających dużej przepustowości. Często zdarza się, że użytkownicy ulegają wrażeniu, że starsze standardy wystarczą do ich potrzeb, co prowadzi do frustracji, zwłaszcza w przypadku profesjonalnych zastosowań. Dlatego warto być świadomym różnic między tymi technologiami i wybierać odpowiednie rozwiązania w zależności od specyficznych wymagań swojego sprzętu i zadań, które planujemy wykonać.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaki typ oświetlenia przy robieniu zdjęć portretowych może doprowadzić do osiągnięcia na fotografii efektu porcelanowego, zbyt intensywnie rozjaśnionego, nienaturalnego odcienia skóry modela?

A. Z boku
B. Z przodu
C. Od góry
D. Od dołu
Oświetlenie z przodu jest jednym z najczęściej stosowanych w fotografii portretowej, jednak może prowadzić do uzyskania efektu porcelanowego, co jest efektem zbyt mocnego rozjaśnienia cieni na twarzy modela. Gdy światło pada bezpośrednio z przodu, eliminuje naturalne cienie, które dodają głębi i trójwymiarowości portretom. W rezultacie skóra może wydawać się nienaturalnie gładka i jednolita, co odbiega od rzeczywistego wyglądu. Dla uzyskania bardziej realistycznych efektów, warto rozważyć kierunki oświetlenia, które tworzą cień i uwydatniają teksturę skóry, np. oświetlenie boczne czy górne. W praktyce, aby uniknąć efektu porcelanowego, fotografowie często stosują dyfuzory lub odbłyśniki, które rozpraszają światło, co pozwala na uzyskanie bardziej naturalnego wyglądu. Zrozumienie, jak różne rodzaje oświetlenia wpływają na zdjęcia, jest kluczowe dla profesjonalnych wyników w fotografii portretowej.

Pytanie 26

Aktualnie stosowany standard PSD w najnowszej wersji oprogramowania Adobe Photoshop pozwala na

A. bezpośrednie zapisywanie plików w formacie gotowym do druku 3D
B. automatyczną konwersję kolorów pomiędzy modelami RGB i CMYK
C. zapisywanie plików o maksymalnym rozmiarze 2GB z nielimitowaną liczbą warstw
D. zapisywanie trójwymiarowych modeli obiektów wraz z teksturami
Wiele osób może błędnie interpretować możliwości formatu PSD w kontekście nowoczesnych technologii, takich jak druk 3D czy konwersja kolorów między modelami RGB i CMYK. Warto zaznaczyć, że choć Adobe Photoshop ma różne funkcje, to jednak format PSD nie jest przystosowany do bezpośredniego zapisywania plików w formacie gotowym do druku 3D. Drukowanie w 3D wymaga specyficznych formatów, jak STL czy OBJ, które definiują trójwymiarowe modele oraz ich właściwości. Dlatego próba używania PSD do takich celów prowadzi do nieporozumień. Ponadto, automatyczna konwersja kolorów między RGB a CMYK nie jest funkcją zapisu w formacie PSD. RGB jest używany głównie w wyświetlaczach, podczas gdy CMYK jest standardem w druku. Photoshop potrafi konwertować kolory, ale to nie oznacza, że robi to automatycznie podczas zapisywania plików. W kontekście modelowania 3D, zapisywanie trójwymiarowych modeli wraz z teksturami w formacie PSD również nie jest możliwe, ponieważ PSD koncentruje się na dwuwymiarowych obrazach. Podsumowując, istotne jest, aby rozumieć specyfikę formatu PSD oraz jego ograniczenia, co pozwoli na skuteczniejsze wykorzystanie narzędzi graficznych w pracy kreatywnej.

Pytanie 27

Aby umieścić plik cyfrowy w folderze reklamowym, powinien on być stworzony w minimalnej rozdzielczości

A. 75 ppi
B. 150 ppi
C. 600 ppi
D. 300 ppi
Odpowiedź 300 ppi (punktów na cal) jest prawidłowa, ponieważ jest to standardowa rozdzielczość, która zapewnia odpowiednią jakość druku materiałów reklamowych. Przygotowując pliki graficzne do druku, kluczowe jest zapewnienie wystarczającej gęstości pikseli, aby efektywnie odwzorować detale obrazu. W kontekście folderów reklamowych, gdzie często stosuje się zdjęcia oraz elementy graficzne, 300 ppi umożliwia uzyskanie wyraźnych i estetycznych efektów wizualnych. Dla porównania, rozdzielczość 600 ppi jest zbyteczna w większości zastosowań drukarskich i może prowadzić do znacznego zwiększenia rozmiaru pliku, co nie jest praktyczne. Z kolei rozdzielczości 150 ppi i 75 ppi są zbyt niskie na potrzeby druku wysokiej jakości, co może skutkować rozmytymi i nieczytelnymi obrazami. Warto zawsze kierować się wytycznymi branżowymi, które zalecają 300 ppi jako minimum dla druku, aby zachować wysoką jakość wizualną projektu.

Pytanie 28

Przy wykonywaniu zdjęć pod słońce najczęstszym problemem jest

A. powstanie flary i zmniejszenie kontrastu
B. zwiększenie nasycenia kolorów
C. zwiększenie głębi ostrości
D. podwyższenie temperatury barwowej
Nieprawidłowe odpowiedzi często opierają się na niepełnym zrozumieniu podstawowych zjawisk optycznych i ich wpływu na jakość zdjęć. Zwiększenie nasycenia kolorów, choć może wydawać się korzystne, nie jest typowym problemem przy fotografowaniu w silnym świetle słonecznym. W rzeczywistości, nadmiar światła może prowadzić do przepałów w jasnych partiach, co sprawia, że kolory stają się mniej wyraziste. Zwiększenie głębi ostrości w sytuacji, gdy fotografujemy w silnym słońcu, nie jest kluczowym problemem, ponieważ ten parametr bardziej dotyczy ustawień przysłony i odległości od obiektu, a nie warunków oświetleniowych. Ponadto, podwyższenie temperatury barwowej także nie jest typowym zagrożeniem – w rzeczywistości, przy pełnym słońcu, światło ma tendencję do bycia chłodnym, co może wpłynąć na odwzorowanie kolorów. Takie mylne podejścia mogą wynikać z braku wiedzy na temat interakcji światła z obiektywem oraz podstawowych zasad fotografii. Dlatego kluczowe jest, aby zrozumieć, jak światło wpływa na nasze zdjęcia i jakie techniki możemy zastosować, aby uzyskać najlepsze możliwe efekty.

Pytanie 29

Który z poniższych formatów zapisu obrazu pozwala na przechowywanie informacji o przezroczystości?

A. BMP
B. PCX
C. PNG
D. JPEG
Format JPEG, choć bardzo popularny, nie obsługuje przezroczystości. JPEG jest przeznaczony do kompresji obrazów fotograficznych, oferując wysoką kompresję przy pewnej utracie jakości. Jest to idealny format do zdjęć, gdzie przezroczystość nie jest wymagana. To powszechny błąd, że JPEG mógłby obsługiwać przezroczystość, ponieważ jest szeroko stosowany w fotografii cyfrowej, a nie w projektowaniu graficznym. Format BMP, z kolei, to format pliku obrazu, który również nie wspiera kanału alfa dla przezroczystości. BMP jest formatem bez kompresji lub z kompresją bezstratną, co skutkuje dużymi rozmiarami plików. Z tego powodu nie jest często używany w zastosowaniach, gdzie przechowywanie przezroczystości jest kluczowe. Format PCX, choć był popularny w przeszłości w aplikacjach DOS, również nie wspiera przezroczystości. PCX został zastąpiony przez nowsze i bardziej wszechstronne formaty, które lepiej spełniają dzisiejsze wymagania dotyczące grafiki komputerowej. W kontekście przechowywania przezroczystości, jedynie PNG spełnia te kryteria, co czyni go niezastąpionym w wielu współczesnych projektach graficznych.

Pytanie 30

Jakie promieniowanie o kolorze jest przepuszczane przez filtr purpurowy?

A. zielonej
B. zielonej i niebieskiej
C. niebieskiej i czerwonej
D. zielonej i czerwonej
Filtr purpurowy to urządzenie, które przepuszcza promieniowanie o określonych długościach fal, blokując pozostałe. W przypadku filtra purpurowego, przepuszcza on promieniowanie w zakresie długości fal odpowiadających barwom niebieskiej i czerwonej. Oznacza to, że światło o tych długościach fal przenika przez filtr, podczas gdy inne kolory, takie jak zieleń, są blokowane. Praktycznie, takie filtry są szeroko stosowane w fotografii oraz w technologii przetwarzania obrazu, gdzie istotne jest uchwycenie określonych barw dla uzyskania pożądanego efektu wizualnego. W fotografii, zastosowanie filtra purpurowego może zwiększyć nasycenie niebieskich i czerwonych tonów, co jest szczególnie przydatne w krajobrazie oraz portretach, gdzie te kolory mogą być kluczowe dla estetyki obrazu. Takie praktyki są zgodne z zasadami kolorymetrii, która jest nauką zajmującą się pomiarem i opisem koloru, oraz z metodami kalibracji kolorów w procesach produkcji graficznej.

Pytanie 31

Różnica między obrazem widzianym w celowniku a obrazem uzyskanym na fotografii nazywana jest

A. błąd otworowy
B. błąd paralaksy
C. parabola
D. akomodacja
Akomodacja to umiejętność oka, by dostosować się do różnych odległości obiektów, zmieniając przy tym kształt soczewki. Chociaż to ważne dla widzenia, nie ma nic wspólnego z błędem paralaksy, o którym mówimy. Oczywiście, akomodacja jest istotna, ale nie wyjaśnia tego fenomenu. Natomiast parabola to termin z matematyki, który kompletnie nie odnosi się do percepcji obrazu w celownikach czy aparatach. Kiedy mylisz te pojęcia, łatwo możesz wyjść na manowce i pomyśleć, że parabola ma coś do powiedzenia w obserwacji wizualnej, ale to nieprawda. Błąd otworowy odnosi się do tego, jak konstrukcja otworów w aparacie wpływa na jakość zdjęcia, ale znów, to nie ma nic wspólnego z błędem paralaksy. W nauce i technice to super ważne, żeby rozróżniać te pojęcia, bo jak się pomyli, to potem można źle interpretować wyniki i pomiary, co może być problematyczne w inżynierii czy naukach ścisłych.

Pytanie 32

Jakie narzędzie nie jest wykorzystywane do wykonywania zaznaczeń?

A. Lasso
B. Rączka
C. Przycinanie
D. Różdżka
Rączka jest narzędziem, które służy do przesuwania widoku w obrębie obszaru roboczego, a nie do tworzenia zaznaczeń. Oznacza to, że za jej pomocą użytkownik może zmieniać położenie obrazu lub dokumentu na ekranie, co jest szczególnie przydatne przy pracy z dużymi plikami graficznymi czy dokumentami. W praktyce rączka umożliwia płynne przechodzenie między różnymi częściami projektu bez konieczności zmiany powiększenia. Natomiast narzędzia takie jak lasso i różdżka są zaprojektowane do zaznaczania określonych obszarów na obrazie, co pozwala na precyzyjne edytowanie wybranych fragmentów. Standardy branżowe w zakresie edycji grafiki sugerują, że użytkownicy powinni znać różnice między narzędziami, aby efektywnie korzystać z funkcji edycji i manipulacji obrazami. Warto również zauważyć, że umiejętność korzystania z tych narzędzi jest kluczowa w procesach związanych z grafiką komputerową i projektowaniem wizualnym, co potwierdzają liczne kursy i podręczniki branżowe.

Pytanie 33

Największy kontrast kolorów osiąga się, fotografując czerwoną sukienkę na tle

A. niebieskim
B. zielonym
C. purpurowym
D. szarym
Czerwona sukienka na tle zielonym pozwala na uzyskanie największego kontrastu barw dzięki zjawisku dopełnienia kolorów. W teorii kolorów, czerwień i zieleń znajdują się w przeciwnych częściach koła kolorów, co sprawia, że intensyfikują się nawzajem, tworząc wrażenie większej intensywności kolorów. Praktyczne zastosowanie tego efektu można zaobserwować w fotografii modowej, gdzie umiejętność łączenia barw, które tworzą wysoki kontrast, podkreśla detale ubrań i ich teksturę. Warto także zwrócić uwagę na znaczenie oświetlenia – odpowiednie światło naturalne lub sztuczne może dodatkowo wzmocnić efekt kontrastu, co jest kluczowe w profesjonalnej fotografii. Używając zielonego tła, możemy również zyskać na spójności wizualnej, co jest często stosowane w kampaniach reklamowych oraz sesjach zdjęciowych, gdzie kolor tła ma za zadanie komplementować prezentowane stroje, a nie odwracać od nich uwagę.

Pytanie 34

Obrazy HDR wyświetlane na monitorach HDR charakteryzują się

A. lepszą ostrością krawędzi obiektów
B. większą rozpiętością tonalną od czerni do bieli
C. wyższą rozdzielczością przy tej samej liczbie pikseli
D. większą kompresją pliku przy tej samej jakości
W kontekście obrazu HDR, pojawiają się powszechne nieporozumienia dotyczące jego właściwości. Na przykład, większa kompresja pliku przy tej samej jakości może sugerować, że HDR wymaga mniejszych rozmiarów plików, co jest błędne. W rzeczywistości, obrazy HDR często zajmują więcej miejsca ze względu na dodatkowe informacje o kolorach i jasności. Kompresja nie koreluje bezpośrednio z jakością obrazu; wręcz przeciwnie, aby zachować wszystkie detale, może być potrzebna mniejsza kompresja lub jej brak. Kolejnym błędnym przekonaniem jest, że HDR przekłada się na lepszą ostrość krawędzi obiektów. Ostrość obrazu zależy od rozdzielczości i jakości materiału źródłowego, a HDR koncentruje się na zakresie tonalnym, a nie na ostrości. Wyższa rozdzielczość przy tej samej liczbie pikseli to również nieporozumienie – liczba pikseli definiuje rozdzielczość, a nie format obrazu. Zrozumienie tych różnic jest kluczowe, aby w pełni wykorzystać potencjał technologii HDR oraz uniknąć typowych błędów myślowych, które mogą prowadzić do nieprawidłowych wniosków.

Pytanie 35

Jakiego środka należy używać do samodzielnego czyszczenia obiektywów z soczewkami posiadającymi powłokę przeciwodblaskową?

A. Irchy
B. Sprężonego powietrza
C. Wilgotnej ściereczki
D. Pędzelka
Wybór niewłaściwego środka czyszczącego obiektywy może prowadzić do poważnych uszkodzeń, co pokazuje, dlaczego niektóre z proponowanych opcji są nieodpowiednie. Używanie pędzelka do czyszczenia obiektywów może wydawać się praktyczne, ale jest to metoda, która niesie ryzyko zarysowań na szkle, zwłaszcza jeśli pędzelek nie jest odpowiednio czysty lub ma twarde włosie. Również stosowanie irchy, mimo że może być użyteczna do czyszczenia powierzchni, nie jest zalecane do soczewek pokrytych powłokami przeciwodblaskowymi, ponieważ może z łatwością pozostawić zarysowania lub mikroskopijne włókna, które z kolei mogą pogorszyć jakość obrazu. Wilgotna ściereczka również nie jest idealna, ponieważ może pozostawić zacieki, a niektóre materiały mogą być zbyt szorstkie dla delikatnych powłok. Kluczowym błędem myślowym w wyborze tych metod jest brak zrozumienia, jak delikatne są soczewki z powłokami, których celem jest poprawa jakości i funkcjonalności. Dobrą praktyką jest zawsze stosowanie odpowiednich narzędzi, które zostały zaprojektowane z myślą o ochronie powierzchni optycznych i eliminowania ryzyka ich uszkodzenia, co jest zgodne z zaleceniami producentów sprzętu fotograficznego.

Pytanie 36

Materiał fotograficzny przeznaczony do robienia zdjęć w podczerwieni powinien być wrażliwy na promieniowanie o długości fali

A. zawartej w zakresie 500-600 nm
B. większej od 700 nm
C. mniejszej od 400 nm
D. zawartej w zakresie 400-500 nm
Materiał fotograficzny nie może być uczulony na promieniowanie zawarte w przedziałach 400-500 nm, 500-600 nm ani mniejszymi od 400 nm, ponieważ te zakresy fal należą do widma światła widzialnego. Odpowiedzi te sugerują, że materiały te reagują na promieniowanie, które jest dobrze widoczne dla ludzkiego oka, co jest niezgodne z zasadami fotografii w podczerwieni. W praktyce, fotografowanie w tych zakresach nie pozwoli na uchwycenie informacji, które są obecne tylko w podczerwieni. Przy wyborze materiałów fotograficznych istotne jest zrozumienie, że każdy zakres fal elektromagnetycznych ma swoje unikalne właściwości. Na przykład, fale o długości fali 400-500 nm odpowiadają za niebieskie i zielone światło, natomiast 500-600 nm obejmują zielenie i żółcie. Procesy detekcji w tych zakresach są zupełnie inne niż w zakresie powyżej 700 nm, gdzie mamy do czynienia z promieniowaniem podczerwonym. Typowym błędem myślowym jest mylenie widma światła widzialnego z podczerwonym. W fotografii, aby uzyskać obrazy oparte na podczerwieni, należy używać specjalnych filtrów i materiałów, które są zaprojektowane do detekcji fal elektromagnetycznych w tym zakresie, co wyraźnie podkreśla konieczność właściwego doboru urządzeń oraz niezbędnych akcesoriów w procesie fotograficznym.

Pytanie 37

Wykonanie serii zdjęć tej samej sceny za pomocą aparatu fotograficznego przy automatycznych, skokowych zmianach parametrów naświetlenia pozwala na

A. automatyczny balans bieli
B. afocus
C. stabilizację obrazu
D. autobracketing
Wybór odpowiedzi dotyczącej automatycznego balansu bieli, autofocusu czy stabilizacji obrazu jako technik do wykonania serii zdjęć z różnymi parametrami naświetlenia jest nieprawidłowy, ponieważ te funkcje nie spełniają roli autobracketingu. Automatyczny balans bieli służy do dostosowania kolorystyki zdjęcia do źródła światła, eliminując niepożądane odcienie, ale nie zmienia parametrów ekspozycji, co jest kluczowe w kontekście autobracketingu. Autofocus, z drugiej strony, dotyczy ostrości zdjęcia, a nie jego naświetlenia. Jest to proces, w którym aparat automatycznie dostosowuje ostrość obiektywu, co również nie wpływa na zmiany w ekspozycji. Stabilizacja obrazu jest systemem, który ma na celu zredukowanie efektu drgań aparatu podczas robienia zdjęcia, ale nie generuje serii zdjęć przy zmieniających się parametrach naświetlenia. Zrozumienie, że te funkcje mają różne cele i zastosowania, jest kluczowe dla efektywnego wykorzystania aparatu. W praktyce, fotograficy muszą być świadomi, że każda z tych technologii ma swoje specyficzne zastosowanie i nie zastępuje funkcjonalności autobracketingu, który jest niezbędny do uzyskania większej kontroli nad naświetleniem. Typowym błędem jest mylenie funkcji aparatu, co prowadzi do niewłaściwego wyboru ustawień w kluczowych momentach sesji zdjęciowej.

Pytanie 38

Do fotografowania architektury najlepiej wykorzystać obiektyw

A. tilt-shift
B. teleobiektyw
C. makro
D. standardowy o stałej ogniskowej
Obiektyw tilt-shift jest idealnym narzędziem do fotografowania architektury, ponieważ umożliwia kontrolowanie perspektywy i zniekształceń związanych z kątem, pod jakim wykonujemy zdjęcia. Dzięki możliwości przechylania (tilt) i przesuwania (shift) obiektywu, możemy wyeliminować efekty perspektywy, które często występują w przypadku fotografowania wysokich budynków. Przykładowo, przy użyciu obiektywu tilt-shift można uzyskać prostokątne linie budynków, co jest niezwykle istotne dla architektów i fotograficznych dokumentalistów. W praktyce, fotografując w warunkach miejskich, gdzie przestrzenie są ograniczone, obiektyw ten pozwala na uchwycenie całych budynków bez ich 'wynoszenia' w górę na zdjęciach, co jest powszechne przy użyciu standardowych obiektywów. Poza tym, tilt-shift oferuje większą kontrolę nad głębią ostrości, co pozwala na twórcze podejście do kompozycji zdjęć architektonicznych.

Pytanie 39

Który z obiektywów charakteryzuje się długością ogniskowej porównywalną z przekątną matrycy o wymiarach 36 x 24 mm oraz kątem widzenia, który jest zbliżony do kąta widzenia ludzkiego oka?

A. Długoogniskowy
B. Szerokokątny
C. Standardowy
D. Wąskokątny
Obiektyw standardowy ma ogniskową w okolicach 50 mm, co odpowiada temu, co widzi nasze oko – mniej więcej 46 stopni. Taki obiektyw robi zdjęcia w bardzo naturalny sposób, więc jest świetnym wyborem do portretów, fotografii ulicznej czy codziennych scenek. W praktyce, jego zastosowanie pozwala uzyskać realne perspektywy, co jest bardzo ważne w różnych dziedzinach fotografii, jak dokumentacja czy reportaż. Często używa się go też w reklamie, gdzie liczy się zachowanie prawdziwego wyglądu prezentowanych produktów. Co ważne, obiektywy standardowe mają małe zniekształcenie obrazu, dzięki czemu zdjęcia są naprawdę wysokiej jakości. Uważam, że obiektyw standardowy to podstawa każdej torby fotografa i warto go dobrze poznać, żeby rozwijać swoje umiejętności w fotografii.

Pytanie 40

Aby uzyskać na fotografiach efekt zamrożenia ruchu podczas robienia zdjęć sportowcom, najlepiej wykorzystać czas naświetlania

A. 1/250 s
B. 1/125 s
C. 1/30 s
D. 1/60 s
Czas naświetlania 1/250 s jest optymalny do uzyskania efektu zatrzymania ruchu podczas fotografowania sportowców. Krótszy czas ekspozycji pozwala na zminimalizowanie rozmycia ruchu, co jest kluczowe przy dynamicznych scenach, takich jak zawody sportowe. Przy 1/250 s, ruch jest uchwycony w sposób, który zachowuje szczegóły, dając jednocześnie wrażenie dynamizmu. Taki czas naświetlania jest często stosowany w profesjonalnej fotografii sportowej, gdzie kluczowe jest uchwycenie akcji w najdrobniejszych szczegółach. Przykładem mogą być zdjęcia z wyścigów, gdzie każdy moment ma znaczenie, a odpowiedni czas naświetlania pozwala fotografowi uchwycić sportowca w pełnym biegu z wyraźnym konturem. Warto również zwrócić uwagę na dobór odpowiedniego obiektywu oraz stabilizację, co w połączeniu z odpowiednim czasem ekspozycji znacząco podnosi jakość zdjęć. Standardy branżowe zalecają użycie czasów naświetlania w zakresie 1/250 do 1/1000 s w zależności od prędkości obiektu, co czyni 1/250 s bardzo uniwersalnym wyborem.