Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 kwietnia 2025 20:20
  • Data zakończenia: 15 kwietnia 2025 20:45

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do jakich pomiarów stosuje się wakuometry?

A. wydajności pompy paliwowej
B. ciśnienia paliwa
C. podciśnienia w układzie dolotowym
D. ciśnienia atmosferycznego
Wakuometry są instrumentami służącymi do pomiaru ciśnienia, a ich głównym zastosowaniem jest pomiar podciśnienia w układzie dolotowym silników spalinowych. Podciśnienie w tym kontekście jest kluczowym parametrem, ponieważ wpływa na proces mieszania paliwa z powietrzem oraz na eficjencję pracy silnika. Przykładowo, prawidłowe ustawienie podciśnienia zapewnia optymalne warunki do spalania, co przekłada się na lepszą wydajność i oszczędność paliwa. W branży motoryzacyjnej, wakuometry są często wykorzystywane do diagnostyki układów dolotowych i mogą pomóc zidentyfikować problemy, takie jak nieszczelności w systemie dolotowym czy niewłaściwe ustawienia gaźnika. Standardy przemysłowe sugerują użycie wakuometrów w regularnych przeglądach technicznych, co zapewnia utrzymanie silników w dobrej kondycji. W związku z tym, umiejętność interpretacji wyników pomiarów wakuometrycznych jest kluczowa dla mechaników i techników samochodowych.

Pytanie 2

Refraktometr stosowany w motoryzacji nie nadaje się do wykonania pomiaru

A. gęstości elektrolitu w akumulatorze
B. temperatury krzepnięcia płynu do spryskiwacza
C. temperatury krzepnięcia płynu chłodzącego
D. temperatury wrzenia płynu hamulcowego
Pomiar temperatury zamarzania płynu do spryskiwacza, gęstości elektrolitu akumulatora oraz temperatury zamarzania płynu chłodzącego są zadaniami, które mogą być wykonane przy użyciu refraktometru, jednakże nie są one w pełni reprezentatywne dla zastosowań w kontekście płynu hamulcowego. Płyn do spryskiwaczy, na przykład, jest zwykle wodnym roztworem z dodatkiem alkoholu i substancji chemicznych, co sprawia, że jego temperatura zamarzania można skutecznie zmierzyć refraktometrem, ponieważ zmierzony indeks załamania światła w tym przypadku zmienia się w zależności od zawartości składników w roztworze. Gęstość elektrolitu akumulatora również może być ustalona na podstawie zmiany współczynnika refrakcji, co jest standardową praktyką w diagnostyce akumulatorów. Z kolei temperatura zamarzania płynu chłodzącego, który często zawiera glikol etylenowy, również podlega pomiarowi z użyciem refraktometru, co jest powszechne w serwisach samochodowych. Warto zauważyć, że powszechne myślenie, że refraktometr jest narzędziem uniwersalnym do pomiaru wszystkich właściwości fizycznych cieczy w motoryzacji, może prowadzić do błędnych wniosków. Dlatego kluczowe jest zrozumienie, że różne substancje wymagają różnych metod pomiarowych, a w przypadku płynu hamulcowego, ze względu na jego specyfikę i wymagania bezpieczeństwa, konieczne jest stosowanie odpowiednich narzędzi i procedur. Pomocne może być zapoznanie się z dokumentacją producenta i standardami branżowymi, które precyzują metody oceny jakości płynów hamulcowych, aby uniknąć zagrożeń związanych z niewłaściwym pomiarem.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Pomiar ciśnienia sprężania przeprowadza się, aby ocenić szczelność

A. chłodnicy
B. opon
C. zaworów
D. układu wydechowego
Pomiar ciśnienia sprężania w silniku spalinowym jest kluczowym testem diagnostycznym, który pozwala ocenić szczelność zaworów, a także ogólny stan silnika. Wysokiej jakości szczelność zaworów jest niezbędna do prawidłowego działania silnika, ponieważ zapewnia efektywne spalanie mieszanki paliwowo-powietrznej. W przypadku uszkodzenia lub niewłaściwego funkcjonowania zaworów, ciśnienie sprężania może być znacznie niższe niż normy producenta, co prowadzi do obniżenia mocy silnika, zwiększenia zużycia paliwa oraz emisji spalin. Standardowe procedury diagnostyczne, takie jak pomiar ciśnienia sprężania, są zalecane przez producentów silników i stosowane w warsztatach mechanicznych jako rutynowy element diagnostyki. Dobrą praktyką jest regularne przeprowadzanie takich testów, aby wykryć problemy, zanim doprowadzą one do poważniejszych awarii. Na przykład, w silnikach z uszkodzonymi zaworami wydechowymi, może wystąpić zjawisko "zaworu niezamkniętego" (ang. valve overlap), co znacząco obniża wydajność silnika. Testy ciśnienia sprężania powinny być przeprowadzane z użyciem odpowiednich narzędzi, takich jak manometry, które są kalibrowane i spełniają standardy branżowe.

Pytanie 5

Funkcja amortyzatora w systemie zawieszenia

A. zapobiega odrywaniu kół od powierzchni
B. może pełnić rolę sprężyny w układzie zawieszenia
C. zalicza się do kategorii elementów sprężystych zawieszenia
D. wydłuża czas oscylacji sprężyny
Amortyzator w układzie zawieszenia odgrywa kluczową rolę w zapewnieniu stabilności pojazdu oraz komfortu jazdy. Jego głównym zadaniem jest kontrolowanie ruchów sprężyny, co ma na celu zapobieganie odrywaniu się kół od nawierzchni. W praktyce oznacza to, że amortyzator tłumi drgania, które pojawiają się w wyniku nierówności drogi, co z kolei pozwala na zachowanie kontaktu kół z nawierzchnią. Przykładem zastosowania amortyzatorów są pojazdy terenowe, w których odpowiednia kontrola drgań jest niezbędna do utrzymania stabilności w trudnym terenie. Warto również wspomnieć, że nowoczesne amortyzatory, takie jak amortyzatory gazowe lub aktywne, są projektowane zgodnie z najnowszymi standardami branżowymi, co pozwala na jeszcze lepsze dostosowanie do warunków drogowych i zwiększa bezpieczeństwo jazdy. Dobre praktyki w konstrukcji zawieszeń obejmują regularne sprawdzanie stanu amortyzatorów, ponieważ ich zużycie może negatywnie wpływać na osiągi pojazdu oraz komfort podróży."

Pytanie 6

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. hipoidalną.
B. cierną.
C. walcową.
D. ślimakową.
Przekładnie walcowe, mimo że są popularne w wielu zastosowaniach mechanicznych, nie są optymalnym wyborem do mostów napędowych w pojazdach. Ich konstrukcja opiera się na zębach równoległych, co prowadzi do większych wymagań dotyczących precyzji montażu oraz może generować wyższe poziomy hałasu i wibracji. W przypadku mostów napędowych, kluczowe jest nie tylko przenoszenie momentu obrotowego, ale także zapewnienie cichej i płynnej pracy, co przekładnie walcowe mogą ograniczać. Z kolei przekładnie ślimakowe, chociaż mają swoje zalety w zakresie redukcji prędkości i dużego przełożenia, nie zapewniają odpowiedniego współczynnika wydajności w zastosowaniach motoryzacyjnych, co czyni je niepraktycznymi w kontekście mostów napędowych. Poza tym, ich konstrukcja może prowadzić do znaczącego zużycia, co w dłuższej perspektywie zwiększa koszty eksploatacji. Przekładnie cierne, z drugiej strony, są stosowane w sytuacjach, gdy wymagana jest regulacja prędkości obrotowej, jednak nie nadają się do bezpośredniego przenoszenia dużych momentów obrotowych w mostach napędowych. Właściwe zrozumienie różnic między tymi typami przekładni jest kluczowe dla inżynierów projektujących systemy napędowe, aby uniknąć typowych błędów inżynieryjnych oraz zapewnić optymalizację wydajności i niezawodności w działaniu.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Zniekształcenie powierzchni przylegania głowicy silnika następuje w wyniku

A. luźnych łożysk wału rozrządu
B. zużytych gniazd zaworów
C. nieprawidłowego dokręcenia śrub
D. niedostatecznego smarowania
Jak wiesz, dobrze dokręcone śruby w układzie mocującym głowicę silnika są mega ważne. Jeśli nie dokręcisz ich odpowiednio, siły rozkładają się nierównomiernie i to może prowadzić do deformacji płaszczyzny. W efekcie może być problem z szczelnością komory spalania, co wpływa na to, jak działają układy zaworowe. Podczas montażu głowicy lepiej trzymać się sprawdzonych procedur, które opisują, jak dokręcać śruby - czasem są tam konkretne wartości momentu obrotowego i sekwencje. W motoryzacji mamy normy jak ISO 898-1, które mówią, jakie materiały i cechy mechaniczne powinny mieć śruby. Więc pamiętaj, żeby o to zadbać, bo to kluczowe dla długiej i bezawaryjnej pracy silnika, a co za tym idzie, bezpieczeństwo i wydajność twojego auta. Jeśli spróbujesz to zlekceważyć, możesz się zmierzyć z poważnymi problemami, takimi jak przegrzewanie silnika albo uszkodzenie uszczelki pod głowicą, a to może być naprawdę kosztowne.

Pytanie 9

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. tarcze i klocki hamulcowe wszystkich kół
B. wyłącznie tarcze hamulcowe kół osi przedniej
C. tarcze oraz klocki hamulcowe osi przedniej
D. jedynie tarczę hamulcową koła lewego przedniego
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 10

Aby ustalić stopień zużycia pierścieni tłokowych, tłoka, cylindra oraz gniazd zaworowych, nie jest konieczne przeprowadzanie pomiaru

A. podciśnienia w układzie dolotowym
B. ciśnienia sprężania
C. szczelności cylindrów
D. ciśnienia smarowania
Pomiar podciśnienia w układzie dolotowym, szczelności cylindrów oraz ciśnienia sprężania są istotnymi elementami diagnozowania stanu silnika, jednak nie są one wystarczające do pełnej oceny zużycia pierścieni tłokowych, tłoka, cylindra ani gniazd zaworowych. Podciśnienie w układzie dolotowym może dostarczać informacji na temat szczelności układu dolotowego i stanu uszczelek, ale nie odnosi się bezpośrednio do zużycia komponentów silnika. Nieprawidłowe wnioski mogą wynikać z mylenia objawów z ich przyczynami, co prowadzi do niepełnej analizy stanu technicznego silnika. Na przykład, niskie ciśnienie sprężania może sugerować zużycie pierścieni tłokowych lub uszkodzenie uszczelek zaworowych, ale nie jest to wystarczające do określenia ich rzeczywistego stanu. Często diagnostyka silnika wymaga złożonego podejścia, w którym wszystkie te parametry są analizowane w kontekście ich wzajemnych interakcji, by uzyskać pełny obraz stanu jednostki napędowej. Zrozumienie tych zależności jest kluczowe w pracy mechanika i przyczynia się do skutecznej diagnostyki oraz późniejszych działań naprawczych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Aby zmierzyć napięcie ładowania akumulatora w instalacji elektrycznej samochodu z alternatorem, konieczne jest skorzystanie z woltomierza o zakresie pomiarowym przynajmniej

A. 9 V
B. 2 V
C. 20 V
D. 6 V
Pomiar napięcia ładowania akumulatora w instalacji elektrycznej pojazdu z alternatorem wymaga użycia woltomierza o zakresie co najmniej 20 V. Standardowe napięcie ładowania akumulatorów w pojazdach osobowych wynosi od 13,8 V do 14,4 V, w zależności od stanu naładowania oraz temperatury. W przypadku awarii alternatora, napięcie może jednak wzrosnąć, osiągając wartości niebezpieczne dla systemu elektrycznego pojazdu. Użycie woltomierza o zakresie minimum 20 V zapewnia nie tylko bezpieczeństwo pomiaru, ale również pozwala na dokładne monitorowanie zachowań układu ładowania. Przykładowo, w przypadku stosowania woltomierza o niższym zakresie, istnieje ryzyko spalenia przyrządu pomiarowego przy wystąpieniu zbyt wysokiego napięcia. Ponadto, w branży motoryzacyjnej, zgodnie z normami SAE (Society of Automotive Engineers), zaleca się korzystanie z urządzeń pomiarowych, które mogą obsługiwać wyższe napięcia, aby uniknąć potencjalnych uszkodzeń sprzętu oraz zapewnić wiarygodność pomiarów.

Pytanie 13

Jakie urządzenie wykorzystuje się do pomiaru ciśnienia sprężania w silniku?

A. oscyloskop
B. manometr
C. stetoskop
D. stroboskop
Oscyloskop, stetoskop i stroboskop są narzędziami pomiarowymi, które mają zastosowanie w różnych dziedzinach inżynierii, lecz nie są odpowiednie do pomiaru ciśnienia sprężania silnika. Oscyloskop jest urządzeniem służącym do analizy sygnałów elektrycznych, umożliwiającym wizualizację ich kształtu w czasie. W kontekście diagnostyki silników, może być używany do monitorowania sygnałów czujników, ale nie do oceny ciśnienia sprężania. Stetoskop, z kolei, jest narzędziem medycznym, które służy do osłuchiwania dźwięków z wnętrza ciała, co nie ma jakiegokolwiek zastosowania w diagnostyce silników spalinowych. Jego użycie w kontekście silnika jest błędne, ponieważ nie dostarcza informacji o ciśnieniu. Stroboskop to przyrząd służący do analizy ruchu obiektów w czasie, często wykorzystywany w badaniach obrotów silników. Może być używany do oceny synchronizacji zapłonu, ale nie ma zastosowania w bezpośrednim pomiarze ciśnienia w cylindrach. Przyczyną błędnego wyboru może być mylne przekonanie, że wszystkie narzędzia pomiarowe są wymienne i mogą być stosowane w dowolnym kontekście diagnozowania silników. Kluczowe jest zrozumienie, że każde narzędzie ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez dokładnej znajomości ich funkcji.

Pytanie 14

Podczas jazdy samochód osiągnął temperaturę 110 °C (czerwone pole na wskaźniku temperatury) w obiegu płynu chłodzącego. Jakie mogą być tego przyczyny?

A. usterka systemu chłodzenia
B. przeciążenie alternatora
C. zatarcie silnika
D. usterka klimatyzacji
Odpowiedź 'awaria układu chłodzenia' jest poprawna, ponieważ wysoka temperatura płynu chłodzącego, mierząca 110 °C, wskazuje na problemy z efektywnością systemu chłodzenia silnika. Układ chłodzenia ma za zadanie odprowadzać ciepło generowane przez silnik, aby utrzymać jego optymalną temperaturę pracy. Awaria może wystąpić na skutek różnych przyczyn, takich jak uszkodzenie pompy wodnej, zapchanie chłodnicy, wyciek płynu chłodzącego lub uszkodzenie termostatu. W praktyce, problemy te mogą prowadzić do przegrzania silnika, co z kolei może skutkować poważnymi uszkodzeniami, jak zatarcie silnika czy pęknięcie głowicy cylindrów. Dlatego ważne jest regularne serwisowanie układu chłodzenia, w tym wymiana płynu chłodzącego zgodnie z zaleceniami producenta oraz kontrola stanu chłodnicy i innych komponentów układu. Dobre praktyki obejmują także monitorowanie wskaźników temperatury podczas jazdy oraz szybkie reagowanie na wszelkie nieprawidłowości, aby uniknąć kosztownych napraw.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W trakcie wypadku rolą napinacza pasa bezpieczeństwa jest

A. zablokowanie zwijacza, co uniemożliwi rozwinięcie pasa
B. ułatwienie wypięcia pasa tuż po zamortyzowaniu uderzenia
C. zmniejszenie nacisku pasa na ludzkie ciało, gdy jest on zbyt duży
D. jak najszybsze, mocne związanie ciała człowieka z konstrukcją pojazdu
Napinacz pasa bezpieczeństwa odgrywa kluczową rolę w systemie zabezpieczeń pojazdu. Jego głównym zadaniem jest jak najszybsze i ściśle związanie ciała pasażera z konstrukcją pojazdu w momencie zderzenia. Dzięki temu, podczas nagłego hamowania lub kolizji, napinacz minimalizuje ryzyko przesunięcia się ciała pasażera do przodu, co mogłoby prowadzić do poważnych obrażeń. Warto zauważyć, że napinacze działają na zasadzie mechanizmu automatyzacji, który w momencie detekcji wypadku błyskawicznie napina pas, co zostało zaprojektowane zgodnie z normami bezpieczeństwa, takimi jak ECE R16 w Europie. Przykładowo, w nowoczesnych pojazdach, systemy napinaczy współpracują z poduszkami powietrznymi, co jeszcze bardziej zwiększa poziom ochrony pasażerów. Prawidłowe działanie napinacza jest zatem kluczowe dla zapewnienia bezpieczeństwa podczas jazdy oraz w sytuacjach kryzysowych, co podkreśla jego znaczenie w inżynierii motoryzacyjnej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jak wiele znaków zawiera numer VIN?

A. 11 znaków
B. 15 znaków
C. 17 znaków
D. 13 znaków
Numer identyfikacyjny pojazdu, znany jako VIN (Vehicle Identification Number), składa się z 17 znaków, co czyni go unikalnym dla każdego pojazdu. VIN został wprowadzony, aby zapewnić jednoznaczną identyfikację pojazdów na całym świecie. Składa się z kombinacji liter i cyfr, które zawierają istotne informacje, takie jak producent, rok produkcji, miejsce produkcji oraz unikalny numer seryjny pojazdu. Przykładowo, pierwsze trzy znaki VIN to tzw. WMI (World Manufacturer Identifier), które identyfikują producenta. Wiedza na temat VIN jest kluczowa dla takich procesów jak rejestracja pojazdu, ubezpieczenia, a także przy transakcjach sprzedaży, ponieważ pozwala na szybkie sprawdzenie historii pojazdu oraz jego stanu prawnego. Zgodnie z międzynarodowymi standardami ISO 3779, długość VIN powinna być stała, co ułatwia zarówno producentom, jak i użytkownikom identyfikację i śledzenie pojazdów.

Pytanie 19

Zainstalowanie wtryskiwaczy w dolotowym kolektorze silnika ma miejsce w systemie zasilania

A. wtryskowym jednopunktowym
B. wtryskowym z wtryskiem pośrednim
C. gaźnikowym
D. wtryskowym z układem bezpośrednim
Umieszczenie wtryskiwaczy w kolektorze dolotowym silnika w układzie z wtryskiem pośrednim ma kluczowe znaczenie dla optymalizacji procesu spalania mieszanki paliwowo-powietrznej. Wtryskiwacze w tym układzie dostarczają paliwo do kolektora dolotowego, gdzie następuje jego wymieszanie z powietrzem zanim trafi do cylindrów silnika. Takie podejście umożliwia lepsze rozprężenie paliwa i zapewnia bardziej jednorodną mieszankę, co wpływa na efektywność spalania oraz redukcję emisji. Wtrysk pośredni jest często stosowany w silnikach benzynowych, gdzie kluczowe jest uzyskanie optymalnej mieszanki w różnych warunkach pracy silnika. Praktycznym przykładem zastosowania tego rozwiązania są silniki samochodowe, które wykorzystują technologię wielopunktowego wtrysku, co pozwala na lepsze dostosowanie parametrów pracy silnika do zmieniających się warunków, co przekłada się na większą moc oraz oszczędność paliwa. W branży motoryzacyjnej standardy emisji spalin, takie jak Euro 6, wymuszają na producentach stosowanie bardziej zaawansowanych układów wtryskowych, co sprawia, że wtryskiwanie pośrednie staje się coraz bardziej popularne jako efektywne rozwiązanie.

Pytanie 20

Aby przeprowadzić regulację luzu zaworowego, potrzebne jest

A. passametr
B. szczelinomierz
C. głębokościomierz
D. mikrometr
Szczelinomierz jest narzędziem pomiarowym wykorzystywanym do precyzyjnego ustalania luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na prawidłową pracę silnika, jego osiągi oraz efektywność. Użycie szczelinomierza pozwala na dokładne zmierzenie odstępu między końcem zaworu a jego gniazdem, co jest niezbędne do optymalizacji pracy silnika. Przykładowo, w silnikach z mechanicznymi zaworami, zbyt mały luz może prowadzić do przegrzewania i uszkodzenia zaworów, natomiast zbyt duży luz może powodować hałas i obniżoną efektywność spalania. Zgodnie z dobrymi praktykami branżowymi, regulację luzu zaworowego należy przeprowadzać cyklicznie, zgodnie z harmonogramem serwisowym producenta, co zapewnia długotrwałą i bezawaryjną pracę silnika. Użycie szczelinomierza jest zatem kluczowe, aby zapewnić odpowiednią precyzję i jakość wykonania tej regulacji.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. tył i przód z pominięciem przekładni głównej mostu napędowego
B. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
C. przód i tył, w przypadku pojazdu z napędem na cztery koła
D. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
W kontekście pytania o mechanizm różnicowy, występuje szereg nieporozumień dotyczących funkcji tego elementu w samochodzie. Kluczowym błędem jest zrozumienie, że mechanizm różnicowy nie tylko dzieli napęd na koła napędowe, ale również umożliwia im toczenie się z różnymi prędkościami obrotowymi. Odpowiedzi sugerujące brak tej możliwości są nieprawidłowe, ponieważ ignorują fundamentalne zasady fizyki ruchu pojazdu. W skręcie, koła zewnętrzne muszą pokonać większą odległość niż wewnętrzne, co wymaga różnicy w prędkości ich obrotu. Innym błędnym podejściem jest twierdzenie, że mechanizm różnicowy odpowiada za rozdział napędu pomiędzy przednią a tylną osią lub że dotyczy to pojazdów z napędem na cztery koła. Mechanizmy różnicowe mają różne konfiguracje w zależności od rodzaju napędu, ale ich podstawowa funkcja pozostaje niezmienna. Zrozumienie roli mechanizmu różnicowego w kontekście prawidłowego działania układu napędowego jest niezbędne do właściwego ocenienia wydajności pojazdu. Ignorowanie tych zasad może prowadzić do nieprawidłowych wniosków na temat konstrukcji i funkcjonowania pojazdów, co może mieć poważne konsekwencje w praktyce, na przykład w kontekście bezpieczeństwa jazdy.

Pytanie 23

Masa własna pojazdu obejmuje

A. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
B. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
C. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
D. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 24

Jak przeprowadza się ocenę układu hamulcowego po jego naprawie?

A. na hamowni podwoziowej
B. na rolkach pomiarowych
C. metodą Boge
D. na szarpaku
Odpowiedź 'na rolkach pomiarowych' jest poprawna, ponieważ rolki pomiarowe umożliwiają dokładną ocenę działania układu hamulcowego w rzeczywistych warunkach eksploatacyjnych. Dzięki tej metodzie można ocenić skuteczność hamowania pojazdu, a także równomierność działania poszczególnych hamulców. Rolki pomiarowe działają na zasadzie symulacji ruchu pojazdu, co pozwala na precyzyjne zbadanie siły hamowania oraz siły oporu, które są kluczowe dla bezpieczeństwa jazdy. W przypadku wykrycia nieprawidłowości, można natychmiast przeprowadzić diagnostykę oraz naprawę, co jest zgodne z najlepszymi praktykami branżowymi. Zastosowanie tej metody pozwala także na uzyskanie szczegółowych danych, które mogą być użyte do dalszej analizy i optymalizacji działania układu hamulcowego. Przykładowo, w warsztatach samochodowych, gdzie regularnie przeprowadza się przeglądy techniczne pojazdów, rolki pomiarowe są standardowym narzędziem do oceny stanu hamulców, co zapewnia ich bezpieczeństwo i niezawodność.

Pytanie 25

Jak wykonuje się pomiar wysokości krzywki wałka rozrządu?

A. głębokościomierzem
B. suwmiarką noniuszową
C. mikromierzem do pomiarów wewnętrznych
D. szczelinomierzem
Pomiar wysokości krzywki wałka rozrządu za pomocą suwmiarki noniuszowej jest najlepszą metodą, ponieważ ten przyrząd pomiarowy pozwala na uzyskanie dokładnych wartości z zachowaniem wysokiej precyzji. Suwmiarka noniuszowa, znana z możliwości pomiaru w zakresie milimetra i submilimetra, jest idealna do tego zadania, gdyż umożliwia pomiar zarówno zewnętrzny, jak i wewnętrzny oraz głębokości. W przypadku pomiarów wysokości krzywki, suwmiarka noniuszowa pozwala na bezpośrednie odczytanie wartości, co jest kluczowe dla zachowania odpowiednich tolerancji. Dobrym przykładem zastosowania tej metody jest przeprowadzanie pomiarów wysokości krzywek w silnikach, co ma kluczowe znaczenie dla prawidłowego działania układu rozrządu. W standardach branżowych, takich jak ISO 6743, podkreśla się znaczenie precyzyjnych pomiarów w inżynierii mechanicznej, co czyni użycie suwmiarki noniuszowej najlepszym wyborem.

Pytanie 26

Termostat nie ma wpływu na

A. zużycie płynu chłodzącego
B. szybkie nagrzewanie silnika
C. zużycie paliwa
D. utrzymywanie temperatury silnika
Termostat w silniku to taki kluczowy element, który dba o to, żeby silnik pracował w odpowiedniej temperaturze. Nie ma on jednak bezpośredniego wpływu na to, ile płynu chłodzącego zużywamy. Jak to działa? No, termostat otwiera i zamyka obieg chłodzenia w odpowiedzi na zmiany temperatury silnika. Gdy silnik osiągnie tę idealną temperaturę, termostat się otwiera i puszcza płyn chłodzący do chłodnicy. To z kolei zapobiega przegrzewaniu. Ale pamiętaj, że to, ile tego płynu używamy, zależy też od innych rzeczy, jak na przykład stan uszczelek, różne wycieki czy efektywność całego systemu chłodzenia. Z moich doświadczeń wynika, że ważne jest, by rozumieć rolę termostatu, bo to pomaga lepiej dbać o auto i radzić sobie z ewentualnymi problemami w układzie chłodzenia. Dzięki temu można lepiej zarządzać kosztami utrzymania i wydajnością silnika.

Pytanie 27

Czujnik zegarowy ma zastosowanie w pomiarze

A. grubości okładziny klocka hamulcowego
B. średnicy czopa wału korbowego
C. bicia osiowego tarczy hamulcowej
D. średnicy trzonka zaworu
Czujnik zegarowy, znany również jako wskaźnik zegarowy lub wskaźnik mikrometryczny, jest precyzyjnym narzędziem pomiarowym, które służy do mierzenia bicia osiowego tarczy hamulcowej. Ten typ czujnika wykorzystywany jest w mechanice precyzyjnej do oceny niewielkich odchyleń w poziomie lub w pionie. W przypadku tarczy hamulcowej, monitorowanie bicia osiowego jest kluczowe, ponieważ nadmierne bicie może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia efektywności hamowania. Standardy branżowe, takie jak normy SAE (Society of Automotive Engineers) oraz ISO, zalecają regularne kontrole bicia osiowego elementów układu hamulcowego, aby zapewnić maksymalne bezpieczeństwo i wydajność. Przykładem zastosowania czujnika zegarowego może być diagnostyka stanu układu hamulcowego w warsztatach samochodowych, gdzie technicy wykorzystują to narzędzie do oceny i eliminacji problemów z drganiami tarcz, co przedłuża żywotność komponentów oraz zwiększa bezpieczeństwo pojazdów.

Pytanie 28

Za utrzymanie trakcji w pojeździe poruszającym się odpowiada system

A. ESP
B. ENI
C. OBD
D. EPS
ESP, czyli Electronic Stability Program, to zaawansowany system elektroniczny, który ma na celu poprawę stabilności i kontroli trakcji pojazdu w trakcie jazdy. Działa poprzez monitorowanie prędkości kół, kątów skrętu oraz przyspieszenia, a w przypadku wykrycia utraty trakcji, automatycznie dostosowuje siłę hamowania oraz moc silnika, aby zapobiec poślizgowi. Przykładowo, podczas jazdy na śliskiej nawierzchni, system ESP może interweniować, zmniejszając moc silnika lub hamując konkretne koła, co pomaga zachować kontrolę nad pojazdem. Zgodnie z normami bezpieczeństwa motoryzacyjnego, takie systemy są obowiązkowe w nowych samochodach w wielu krajach, co podkreśla ich kluczowe znaczenie w zapobieganiu wypadkom. Dobre praktyki w dziedzinie inżynierii motoryzacyjnej nakładają na producentów obowiązek testowania i optymalizacji systemów ESP, aby zapewnić ich niezawodność w różnych warunkach drogowych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby zmierzyć odległość między elektrodami świecy zapłonowej, należy zastosować

A. szczelinomierz.
B. mikrometr do średnic.
C. suwmiarkę.
D. wzorcową płytkę.
Szczelinomierz to narzędzie pomiarowe, które jest idealnie przystosowane do pomiaru przerwy między elektrodami świecy zapłonowej. Dzięki swojej budowie, szczelinomierz pozwala na dokładne określenie wymiaru szczeliny, co jest kluczowe dla prawidłowego funkcjonowania świecy zapłonowej. Utrzymanie odpowiedniej przerwy między elektrodami jest istotne, ponieważ wpływa na efektywność zapłonu mieszanki paliwowej, co z kolei przekłada się na osiągi silnika oraz jego oszczędność paliwa. Zbyt mała przerwa może prowadzić do niepełnego spalania i zwiększonej emisji spalin, natomiast zbyt duża może skutkować trudnościami w uruchomieniu silnika oraz niestabilną pracą. Użycie szczelinomierza, zwłaszcza w kontekście regularnych przeglądów i konserwacji, jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Przykładowo, podczas wymiany świec zapłonowych warto sprawdzić ich przerwę, aby upewnić się, że silnik będzie pracował optymalnie.

Pytanie 31

W silniku dwusuwowym o jednym cylindrze w trakcie suwu roboczego wał korbowy obraca się o kąt

A. 180°
B. 90°
C. 360°
D. 270°
Zrozumienie działania silnika dwusuwowego wymaga analizy cyklu pracy i mechaniki jego działania. Odpowiedzi, które wskazują na inne wartości kątowe obrotu wału korbowego, nie uwzględniają podstawowej zasady funkcjonowania tych silników. Na przykład, obrót o 90° sugerowałby, że wał korbowy mógłby wykonawać suw tylko jednego z procesów, co jest niezgodne z zasadą działania silnika dwusuwowego, w którym oba procesy, czyli ssanie i wydech, odbywają się w jednym cyklu. Z kolei obrót o 360° oznaczałby konieczność pełnego obrotu wału, co jest charakterystyczne dla silników czterosuwowych, gdzie jeden pełny cykl wymaga dwóch obrotów wału. Zastosowanie tej koncepcji w kontekście silników dwusuwowych prowadzi do błędów interpretacyjnych, ponieważ dwusuwowe jednostki napędowe są zaprojektowane tak, aby maksymalizować ich wydajność poprzez skrócenie cyklu pracy. Natomiast obrót o 270° również wskazuje na nieprawidłowe zrozumienie, ponieważ oznaczałby, że jeden cykl nie zostałby w pełni ukończony, co skutkowałoby niewłaściwym działaniem silnika. W praktyce, mechanicy powinni być świadomi tych różnic i błędów myślowych, aby móc prawidłowo diagnozować i serwisować silniki, a także unikać pułapek związanych z nieprawidłowym zrozumieniem pracy jednostek napędowych.

Pytanie 32

Skrót TPMS na desce rozdzielczej samochodu oznacza, że pojazd jest wyposażony w

A. układ przeciwpoślizgowy
B. system monitorowania ciśnienia w oponach kół
C. diagnostyczne złącze komunikacyjne
D. system sterowania aktywnym zawieszeniem
Skrót TPMS, czyli Tire Pressure Monitoring System, oznacza system monitorowania ciśnienia w oponach kół. Jego głównym celem jest zapewnienie bezpieczeństwa i optymalnej wydajności pojazdu poprzez monitorowanie ciśnienia w oponach podczas jazdy. Niski poziom ciśnienia w oponach może prowadzić do zwiększonego zużycia paliwa, pogorszenia przyczepności oraz większego ryzyka uszkodzenia opon. W przypadku wykrycia niskiego ciśnienia, system TPMS aktywuje kontrolkę na tablicy rozdzielczej, co informuje kierowcę o konieczności sprawdzenia i ewentualnego uzupełnienia ciśnienia. Zgodnie z regulacjami prawnymi w wielu krajach, w tym w Unii Europejskiej i Stanach Zjednoczonych, nowe pojazdy muszą być wyposażone w takie systemy, co podkreśla ich znaczenie w poprawie bezpieczeństwa na drogach. W praktyce, regularne monitorowanie ciśnienia opon za pomocą TPMS może przyczynić się do przedłużenia ich żywotności i poprawy komfortu jazdy, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 33

Podczas montażu suchych tulei cylindrowych w korpusie silnika powinno się

A. wciskać tuleję przy użyciu prasy lub specjalnego narzędzia
B. ostrożnie wbijać tuleję gumowym młotkiem
C. umieścić uszczelki pomiędzy dolną częścią tulei a korpusem
D. nasmarować olejem miejsca styku tulei z korpusem
Wkładanie suchych tulei cylindrowych w kadłub silnika to proces wymagający precyzji i zastosowania odpowiednich narzędzi. Użycie prasy lub specjalnego przyrządu do wciskania tulei zapewnia równomierne i kontrolowane umiejscowienie tulei w kadłubie. Tego typu narzędzia pozwalają uniknąć deformacji lub uszkodzeń tulei, które mogą wystąpić przy użyciu młotka, zwłaszcza jeśli siła uderzenia nie jest równomierna. W praktyce, prawidłowe umiejscowienie tulei jest kluczowe dla osiągnięcia odpowiednich parametrów pracy silnika, takich jak ciśnienie i szczelność cylindrów. Dodatkowo, takie podejście minimalizuje ryzyko powstania pęknięć materiału oraz poprawia wydajność i trwałość silnika. W branży motoryzacyjnej oraz przemysłowej obowiązują standardy jakości, które zalecają stosowanie profesjonalnych narzędzi w procesach montażowych, co czyni tę metodę najlepszym wyborem.

Pytanie 34

Materiał charakteryzujący się dużym współczynnikiem przewodzenia ciepła

A. długo się nagrzewa i długo chłodzi.
B. szybko się nagrzewa i długo chłodzi.
C. szybko się nagrzewa i szybko chłodzi.
D. długo się nagrzewa i szybko chłodzi.
W przypadku materiałów o wysokim współczynniku przewodnictwa ciepła, błędne jest twierdzenie, że długo się nagrzewają i długo stygną. Takie stwierdzenia opierają się na nieporozumieniu dotyczącym zachowania się tych materiałów w kontekście wymiany ciepła. Materiały charakteryzujące się niskim przewodnictwem cieplnym, takie jak drewno czy plastik, rzeczywiście mogą nagrzewać się wolniej i dłużej utrzymywać ciepło, ale materiały o wysokiej przewodności cieplnej działają odwrotnie. Wysoka przewodność cieplna oznacza, że energia cieplna szybko przemieszcza się przez materiał, co skutkuje jego szybkim nagrzewaniem się oraz równie szybkim chłodzeniem, gdy źródło ciepła zostaje usunięte. Użytkownicy mogą błędnie sądzić, że im materiał jest bardziej izolacyjny, tym lepiej sprawdzi się w sytuacjach wymagających szybkiej reakcji na zmiany temperatury, co jest nieprawdziwe. W rzeczywistości efektywność w takich zastosowaniach można osiągnąć tylko dzięki zastosowaniu materiałów o wysokim współczynniku przewodnictwa cieplnego, które zapewniają szybki transfer ciepła. W kontekście inżynieryjnym, takie myślenie może prowadzić do nieefektywnych projektów, gdzie materiały nie są dobierane zgodnie z ich właściwościami termicznymi, co w konsekwencji obniża wydajność systemów grzewczych i chłodniczych. Dlatego kluczowe jest zrozumienie, że wybór odpowiednich materiałów powinien opierać się na ich rzeczywistych właściwościach termicznych, a nie na intuicyjnych skojarzeniach związanych z ciepłem i temperaturą.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie jest zadanie gaźnika w pojeździe?

A. dozowanie paliwa i powietrza
B. regulowanie strumienia wtrysku
C. pompowanie paliwa
D. podgrzewanie powietrza
Gaźnik odgrywa kluczową rolę w silniku spalinowym, odpowiadając za dozowanie paliwa i powietrza do mieszanki paliwowej, która jest następnie dostarczana do cylindrów silnika. Właściwe proporcje tego połączenia są istotne dla efektywności spalania, co ma bezpośredni wpływ na osiągi silnika oraz emisję spalin. W praktyce, gaźniki są projektowane w taki sposób, aby zapewnić optymalne mieszanie paliwa i powietrza w różnych warunkach pracy silnika, takich jak różne prędkości obrotowe czy obciążenia. Przykładem zastosowania dobrych praktyk w konstrukcji gaźników jest zastosowanie dławików, które regulują przepływ powietrza, co pozwala na precyzyjne dostosowanie mieszanki do aktualnych potrzeb silnika. Wiedza na temat działania gaźnika ma kluczowe znaczenie dla mechaników i inżynierów zajmujących się diagnostyką i naprawą układów zasilania w silnikach spalinowych.

Pytanie 37

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. specjalnie uformowanej dźwigni
B. ściągacza do sprężyn
C. ręcznej prasy
D. prasy hydraulicznej
Ściągacz do sprężyn jest narzędziem niezbędnym do demontażu kolumny McPhersona, ponieważ umożliwia on bezpieczne i skuteczne usunięcie sprężyny zawieszenia, która jest elementem pod dużym ciśnieniem. W trakcie demontażu ważne jest, aby sprężynę odpowiednio ściągnąć, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić bezpieczeństwo osoby wykonującej tę operację. Ściągacze do sprężyn są dostępne w różnych wersjach, w tym ręcznych oraz hydraulicznych, co pozwala na dostosowanie narzędzia do konkretnych warunków pracy. Zastosowanie ściągacza do sprężyn jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które podkreślają znaczenie używania odpowiednich narzędzi do przeprowadzania prac serwisowych. Warto zauważyć, że niewłaściwe lub nieodpowiednie narzędzia mogą prowadzić do uszkodzenia kolumny McPhersona, co zwiększa koszty naprawy oraz czas przestoju pojazdu.

Pytanie 38

Po wymianie czujnika prędkości obrotowej koła konieczne jest przeprowadzenie

A. odczytu kodów błędów sterownika ABS
B. testu na szarpaku
C. pomiaru długości drogi hamowania pojazdu
D. testu na stanowisku rolkowym
Wybór testu na szarpaku, pomiaru długości drogi hamowania czy testu na stanowisku rolkowym po wymianie czujnika prędkości obrotowej koła może wydawać się sensowny, jednak w rzeczywistości nie odzwierciedla podstawowych wymagań diagnostycznych w tej sytuacji. Test na szarpaku, który sprawdza dynamikę pojazdu przy różnych prędkościach, nie jest bezpośrednio związany z funkcjonowaniem czujnika prędkości, a jego wykonanie po wymianie czujnika może nie ujawnić potencjalnych problemów z systemem ABS. Pomiar długości drogi hamowania, choć istotny, nie dostarcza informacji o poprawnym funkcjonowaniu czujnika, który jest kluczowy dla prawidłowego działania systemu hamulcowego. Test na stanowisku rolkowym może być użyty do oceny ogólnej wydajności pojazdu, jednak znowu nie daje jasnych wskazówek co do stanu czujnika prędkości. W rzeczywistości, błędne podejście do diagnostyki po wymianie czujnika może prowadzić do zignorowania potencjalnych kodów błędów związanych z ABS, co w efekcie obniża bezpieczeństwo pojazdu. Dlatego kluczowe jest, aby po każdej takiej wymianie przeprowadzać odczyt kodów błędów, co stanowi standardową praktykę w branży motoryzacyjnej, mającą na celu zapewnienie odpowiedniej diagnostyki i konserwacji systemów bezpieczeństwa.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Aby rozmontować półosie napędowe z obudowy tylnego mostu napędowego, należy zastosować ściągacz

A. 2-ramienny
B. 3-ramienny
C. do łożysk
D. bezwładnościowy
Użycie ściągacza bezwładnościowego do demontażu półosi napędowych z pochwy tylnego mostu napędowego jest właściwym rozwiązaniem, ponieważ ten typ ściągacza jest zoptymalizowany do pracy z elementami, które mogą być trudno dostępne lub mocno osadzone. Ściągacze bezwładnościowe działają na zasadzie wykorzystania energii kinetycznej do uwolnienia zablokowanych komponentów, co jest szczególnie przydatne w przypadku półosi, które są często narażone na korozję i inne uszkodzenia. W praktyce, aby skutecznie zdemontować półosie, należy umieścić ściągacz bezwładnościowy w odpowiedniej pozycji, a następnie wykonać kilka krótkich uderzeń, co pozwoli na stopniowe i bezpieczne wprowadzenie siły na element. Taki sposób działania zmniejsza ryzyko uszkodzenia otaczających komponentów oraz samej półosi. W branży motoryzacyjnej standardem jest stosowanie narzędzi, które minimalizują ryzyko uszkodzeń mechanicznych, a ściągacze bezwładnościowe idealnie wpisują się w te normy. Warto zainwestować w wysokiej jakości ściągacz, który zapewni długoterminową niezawodność i bezpieczeństwo pracy.