Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 28 kwietnia 2025 17:42
  • Data zakończenia: 28 kwietnia 2025 18:01

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zamieszczony fragment procedury opisuje sposób otrzymywania

„W zlewce o pojemności 250 cm3 rozpuść w 50 cm3 wody destylowanej 5 g uwodnionego siarczanu(VI) miedzi(II). Do roztworu dodaj 16,7 cm3 roztworu NaOH o stężeniu 6 mol/dm3. Następnie dodaj 10 g glukozy w celu przeprowadzenia reakcji redukcji jonów miedzi(II) do miedzi(I). Ostrożnie ogrzewaj zlewkę z mieszaniną reakcyjną do otrzymania czerwonego osadu (...)Osad odsącz, przemyj alkoholem i susz na bibule na powietrzu."

A. Cu(OH)2.
B. Na2SO4.
C. Cu20.
D. CuO.
Wybór Cu(OH)2, CuO oraz Na2SO4 jako odpowiedzi prowadzi do nieporozumień dotyczących podstawowych zasad chemii, szczególnie w kontekście reakcji redoks i zjawisk związanych z redukcją. Cu(OH)2, znany jako wodorotlenek miedzi(II), nie jest produktem procesu opisanego w pytaniu. Jego powstanie wymagałoby reakcji miedzi(II) z zasadami, a nie redukcji. CuO, to tlenek miedzi(II), który powstaje w inny sposób, zazwyczaj w wyniku utleniania miedzi w obecności tlenu, a więc również nie jest związany z opisanym procesem. Na2SO4, czyli siarczan sodu, jest całkowicie innym związkiem, który nie ma związku z miedzią ani z redukcją, a jego obecność w tym kontekście może wskazywać na mylną interpretację reakcji chemicznych. Typowe błędy myślowe obejmują pomylenie różnych stopni utlenienia miedzi, co skutkuje wybraniem niewłaściwych produktów. Kluczowe jest zrozumienie, że reakcje chemiczne są ściśle powiązane z warunkami, w jakich się odbywają, a także rodzajami reagentów używanych w danym procesie. Zrozumienie tych podstaw jest kluczowe dla skutecznej analizy chemicznej i uzyskania właściwych wyników w laboratoriach chemicznych.

Pytanie 2

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
B. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
C. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
D. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
Wybór narzędzi i urządzeń do ogrzewania roztworu jest kluczowy dla przeprowadzenia eksperymentu w sposób bezpieczny i efektywny. Odpowiedzi, które zawierają termometry z zakresami, które nie obejmują temperatury 330 K, wskazują na fundamentalne nieporozumienia w zakresie odpowiedniego pomiaru temperatury. Na przykład, termometr o zakresie 0-0°C nie jest w ogóle przydatny do jakiegokolwiek zastosowania, które wymaga przekroczenia temperatury zera, co jest oczywiste w kontekście ogrzewania do 330 K. Podobnie, termometr z zakresem 0-50°C jest niewystarczający, ponieważ nie obejmuje wymaganej temperatury, co prowadzi do ryzyka uszkodzenia urządzenia lub błędnych odczytów. Ogrzewanie roztworu do takiej temperatury wymaga staranności w doborze sprzętu, a niektóre z podanych odpowiedzi pokazują brak zrozumienia podstawowych zasad działania termometrów i ich zastosowań. Użycie statywu zamiast trójnogu również może być nieodpowiednie, ponieważ statyw nie zawsze zapewnia stabilność, szczególnie przy dużych pojemnikach z cieczą, co może prowadzić do wypadków. W laboratoriach chemicznych ważne jest, aby korzystać z odpowiednich narzędzi, które nie tylko umożliwiają osiągnięcie pożądanych warunków eksperymentalnych, ale także gwarantują bezpieczeństwo pracy, co ma istotne znaczenie w kontekście odpowiedzialności za zdrowie i życie użytkowników.

Pytanie 3

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,001 mol/dm3
B. 0,01 mol/dm3
C. 0,1 mol/dm3
D. 1 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 4

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. reprezentatywność
B. rozpuszczalność
C. jednorodność
D. roztwarzalność
Podejścia związane z rozpuszczalnością, roztwarzalnością oraz jednorodnością próbki analitycznej są często mylone z kluczowym pojęciem reprezentatywności, co prowadzi do poważnych błędów w praktyce analitycznej. Rozpuszczalność odnosi się do zdolności substancji do rozpuszczania się w rozpuszczalniku, co nie jest bezpośrednio związane z tym, jak próbka reprezentuje cały materiał. Również roztwarzalność, która dotyczy procesu, w którym substancja przechodzi w stan płynny, nie ma wpływu na to, czy próbka jest reprezentatywna dla całej populacji. Dodatkowo, pojęcie jednorodności wskazuje na to, że próbka jest jednorodna w składzie, co jest istotne, ale nie wystarczy, by zapewnić reprezentatywność. Próbka może być jednorodna, ale jeśli nie jest pobrana w sposób reprezentatywny, jej analiza nie odda rzeczywistych właściwości całego materiału. Typowy błąd myślowy polega na zakładaniu, że jednorodność wystarcza do uzyskania wiarygodnych wyników analitycznych, co jest mylnym założeniem. W praktyce, aby uzyskać rzetelne wyniki, należy stosować odpowiednie metody pobierania próbek zgodnie z uznawanymi standardami, co wymaga staranności i przemyślanej metodologii. Bez zrozumienia znaczenia reprezentatywności, analizy mogą prowadzić do mylnych wniosków i nieefektywnych działań w odpowiedzi na uzyskane wyniki.

Pytanie 5

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. alkenów
B. fenoli
C. amin
D. aldehydów
Aldehydy, amin i alkeny, mimo że są istotnymi klasami związków chemicznych, nie reagują w sposób, który mógłby być wykryty przy użyciu chlorku żelaza(III). Aldehydy, chociaż mogą wykazywać różne reakcje, w których zmieniają barwę, nie wchodzą w interakcję z chlorkiem żelaza(III) w sposób dający charakterystyczne zabarwienie. Zamiast tego, aldehydy często są wykrywane za pomocą prób redoks, takich jak reakcja z odczynnikiem Tollensa czy odczynnikiem Fehlinga, gdzie ich zdolność do redukcji jest kluczowym czynnikiem. Aminy, z drugiej strony, mogą tworzyć sole z kwasami, ale nie tworzą kolorowych kompleksów z chlorkiem żelaza(III), co czyni je niewłaściwymi do tego rodzaju testów. Alkeny, z kolei, są związkami nienasyconymi, które mogą uczestniczyć w reakcjach addycji, ale brak im grupy hydroksylowej, co uniemożliwia im reagowanie z chlorkiem żelaza(III) w sposób, który dałby barwną reakcję. Typowym błędem myślowym jest mylenie reakcji barwnych z reakcjami, które nie prowadzą do widocznych zmian kolorystycznych w przypadku tych substancji. W rzeczywistości, niektóre z tych związków mogą nie wykazywać widocznych reakcji w obecności chlorku żelaza(III), co powinno skłonić do głębszej analizy chemicznych właściwości i reakcji, które mogą występować w różnych klasach związków organicznych.

Pytanie 6

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. miesiąc
B. tydzień
C. pół roku
D. rok
Prawidłowa odpowiedź to pobieranie próbek wody co najmniej raz w miesiącu, co jest zgodne z najlepszymi praktykami w monitorowaniu jakości wód. Badania takie pozwalają na uchwycenie sezonowych zmian w składzie chemicznym i biologicznym wody, które mogą być wynikiem zmieniających się warunków pogodowych, działalności rolniczej lub przemysłowej oraz naturalnych cykli ekosystemu. Stosowanie miesięcznych interwałów pobierania próbek jest standardem w wielu programach monitorowania ekologicznego, ponieważ umożliwia dokładne śledzenie dynamiki zmian oraz identyfikację potencjalnych zagrożeń dla ekosystemu wodnego. Przykładowo, w przypadku rzek czy jezior, różne pory roku mogą wpływać na stężenia składników odżywczych, co ma kluczowe znaczenie dla zdrowia biocenozy. Regularne badania w odstępach miesięcznych wspierają nie tylko prawidłową ocenę jakości wody, ale także umożliwiają szybką reakcję na zmiany, które mogą być wynikiem zanieczyszczeń lub innych niekorzystnych zjawisk.

Pytanie 7

Wagi laboratoryjne można klasyfikować według nośności oraz precyzji na

A. techniczne i analityczne
B. dźwigniowe i elektroniczne
C. analityczne i szalkowe
D. periodyczne i aperiodyczne
Wagi laboratoryjne można podzielić na dwie główne grupy: techniczne i analityczne. Wagi techniczne używamy w różnych sytuacjach, gdzie nie potrzebujemy aż tak precyzyjnych pomiarów. Przykłady to przemysł czy laboratoria ogólne. Z kolei wagi analityczne są znacznie dokładniejsze, co czyni je niezbędnymi w badaniach chemicznych. Tam każdy gram, a nawet mikrogram, ma znaczenie. W laboratoriach farmaceutycznych, na przykład, dokładne ważenie składników aktywnych jest kluczowe dla skuteczności leków. Spełniają one określone normy ISO, więc mamy pewność, że wyniki są wiarygodne. To naprawdę ważne, bo chodzi o bezpieczeństwo pacjentów i jakość terapii.

Pytanie 8

Odlanie cieczy z nad osadu to

A. filtracja
B. destylacja
C. dekantacja
D. sedymentacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 68,5 g Na2SO4·10H2O i 131,5 g H2O
B. 54,4 g Na2SO4·10H2O i 145,6 g H2O
C. 22,4 g Na2SO4·10H2O i 177,6 g H2O
D. 56,6 g Na2SO4·10H2O i 143,4 g H2O
Wiele osób ma problem z takimi obliczeniami, co może prowadzić do błędnych odpowiedzi. Często zdarza się, że mylą się w rozumieniu, że 12% to nie masa siarczanu(VI) sodu, tylko masa całego roztworu. Niektóre odpowiedzi, które podają inne masy Na2SO4·10H2O, mogą wynikać z nieprawidłowych wyliczeń lub błędnych założeń co do stężeń. Ważne, żeby pamiętać, że masa molowa Na2SO4·10H2O jest 322 g/mol – to bardzo ważne w tych kalkulacjach. Wiesz, czasem mały błąd przy liczeniu może zrujnować wyniki, więc warto być uważnym i nie spieszyć się. Z mojego doświadczenia, to proste rzeczy, a jednak łatwo je przeoczyć. Dlatego zrozumienie jak przygotować roztwór i umiejętność przeliczania mas molowych to klucz do sukcesu w naszej pracy laboratoryjnej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakiego odczynnika chemicznego, oprócz Na2Cr2O7, należy użyć do sporządzenia mieszaniny chromowej do czyszczenia sprzętu szklarskiego w laboratorium?

A. H2CrO4
B. K2CrO4
C. HCI
D. H2SO4
Wybór HCl lub K2CrO4 jako alternatywnych reagentów do przygotowania mieszaniny chromowej wykazuje kilka istotnych nieporozumień dotyczących zasad działania tych substancji i ich zastosowania w kontekście czyszczenia szkła laboratoryjnego. Kwas solny (HCl), będący mocnym kwasem, nie ma wystarczających właściwości utleniających, aby efektywnie wspomagać proces usuwania zanieczyszczeń z powierzchni szkła. Jego zastosowanie w tym kontekście może prowadzić do nieefektywnego czyszczenia, a w niektórych przypadkach może nawet powodować uszkodzenia szkła, zwłaszcza w obecności metali ciężkich. W przypadku K2CrO4, mimo że jest to źródło chromu, jego działanie w czyszczeniu szkła jest ograniczone w porównaniu do H2SO4. K2CrO4 jest stosunkowo mało reaktywny, a w połączeniu z kwasami nie tworzy tak aktywnych kompleksów, jak w przypadku H2SO4. Niewłaściwe podejście do wyboru reagentu może prowadzić do nieporozumień w laboratoriach, a także do niewłaściwego interpretowania skuteczności czyszczenia. Często błędne myślenie o roli poszczególnych reagentów w reakcjach chemicznych prowadzi do wyboru substancji, które nie są optymalne dla zamierzonego celu. Wiedza na temat chemicznych właściwości substancji oraz ich interakcji jest kluczowa dla prawidłowego doboru reagentów, co powinno być zgodne z najlepszymi praktykami w laboratoriach chemicznych.

Pytanie 16

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. narkotycznym
B. żrącym dla skóry
C. toksycznym dla skóry
D. korodującym na metale
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.

Pytanie 17

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 1 miesiąc
B. 7 miesięcy
C. 3 miesiące
D. 5 miesięcy
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 18

Gęstość próbki cieczy wyznacza się przy użyciu

A. refraktometru
B. spektrofotometru
C. piknometru
D. biurety
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 19

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000

A. 107 mg/m3
B. 10 g/dm3
C. 1000 g/m3
D. 1000 g/dm3
Odpowiedź 1000 g/m3 jest poprawna, ponieważ odnosi się do normy PN-EN 1008, która określa maksymalne dopuszczalne stężenie chlorków w wodzie przeznaczonej do produkcji betonu. Zgodnie z tą normą, stężenie chlorków powinno wynosić maksymalnie 1000 mg/dm3, co można przeliczyć na 1000 g/m3, ponieważ 1 mg/dm3 odpowiada 1 g/m3. Użycie wody z takim stężeniem chlorków w procesie produkcji betonu jest kluczowe, ponieważ nadmiar chlorków może prowadzić do korozji zbrojenia, a tym samym osłabienia konstrukcji betonowych. W praktyce oznacza to, że firmy budowlane i producenci betonu muszą przeprowadzać regularne analizy jakości wody wykorzystywanej do mieszania, aby zapewnić zgodność z normami i uniknąć potencjalnych problemów w przyszłości.

Pytanie 20

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. teflonowe
B. melaminowe
C. agatowe
D. ze stali molibdenowej
Odpowiedź "ze stali molibdenowej" jest poprawna, ponieważ moździerze wykonane z tego materiału charakteryzują się wyjątkową twardością i odpornością na zużycie, co czyni je idealnymi do rozdrabniania twardych substancji. Stal molibdenowa, dzięki swoim właściwościom, zapewnia doskonałą trwałość oraz stabilność mechaniczną, co jest kluczowe przy pracy z bardzo twardymi materiałami, takimi jak niektóre minerały czy substancje chemiczne. Użycie moździerzy stalowych w laboratoriach chemicznych oraz gastronomicznych jest powszechną praktyką, gdyż pozwala na uzyskanie dokładnych i jednorodnych rezultatów. Przykładem zastosowania może być rozdrabnianie przypraw, takich jak pieprz czy zioła, gdzie kluczowe jest zachowanie aromatów i właściwości smakowych. Ponadto stal molibdenowa jest mniej podatna na korozję w porównaniu do innych stali, co wydłuża żywotność narzędzia oraz zapewnia bezpieczeństwo w kontakcie z różnymi substancjami chemicznymi.

Pytanie 21

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Pominąć etap ważenia przy sporządzaniu roztworu.
B. Użyć linijki do określenia objętości substancji.
C. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
D. Zastosować wagę analityczną o dokładności do 0,1 mg.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 22

Z podanych w tabeli danych wybierz sprzęt potrzebny do zmontowania zestawu do destylacji z parą wodną.

12345
manometrkociołek miedzianychłodnica powietrznakolba destylacyjnaodbieralnik

A. 1,3,4
B. 2,3,5
C. 2,4,5
D. 1,2,3
Wybór odpowiedzi 2,4,5 jest poprawny, ponieważ do zmontowania zestawu do destylacji z parą wodną potrzebujemy konkretnego sprzętu odpowiadającego wymaganiom technologicznym tego procesu. Kociołek miedziany (2) jest kluczowym elementem, gdyż miedź jest materiałem, który doskonale przewodzi ciepło i nie reaguje z substancjami organicznymi, co jest istotne dla uzyskania czystego destylatu. Kolba destylacyjna (4) jest również niezbędna, ponieważ to w niej umieszczamy substancję, którą chcemy destylować; jej kształt sprzyja efektywnej separacji pary od cieczy. Odbiernik (5) stanowi ostatni element procesu, w którym skroplona ciecz jest zbierana, co jest kluczowe dla efektywności destylacji. Zastosowanie tego zestawu w laboratoriach chemicznych jest powszechne, szczególnie w procesach syntez chemicznych i analitycznych, gdzie czystość substancji ma kluczowe znaczenie. Wiedza na temat doboru sprzętu do destylacji jest fundamentalna nie tylko w edukacji, ale także w praktycznych zastosowaniach przemysłowych.

Pytanie 23

Jeżeli partia towaru składa się z 10 dużych opakowań, wtedy z jednego opakowania pobiera się kilka próbek, które następnie łączy, uzyskując próbkę

A. laboratoryjną
B. jednostkową
C. pierwotną
D. średnią
Odpowiedzi "pierwotną", "średnią" oraz "laboratoryjną" nie są poprawne, ponieważ dotyczą one różnych koncepcji związanych z pobieraniem próbek, które nie pasują do opisanego kontekstu. Próbka pierwotna zazwyczaj odnosi się do materiału, który nie został jeszcze poddany analizie ani obróbce w laboratorium; tymczasem w naszym przypadku próbka została już pobrana z opakowania. Z kolei pojęcie próbki średniej sugeruje, że próbki z różnych jednostek są łączone w celu uzyskania jednej reprezentatywnej próbki. Chociaż takie podejście może być stosowane w niektórych analizach statystycznych, w sytuacji opisanej w pytaniu, bardziej adekwatne byłoby mówienie o próbkach jednostkowych. Odpowiedź "laboratoryjną" jest myląca, ponieważ odnosi się do próbki, która została już poddana działaniu w laboratorium, co nie odpowiada definicji próbki pobieranej z opakowania. Typowym błędem myślowym jest utożsamienie próbki średniej z jednostkową, gdyż mogą one pełnić różne funkcje w procesie analizy jakości. Właściwe zrozumienie różnicy między tymi terminami ma kluczowe znaczenie w kontekście zapewnienia jakości w różnych branżach.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości żelaza.
B. spełnia wymagania i można wydać świadectwo jakości.
C. nie spełnia wymagań pod względem pH i zawartości jodanów.
D. nie spełnia wymagań pod względem zawartości metali ciężkich.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 26

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. równowaga reakcji została silnie przesunięta w lewo
B. alkohol uległ całkowitej reakcji
C. równowaga reakcji została silnie przesunięta w prawo
D. uzyskano ester o 100% wydajności
Analizując alternatywne odpowiedzi, warto zauważyć, że stwierdzenie, iż równowaga reakcji przesunęła się silnie w lewo, jest niepoprawne. Tego typu wnioski mogą wynikać z mylnego zrozumienia dynamiki reakcji chemicznych oraz wpływu stosunku reagentów na równowagę. W sytuacji, gdy stosunek alkoholu do kwasu jest znacznie większy, równowaga nie będzie się przesuwać w lewo, ponieważ dostępność alkoholu w reakcji sprzyja tworzeniu estru. Odpowiedź mówiąca o 100% wydajności również jest błędna, ponieważ w praktyce osiągnięcie takiej wydajności jest niemal niemożliwe z uwagi na różne czynniki, takie jak straty produktu, nieodwracalność reakcji czy obecność innych substancji. Ponadto, twierdzenie, że alkohol przereagował całkowicie, jest również mylne, gdyż nawet przy dużych ilościach alkoholu zawsze pozostaje pewna ilość substratów, które nie przekształcają się w produkty. Kluczowym błędem myślowym jest zakładanie, że zwiększenie jednego z reagentów w układzie reakcyjnym automatycznie prowadzi do całkowitej konwersji, co nie uwzględnia zasad chemii równowagi i możliwości powstawania rewersyjnej reakcji. Zrozumienie tych zasad jest fundamentalne w chemii organicznej oraz w syntezach przemysłowych.

Pytanie 27

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu azotowego(V).
B. kwasu fosforowego(V).
C. kwasu solnego.
D. kwasu siarkowego(VI).
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 28

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. średnią
B. analityczną
C. ogólną
D. wtórną
Wybór odpowiedzi średnia może prowadzić do nieporozumienia dotyczącego natury próbek w analizie materiałów. Średnia w kontekście próbki odnosi się do statystycznego pojęcia, które opisuje wartość centralną zbioru danych, a nie do charakterystyki samej próbki. Użycie tego terminu sugeruje, że próbki pierwotne mogłyby być traktowane jak dane w analizach statystycznych, co jest błędnym podejściem w kontekście prób materiałowych, ponieważ nie każda próbka, z której wyciąga się średnią, jest reprezentatywna dla całej partii. Odpowiedź analityczna odnosi się do metod analizy i może wprowadzać w błąd, ponieważ nie definiuje samego zbioru próbek, lecz metodykę analizy. Próbka analityczna to zazwyczaj ta, która jest używana w konkretnych testach analitycznych, ale nie oddaje całej partii materiału. Przykład zastosowania próbek wtórnych również nie odpowiada na stawiane pytanie, gdyż próbki wtórne są przygotowywane z próbek pierwotnych i nie są bezpośrednio związane z reprezentatywnością całej partii. Często błędne rozumienie terminów związanych z próbkowaniem prowadzi do niewłaściwych wniosków w kontekście badań, co w konsekwencji może skutkować błędnymi decyzjami w zakresie jakości materiałów. Kluczowym aspektem w tej dziedzinie jest zrozumienie, że próbka ogólna jest niezbędną podstawą do uzyskiwania wiarygodnych wyników w kontekście całej partii materiału, a nie tylko jej fragmentów.

Pytanie 29

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. precyzyjną.
B. mikroanalityczną.
C. automatyczną.
D. hydrostatyczną.
Odpowiedzi na pytania dotyczące wag laboratoryjnych mogą prowadzić do nieporozumień, szczególnie w kontekście różnych typów wag. Wagi hydrostatyczne, choć użyteczne w specjalistycznych zastosowaniach, działają na innej zasadzie i są stosowane głównie do pomiaru gęstości cieczy. Wykorzystują one zjawisko wyporu, co jest kluczowe w zastosowaniach takich jak pomiar gęstości substancji. Z kolei wagi automatyczne, które automatyzują proces ważenia, nie są tożsame z wagami precyzyjnymi, mimo że mogą również oferować wysoką dokładność. Wagi mikroanalityczne, chociaż również precyzyjne, są przeznaczone do bardziej specyficznych zadań, takich jak ważenie bardzo małych ilości substancji (zazwyczaj poniżej 1 mg) i różnią się konstrukcją oraz funkcjami od wag precyzyjnych. Wybór odpowiedniego typu wagi zależy od specyfiki zadań, które mają być realizowane w laboratorium, a zrozumienie tych różnic jest kluczowe dla osiągnięcia wiarygodnych wyników. Typowe błędy myślowe, takie jak utożsamianie wag z różnymi funkcjami bez uwzględnienia ich zastosowań, mogą prowadzić do nieprawidłowych wniosków i wyborów w kontekście technologii laboratoryjnej.

Pytanie 30

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Glukozy.
B. Wodorotlenku sodu.
C. Chlorku sodu.
D. Stearynianu sodu.
Prawidłowa odpowiedź to wodorotlenek sodu, ponieważ piktogram przedstawiony na ilustracji symbolizuje substancje żrące. Wodorotlenek sodu (NaOH) jest silną zasadą, która wykazuje właściwości żrące, co sprawia, że jest niezwykle ważne, aby był odpowiednio oznaczony na opakowaniu. W praktyce, wodorotlenek sodu jest szeroko stosowany w przemyśle chemicznym, w produkcji mydeł oraz jako środek czyszczący w gospodarstwie domowym. Zgodnie z przepisami dotyczącymi substancji niebezpiecznych, takie jak Rozporządzenie (WE) nr 1272/2008, każda substancja żrąca musi być oznaczona odpowiednim piktogramem, aby ułatwić identyfikację zagrożeń i zapewnić bezpieczeństwo użytkowników. Ponadto, stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice i gogle ochronne, jest zalecane przy pracy z wodorotlenkiem sodu, aby zminimalizować ryzyko poważnych obrażeń. Dlatego zrozumienie symboli na etykietach jest kluczowe dla bezpiecznego obchodzenia się z substancjami chemicznymi.

Pytanie 31

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, waga, tryskawka, bagietka
B. Zlewka, lejek, trójnóg, tygiel
C. Zlewka, lejek, waga, bagietka
D. Zlewka, lejek, statyw, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 32

Substancje kancerogenne to

A. mutagenne
B. uczulające
C. rakotwórcze
D. enzymatyczne
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 33

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. miękki
B. twardy
C. częściowy
D. średni
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 34

Aby w badanej próbie w trakcie zmiany pH nastąpiła zmiana barwy na malinową, należy użyć

Zmiany barw najważniejszych wskaźników kwasowo-zasadowych
WskaźnikBarwa w środowiskuZakres pH zmiany barwy
KwasowymObojętnymZasadowym
oranż metylowyczerwonażółtażółta3,2÷4,4
lakmus
(mieszanina substancji)
czerwonafioletowaniebieska4,5÷8,2
fenoloftaleinabezbarwnabezbarwnamalinowa8,2÷10,0
wskaźnik uniwersalny
(mieszanina substancji)
czerwona
(silnie kwaśne)
pomarańczowa
(słabo kwaśne)
żółtaniebieska
(silnie zasadowe)
zielona
(słabo zasadowe)
co jeden stopień skali
herbatażółtaczerwona-brunatnabrązowa
sok z czerwonej kapustyfioletowaniebieskazielona

A. fenoloftaleiny.
B. wskaźnika uniwersalnego.
C. lakmusu.
D. oranżu metylowego.
Fenoloftaleina to naprawdę fajny wskaźnik pH, który zmienia kolor z bezbarwnego na malinowy, gdy pH jest w granicach od 8,2 do 10,0. Więc jeśli pH jest niższe niż 8,2, to zostaje bezbarwna. To sprawia, że jest super do wykrywania zasadowego środowiska. Używamy jej w laboratoriach chemicznych, szczególnie przy titracji, bo tam zmiany pH są kluczowe. Zauważyłem też, że fenoloftaleina jest przydatna w różnych branżach, na przykład w farmacji i w analizach wody, bo pomaga ocenić, czy próbki są zasadowe. Z moich doświadczeń wynika, że przed wyborem wskaźnika warto dokładnie obliczyć pH próbki, żeby dobrze zrozumieć wyniki. No i trzeba ostrożnie podchodzić do fenoloftaleiny, bo w większych stężeniach może być szkodliwa dla organizmów wodnych.

Pytanie 35

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. CaCO3 • MgCO3
B. CaSO4
C. NaCl
D. (NH4)2SO>sub>4
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 36

Wskaż sprzęt, którego należy użyć, aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3.

12345
naczynko wagowewaga analitycznakolba stożkowakolba miarowa
pojemności 50 cm3
kolba miarowa
pojemności 100 cm3

A. 1,2,5
B. 1,2,4
C. 1,2,3
D. 2,3,4
Aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3, konieczne jest zastosowanie odpowiedniego sprzętu laboratoryjnego. W pierwszej kolejności, do odważenia 0,4 g NaOH, wykorzystujemy naczynko wagowe oraz wagę analityczną, które zapewniają wysoką precyzję ważenia. Zgodnie z dobrymi praktykami laboratoryjnymi, waga analityczna powinna być kalibrowana przed każdym użyciem, co gwarantuje dokładność pomiarów. Następnie, do przygotowania roztworu używamy kolby miarowej o pojemności 100 cm3. Kolba miarowa umożliwia precyzyjne odmierzanie objętości roztworu, co jest kluczowe dla uzyskania żądanego stężenia. Przygotowanie roztworu w kolbie miarowej jest standardową procedurą w chemii analitycznej i przemysłowej, pozwalającą na powtarzalność wyników. Użycie niewłaściwego naczynia, takiego jak kolby o innych pojemnościach, może prowadzić do błędnych stężeń, co ma istotne znaczenie w kontekście reakcji chemicznych, w których stosunki molowe są kluczowe.

Pytanie 37

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,745 g
B. 22,740 g
C. 27,745 g
D. 27,740 g
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. zasypać wodorowęglanem sodu
B. przeprowadzić w trudnorozpuszczalne związki i odsączyć
C. zneutralizować kwasem solnym lub zasadą sodową
D. rozcieńczyć wodą destylowaną
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 40

Na podstawie danych w tabeli określ, dla oznaczania którego parametru zalecaną metodą jest chromatografia jonowa.

ParametrMetoda podstawowa
pHmetoda potencjometryczna, kalibracja przy zastosowaniu minimum dwóch wzorców o pH zależnym od wartości oczekiwanych w próbkach wody
azotany(V)chromatografia jonowa
fosforany(V)spektrofotometria
Na, K, Ca, MgAAS (spektrometria absorpcji atomowej)
zasadowośćmiareczkowanie wobec fenoloftaleiny oraz oranżu metylowego
tlen rozpuszczony, BZT₅metoda potencjometryczna

A. pH
B. PO43-
C. BZT5
D. NO3-
Zgodnie z wynikami przedstawionymi w tabeli, chromatografia jonowa jest metodą analityczną szczególnie efektywną dla oznaczania azotanów(V), takich jak NO3-. Ta technika pozwala na wysoce selektywne i dokładne rozdzielenie anionów w roztworach, co jest niezbędne w analizach chemicznych dotyczących jakości wody i gleby. Chromatografia jonowa jest szczególnie polecana w standardach analitycznych, takich jak EPA 300.0, które dotyczą oznaczania anionów w wodach gruntowych i powierzchniowych. Dzięki tej metodzie można uzyskać bardzo niskie limity wykrywalności, co jest istotne w kontekście przepisów dotyczących ochrony środowiska. W praktyce, dzięki chromatografii jonowej, można szybko i efektywnie ocenić stężenia NO3- w próbkach, co ma kluczowe znaczenie dla monitorowania zanieczyszczeń i zarządzania jakością wód.