Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 kwietnia 2025 11:38
  • Data zakończenia: 15 kwietnia 2025 12:02

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Wyznacz wysokość reperu końcowego H<sub>K</sub>, jeśli wysokość reperu początkowego wynosi H<sub>P</sub> = 325,000 m, różnica wysokości na badanym odcinku wynosi Ah<sub>P-K</sub> = 2500 mm, a poprawka ma wartość v<sub>∆h</sub> = -10 mm?

A. HK = 327,510 m
B. HK = 327,490 m
C. HK = 322,490 m
D. HK = 322,510 m
Wielu użytkowników może popełnić błąd podczas obliczania wysokości reperu końcowego, myląc się w dodawaniu lub odejmowaniu wartości różnicy wysokości oraz poprawki. Obliczenia takie jak wysokość H<sub>K</sub> powinny uwzględniać wszystkie elementy, w tym wysokość początkową H<sub>P</sub>, różnicę wysokości Ah<sub>P-K</sub> oraz poprawkę v<sub>∆h</sub>. Błędne odpowiedzi mogą wynikać z niepoprawnego przeliczenia jednostek miar – zmiana milimetrów na metry musi być dokładna, ponieważ 2,500 mm to 2,500 m, a nie 2.5 m. Ponadto, błąd taki jak nieuwzględnienie znaku poprawki (-10 mm) powoduje przesunięcie końcowego wyniku. Innym typowym błędem jest ignorowanie kontekstu pomiarowego; w geodezji, staranność w podejściu do pomiarów ma kluczowe znaczenie dla późniejszych analiz i weryfikacji wyników. Dlatego też, aby uniknąć takich pomyłek, kluczowa jest znajomość i praktyka stosowania wzorów oraz zasad geodezyjnych, które pomagają w dokładnym i bezbłędnym przeprowadzaniu obliczeń.

Pytanie 3

Co wpływa na wysokości opisów w mapie głównej?

A. Od wartości skalarnej mapy
B. Od metody wykonania opisu
C. Od typu i stylu pisma
D. Od opisywanej treści i skali mapy
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. pomiarowy
B. polowy
C. dokumentacyjny
D. tyczenia
Wybór odpowiedzi tyczenia, polowy czy pomiarowy wskazuje na pewne nieporozumienia w zakresie terminologii geodezyjnej. Tyczenie odnosi się do procesu przenoszenia punktów geodezyjnych na teren budowy, co ma miejsce po zakończeniu opracowania dokumentacji. Tyczenie jest zatem czynnością wykonywaną na podstawie wcześniej przygotowanych dokumentów, a nie ich bezpośrednim wynikiem. Odpowiedź polowy sugeruje, że wyniki pomiarów są jeszcze na etapie pracy w terenie, co jest nieprawidłowe, ponieważ po zebraniu danych geodezyjnych ich analiza oraz opracowanie odbywa się już w biurze, a nie na polu. Z kolei pomiarowy może kojarzyć się z etapem zbierania danych, jednak nie jest on odpowiedni w kontekście dokumentacji projektowej. Dlatego można zauważyć, że wybór tych terminów często wynika z mylenia różnych etapów pracy geodezyjnej. Właściwe zrozumienie, kiedy i jakie dokumenty są potrzebne w procesie inwestycyjnym, jest kluczowe dla każdej osoby zaangażowanej w planowanie i realizację projektów budowlanych.

Pytanie 12

<u><strong>Nieosiągnięcie</strong></u> warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. libeli rurkowej
B. kolimacji
C. inklinacji
D. libeli pudełkowej
Wybór błędnych odpowiedzi wynika z nieporozumienia dotyczącego pojęć związanych z błędami pomiarowymi. Libela pudełkowa oraz libela rurkowa to narzędzia służące do poziomowania, jednak nie są one związane z błędem inklinacji. Libela pudełkowa jest narzędziem wykorzystywanym do sprawdzania poziomości powierzchni, polegającym na umieszczeniu poziomnicy w płaszczyźnie poziomej, podczas gdy libela rurkowa, zawierająca ciecz, służy do oceny poziomu w dłuższych odcinkach. Żadne z tych narzędzi nie odnoszą się do konkretnego błędu pomiarowego dotyczącego prostopadłości osi obrotu lunety do osi obrotu instrumentu. Z kolei kolimacja to termin odnoszący się do ustawienia optyki w taki sposób, aby oś optyczna instrumentu była zgodna z osią mechaniczną. To pojęcie może prowadzić do błędnej interpretacji, gdyż choć kolimacja jest kluczowym elementem precyzyjnych pomiarów, nie obejmuje problemu inklinacji. Użycie niewłaściwych terminów może prowadzić do nieścisłości w analizach oraz wnioskach, dlatego istotne jest, aby stosować precyzyjne definicje i zrozumienie różnych typów błędów pomiarowych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. podstawowy
B. przeglądowy
C. tachimetryczny
D. dokumentacyjny
Odpowiedź "przeglądowy" jest poprawna, ponieważ szkic przeglądowy jest to dokument, który wizualizuje ogólny układ terenu oraz lokalizację różnych obiektów na nim. Jest on tworzony w celu umożliwienia szybkiego odnalezienia i identyfikacji pomierzonych szczegółów w terenie. Przykładem zastosowania szkicu przeglądowego może być jego wykorzystanie w planowaniu prac budowlanych czy inwentaryzacji terenów. Szkic przeglądowy jest zgodny z dobrą praktyką w geodezji, ponieważ umożliwia efektywne przedstawienie danych w sposób zrozumiały dla różnych użytkowników, takich jak inżynierowie, architekci czy inwestorzy. Ułatwia to komunikację między różnymi stronami zaangażowanymi w projekt, a także przyspiesza proces podejmowania decyzji. Dobrze wykonany szkic przeglądowy powinien zawierać wszystkie istotne informacje, takie jak kierunki, skale oraz legendy, co czyni go kluczowym dokumentem w obiegu informacji przestrzennej.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie urządzenie umożliwia przeprowadzenie odczytu szacunkowego z dokładnością do 0,1 najmniejszej działki limbusa?

A. Noniusz
B. Mikrometr
C. Mikroskop wskaźnikowy
D. Mikroskop skalowy
Noniusz jest urządzeniem pomiarowym, które pozwala na dokonywanie precyzyjnych odczytów, ale nie osiąga takiej dokładności jak mikroskop wskaźnikowy. Najczęściej stosowany jest w połączeniu z suwmiarkami lub innymi narzędziami, co umożliwia pomiar długości z dokładnością do 0,1 mm, a nie 0,1 najmniejszej działki limbusa, co jest wymagane w tym przypadku. Mikrometr, z kolei, to narzędzie skonstruowane do precyzyjnych pomiarów grubości i średnic, jednak jego dokładność, choć wysoka, nie jest wystarczająca do zadania związanego z szacunkowym odczytem najmniejszej działki limbusa. Mikroskop skalowy, choć również użyteczny w precyzyjnych pomiarach, to w praktyce nie ma takiej samej funkcjonalności jak mikroskop wskaźnikowy i często nie jest wykorzystywany do oceny szacunkowej. Typowym błędem myślowym przy wyborze narzędzia pomiarowego jest skupianie się na ogólnej precyzji zamiast na specyficznych parametrach wymaganych w danym zastosowaniu. Użytkownicy często nie zdają sobie sprawy, że różne urządzenia mają swoje specyficzne obszary zastosowania, co prowadzi do wyboru narzędzi, które są nieodpowiednie do wymaganej dokładności pomiarów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem <i>2s = g + d</i>, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 2,0 m
B. s = 1,7 m
C. s = 1,9 m
D. s = 1,8 m
Odpowiedź s = 1,9 m jest poprawna i wynika z zastosowania wzoru 2s = g + d, gdzie g to odczyt z łaty kreski górnej, a d to odczyt z łaty kreski dolnej. W tym przypadku mamy g = 2200 mm i d = 1600 mm. Podstawiając te wartości do wzoru, otrzymujemy: 2s = 2200 mm + 1600 mm, co daje 2s = 3800 mm. Dzieląc przez 2, uzyskujemy s = 1900 mm, co po przeliczeniu na metry daje 1,9 m. Takie obliczenia są kluczowe w tachimetrii, gdzie precyzyjne pomiary wysokości są niezbędne do określenia różnic terenu oraz do tworzenia dokładnych modeli topograficznych. Zastosowanie tego wzoru jest szerokie, od prac inżynieryjnych po geodezję, gdzie precyzja jest kluczowa dla sukcesu projektów budowlanych i infrastrukturalnych. Dobre praktyki w tej dziedzinie wymagają również odpowiedniej kalibracji sprzętu oraz uwzględnienia czynników atmosferycznych, które mogą wpływać na pomiary.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:5000
B. 1:500
C. 1:1000
D. 1:10 000
Odpowiedź 1:5000 jest jak najbardziej trafna. Skala mapy to taki ważny temat, bo mówi nam, jak długości na mapie mają się do tych prawdziwych w terenie. Tu mamy 1 cm na mapie, co odpowiada 50 m w rzeczywistości. Jak to przeliczymy, to 50 m to 5000 cm. To znaczy, że 1 cm na mapie to 5000 cm w terenie, co zapisujemy jako 1:5000. Taka informacja jest super ważna przy robieniu map, bo pozwala dobrze oddać to, co mamy w realu. Kiedy korzystasz z mapy w skali 1:5000, łatwo możesz planować różne rzeczy, na przykład budowę czy nawigację. Tego typu mapy są często wykorzystywane w sprawach takich jak urbanistyka czy geodezja, gdzie potrzebujemy przedstawienia terenu w szczegółowy sposób. Rozumienie skali mapy pozwala lepiej czytać dane przestrzenne i podejmować mądrzejsze decyzje na bazie tego, co widzimy na mapie.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔX<sub>AB</sub> &lt; 0, ΔY<sub>AB</sub> &gt; 0?

A. 0÷100g
B. 100÷200g
C. 200÷300g
D. 300÷400g
Zrozumienie azymutów i ich zakresów jest kluczowe w geodezji i inżynierii lądowej. Odpowiedzi sugerujące przedziały 200÷300g, 0÷100g, czy 300÷400g są błędne z powodu niewłaściwej interpretacji różnic współrzędnych. Przedział 0÷100g sugeruje kierunki północno-wschodnie, gdzie zarówno ΔX, jak i ΔY byłyby dodatnie, co jest sprzeczne z danymi, ponieważ ΔX jest ujemne. Natomiast przedział 200÷300g obejmuje azymuty w kierunku południowym, które nie pasują do sytuacji, gdy ΔY jest dodatnie, a ΔX ujemne. Przedział 300÷400g, który odpowiada kierunkowi południowo-zachodniemu, również nie jest właściwy w obliczeniach, ponieważ ten azymut oznacza, że zarówno współrzędne X, jak i Y byłyby skierowane w kierunku południowym. Zrozumienie, jak różnice współrzędnych wpływają na określenie azymutu, jest kluczowe dla uniknięcia takich błędów w przyszłości. W praktycznych zastosowaniach geodezyjnych, precyzyjne obliczenia tych wartości są niezbędne do określenia właściwych kierunków w pracy terenowej oraz w inżynierii, a także w systemach informacji geograficznej, gdzie dokładność obliczeń wpływa na efektywność wykonania projektów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Na szkicu sytuacyjnej osnowy pomiarowej<u><strong>nie przedstawia się</strong></u>

A. rzędnych i odciętych do szczegółów sytuacyjnych
B. wyrównanych wartości kątów poziomych
C. numerów punktów osnowy pomiarowej
D. uśrednionych wartości długości linii pomiarowych
Umieszczenie uśrednionych wartości długości linii pomiarowych, wyrównanych wartości kątów poziomych i numerów punktów osnowy pomiarowej jest powszechną praktyką w szkicach pomiarowych, jednak nie jest to zasadne w kontekście osnowy sytuacyjnej. Uśrednione długości linii pomiarowych są istotne do oceny dokładności i precyzyjności pomiarów, a ich uwzględnienie na szkicu może wprowadzać niepotrzebne zamieszanie, zwłaszcza gdy istotne jest zachowanie oryginalnych pomiarów. Wyrównane wartości kątów poziomych są kluczowe dla analizy geometrii pomiaru, ale ich obecność na szkicu osnowy sytuacyjnej może prowadzić do niejasności, gdyż nie odzwierciedlają one rzeczywistego stanu w terenie. W przypadku numerów punktów osnowy, ich umieszczanie w szkicach jest zgodne z dobrymi praktykami, ponieważ umożliwia identyfikację punktów w przestrzeni. Typowym błędem myślowym jest zakładanie, że wszystkie istotne dane pomiarowe muszą być umieszczane na jednym dokumencie. Zamiast tego, kluczowe jest rozdzielenie informacji w celu zachowania klarowności i funkcjonalności dokumentacji. W przeciwnym razie, może to prowadzić do dezorientacji i utrudnień w późniejszym przetwarzaniu danych, co jest sprzeczne z zasadami efektywnej pracy w geodezji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W jakiej Bazie Danych są przechowywane dane dotyczące wysokości studzienek kanalizacyjnych?

A. Szczegółowych Osnów Geodezyjnych
B. Geodezyjnej Ewidencji Sieci Uzbrojenia Terenu
C. Obiektów Topograficznych
D. Ewidencji Gruntów i Budynków
Geodezyjna Ewidencja Sieci Uzbrojenia Terenu (GESUT) to baza danych, w której gromadzone są istotne informacje na temat infrastruktury technicznej, w tym również rzędnych studzienek kanalizacyjnych. GESUT ma na celu systematyzację i ułatwienie dostępu do danych o sieciach uzbrojenia terenu, co jest kluczowe dla planowania przestrzennego oraz prowadzenia działań związanych z zarządzaniem infrastrukturą. Zbierane w niej informacje są nie tylko istotne dla geodetów, ale także dla projektantów, inżynierów oraz służb odpowiedzialnych za utrzymanie infrastruktury. Przykładowo, podczas projektowania nowego osiedla, inżynierowie mogą korzystać z GESUT, aby uzyskać dostęp do rzędnych studzienek kanalizacyjnych, co pozwala na prawidłowe zaplanowanie systemu odwadniającego. Ponadto, dane zawarte w GESUT są także wykorzystywane w procesach inwestycyjnych oraz podczas przeprowadzania prac modernizacyjnych, co podkreśla ich praktyczne znaczenie w codziennym zarządzaniu infrastrukturą.

Pytanie 37

Fragment łączący dwa sąsiadujące punkty sytuacyjne tego samego obiektu określa się mianem

A. podpórką
B. czołówką
C. rzędną
D. odciętą
Wybór odciętej jako odpowiedzi jest nieporozumieniem związanym z terminologią geodezyjną. Odcięta odnosi się do poziomego lub pionowego skoku wartości w kontekście pomiarów, na przykład, w analizach funkcji w przestrzeni, ale nie jest terminem odnoszącym się do połączenia punktów sytuacyjnych obiektu. W praktyce, odcięta jest często używana w kontekście obliczeń różnicowych, gdzie analizuje się zmiany w wartościach pomiędzy różnymi punktami, jednak nie ma zastosowania w bezpośrednim łączeniu dwóch sąsiednich punktów. Podpórka z kolei odnosi się do wsparcia dla konstrukcji, a nie do geodezyjnego opisu relacji między punktami. W kontekście geodezji, podpórki mogą być używane w konstrukcjach, ale nie w sensie odnoszącym się do punktów sytuacyjnych. Rzędna, choć również związana z poziomem, odnosi się do wartości wysokości punktu w kontekście terenu, a nie do łączenia dwóch punktów. Zrozumienie tych terminów jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niepoprawnych wniosków w analizach przestrzennych. Kluczowe jest, aby zastosować właściwą terminologię w każdym kroku procesu pomiarowego, aby zapewnić klarowność i precyzję w dokumentacji oraz analizach geodezyjnych. Właściwe rozumienie czołówki i jej roli w łączeniu punktów sytuacyjnych jest fundamentem dla profesjonalnego podejścia w geodezji.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. palik drewniany
B. słup granitowy
C. bolec żelazny
D. słup betonowy
Bolec żelazny jest właściwym rozwiązaniem do oznakowania położenia punktów sytuacyjnej osnowy pomiarowej na utwardzonych nawierzchniach jezdni i chodników z kilku istotnych powodów. Przede wszystkim, jego solidna konstrukcja zapewnia trwałość oraz stabilność, co jest kluczowe w kontekście długotrwałych pomiarów geodezyjnych. Dzięki swojej metalowej formie, bolec żelazny jest odporny na warunki atmosferyczne oraz uszkodzenia mechaniczne, co czyni go idealnym narzędziem w terenie. Przykładowo, w praktyce geodezyjnej, bolece żelazne są często stosowane do wyznaczania punktów kontrolnych, które są niezbędne podczas budowy dróg oraz innych obiektów infrastrukturalnych. Zgodnie z zasadami dobrych praktyk, zaleca się, aby punkty te były dobrze widoczne i łatwo dostępne, co w przypadku bolców żelaznych jest zapewnione poprzez ich odpowiednią wysokość i umiejscowienie. Dodatkowo, ich instalacja nie wymaga skomplikowanych procedur, co przyspiesza proces oznakowania i umożliwia szybkie przystąpienie do dalszych prac pomiarowych.