Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 20 marca 2025 10:14
  • Data zakończenia: 20 marca 2025 10:46

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. aldehydów
B. alkenów
C. fenoli
D. amin
Aldehydy, amin i alkeny, mimo że są istotnymi klasami związków chemicznych, nie reagują w sposób, który mógłby być wykryty przy użyciu chlorku żelaza(III). Aldehydy, chociaż mogą wykazywać różne reakcje, w których zmieniają barwę, nie wchodzą w interakcję z chlorkiem żelaza(III) w sposób dający charakterystyczne zabarwienie. Zamiast tego, aldehydy często są wykrywane za pomocą prób redoks, takich jak reakcja z odczynnikiem Tollensa czy odczynnikiem Fehlinga, gdzie ich zdolność do redukcji jest kluczowym czynnikiem. Aminy, z drugiej strony, mogą tworzyć sole z kwasami, ale nie tworzą kolorowych kompleksów z chlorkiem żelaza(III), co czyni je niewłaściwymi do tego rodzaju testów. Alkeny, z kolei, są związkami nienasyconymi, które mogą uczestniczyć w reakcjach addycji, ale brak im grupy hydroksylowej, co uniemożliwia im reagowanie z chlorkiem żelaza(III) w sposób, który dałby barwną reakcję. Typowym błędem myślowym jest mylenie reakcji barwnych z reakcjami, które nie prowadzą do widocznych zmian kolorystycznych w przypadku tych substancji. W rzeczywistości, niektóre z tych związków mogą nie wykazywać widocznych reakcji w obecności chlorku żelaza(III), co powinno skłonić do głębszej analizy chemicznych właściwości i reakcji, które mogą występować w różnych klasach związków organicznych.

Pytanie 2

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 584,1 g
B. 210,0 g
C. 469,3 g
D. 390,5 g
Odpowiedzi 390,5 g, 584,1 g i 210,0 g są błędne ze względu na nieprawidłowe założenia dotyczące ilości wody związanej w siarczanie(VI) miedzi(II). W przypadku siarczanu(VI) miedzi(II)·5H2O, istotna jest znajomość proporcji mas molowych obu związków. Typowym błędem jest oszacowanie masy uwodnionej soli bez uwzględnienia, że każda cząsteczka CuSO4·5H2O zawiera pięć cząsteczek wody, co znacznie zwiększa masę potrzebną do uzyskania konkretnej ilości soli bezwodnej. Osoby wykorzystujące niepoprawne dane mogą nie brać pod uwagę, że proces suszenia prowadzi do utraty masy, co wymaga precyzyjnych obliczeń, aby uniknąć niedoboru lub nadmiaru materiałów. Jednym z typowych błędów myślowych jest mylenie mas molowych z masami rzeczywistymi, co prowadzi do próby oszacowania masy bez uwzględnienia proporcji. Dlatego kluczowe jest zrozumienie związków chemicznych oraz ich właściwości fizycznych, aby przeprowadzać odpowiednie obliczenia w laboratorium i poprawnie przygotowywać roztwory oraz substancje chemiczne.

Pytanie 3

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. z tworzywa sztucznego, w temperaturze około 4°C
B. szklanych, w temperaturze około 30°C
C. szklanych, w temperaturze około 20°C
D. z tworzywa sztucznego, w temperaturze około 20°C
Wybór materiału i warunków transportu próbek wody ma kluczowe znaczenie dla jakości analizy. Odpowiedzi sugerujące użycie butelek szklanych nie biorą pod uwagę, że szkło, choć chemicznie stabilne, jest bardziej podatne na stłuczenia i może być nieodpowiednie w warunkach transportowych, gdzie istnieje ryzyko uszkodzenia. Wysoka temperatura, jak 30°C, stwarza dodatkowe problemy, ponieważ może prowadzić do niepożądanych reakcji chemicznych oraz przyspieszać rozwój bakterii i innych mikroorganizmów, co zafałszowuje wyniki analizy. Podobnie, temperatura około 20°C nie jest optymalna dla długotrwałego przechowywania próbki, gdyż może wpływać na stabilność niektórych parametrów jakościowych wody. Przy pobieraniu i transporcie próbek wody należy przestrzegać procedur, które uwzględniają zarówno materiał, jak i temperaturę, aby zapewnić ich reprezentatywność. Niezrozumienie wpływu temperatury na skład chemiczny wody oraz na stabilność mikrobiologiczną może prowadzić do błędów w interpretacji wyników, co jest typowym zagadnieniem w praktyce laboratoryjnej. Właściwe podejście jest zatem kluczowe dla uzyskania wiarygodnych danych analitycznych.

Pytanie 4

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. kalibracyjne
B. kwasowe
C. buforowe
D. zasadowe
Roztwory buforowe są kluczowe w kalibracji pehametrów, ponieważ utrzymują stałe pH pomimo dodania niewielkich ilości kwasów lub zasad. Dzięki swojej właściwości stabilizacji pH, roztwory buforowe pozwalają na dokładne pomiary, co jest niezbędne w różnych zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach analitycznych, gdzie pomiar pH jest istotny dla jakości analizowanych próbek, kalibracja pehametru za pomocą roztworów buforowych zapewnia wiarygodność wyników. Standardami ISO dla pomiaru pH zaleca się stosowanie roztworów buforowych o znanych wartościach pH, co umożliwia precyzyjne ustawienie punktów kalibracyjnych. Dobre praktyki wymagają także, aby roztwory buforowe były świeże i odpowiednio przechowywane, aby uniknąć zmian ich właściwości chemicznych. Właściwa kalibracja przyczynia się do minimalizacji błędów pomiarowych, a tym samym zwiększa dokładność wyników i niezawodność procesów analitycznych.

Pytanie 5

Podczas łączenia bezwodnego etanolu z wodą występuje zjawisko kontrakcji. Gdy zmieszamy 1000 cm3 wody oraz 1000 cm3 etanolu, otrzymujemy roztwór o objętości

A. 2000 cm3
B. 2010 cm3
C. 1936 cm3
D. 2036 cm3
Wybór objętości 2036 cm³, 2000 cm³ lub 2010 cm³ jako wyniku zmieszania etanolu z wodą wynika z nieporozumienia dotyczącego zachowania się cieczy podczas ich mieszania. Często przyjmuje się, że objętości składników sumują się bez uwzględnienia ich interakcji, co prowadzi do błędnych obliczeń. Na przykład, odpowiedź 2000 cm³ sugeruje, że dodając dwa objętości, otrzymujemy prostą sumę, co jest niezgodne z rzeczywistością. Zjawisko kontrakcji pokazuje, że cząsteczki wody i etanolu zajmują mniej miejsca, gdy są zmieszane, ponieważ ich struktury cząsteczkowe pozwalają na efektywniejsze upakowanie. Wybór 2010 cm³ również ignoruje ten kluczowy aspekt, sugerując niepoprawny model interakcji między składnikami. Zrozumienie tych procesów jest kluczowe w wielu dziedzinach, takich jak farmacja czy chemia przemysłowa, gdzie precyzyjne pomiary i przewidywanie zachowań roztworów są niezbędne dla skuteczności produkcji oraz bezpieczeństwa. Przykładowo, w analizach chemicznych błędne oszacowanie objętości roztworu może prowadzić do niewłaściwych wyników eksperymentów oraz błędów w syntezach chemicznych.

Pytanie 6

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. miękki
B. średni
C. utwardzony
D. sztywny
Odpowiedzi takie jak 'twardy', 'utwardzony' oraz 'średni' nie są właściwe w kontekście filtracji galaretowatego osadu. Twarde i utwardzone sączki są zaprojektowane do pracy z bardziej szorstkimi lub stałymi materiałami, gdzie ich odporność na mechaniczne uszkodzenia jest istotna. W przypadku filtracji galaretowatych substancji, twarde materiały mogą nie tylko ograniczać efektywność procesu, ale również prowadzić do zatykania się porów, co zwiększa opór i wydłuża czas filtracji. Użycie sączka twardego może także spowodować uszkodzenie struktury galaretowatego osadu, co wpływa na jakość uzyskanego filtratu. Odpowiedź 'średni' sugeruje, że powinno się stosować coś pomiędzy, co nie ma sensu w kontekście filtracji galaretowatych osadów. W praktyce, zastosowanie średnich materiałów filtracyjnych również może skutkować nieefektywnym oddzielaniem cząstek. Kluczowym błędem myślowym jest przekonanie, że tylko twardość lub średnia porowatość materiału wpływa na efekty filtracji, podczas gdy ważniejsze są specyfikacje dotyczące porowatości oraz zdolności absorpcyjnych, które w przypadku galaretowatych osadów są kluczowe.

Pytanie 7

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 77,7%
B. 93,4%
C. 88,8%
D. 83,5%
Niepoprawne odpowiedzi mogą wynikać z nieprawidłowych założeń lub błędnych obliczeń. Wydajność reakcji nitrowania jest ściśle związana z ilością reagenta i teoretycznie uzyskanego produktu. Wiele osób może pomylić się w obliczeniach masy teoretycznej, co prowadzi do zawyżenia lub zaniżenia wartości wydajności. Na przykład, nie uwzględnienie molarności reakcji lub błędne przeliczenie mas molowych może prowadzić do nieprawidłowych wyników. Często również występuje błąd polegający na pomijaniu czynnika, jakim jest strata masy podczas reakcji, co wpływa na ostateczną wydajność. Należy pamiętać, że każda reakcja chemiczna jest obarczona pewnym stopniem nieefektywności, nie tylko związanym z odczynnikiem, ale również z warunkami reakcyjnymi jak temperatura, ciśnienie czy obecność katlizu. W praktyce przemysłowej istotne jest monitorowanie wszystkich tych parametrów, aby móc poprawić wydajność reakcji, a także minimalizować straty surowców. Zrozumienie tych aspektów jest kluczowe dla skutecznego zarządzania procesami chemicznymi i osiągania wysokiej wydajności produkcji.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. Ex
B. A
C. In
D. B
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 10

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 62,5%
B. 60,5%
C. 125%
D. 75%
Wydajność krystalizacji oblicza się, dzieląc masę czystego produktu przez masę surowca, a następnie mnożąc przez 100%. W tym przypadku masa czystego produktu wynosi 125 g, a masa surowca to 200 g. Obliczenia przedstawiają się następująco: (125 g / 200 g) * 100% = 62,5%. Zrozumienie wydajności krystalizacji ma kluczowe znaczenie w przemyśle chemicznym, ponieważ pozwala ocenić skuteczność procesu, co jest niezbędne do optymalizacji produkcji. Wydajność krystalizacji jest często analizowana w kontekście różnych metod oczyszczania substancji, a jej wysoka wartość wskazuje na efektywność procesu. W praktyce, osiągnięcie wysokiej wydajności krystalizacji może mieć istotne znaczenie ekonomiczne, szczególnie w sektorach takich jak farmaceutyka czy przemysł chemiczny, gdzie czystość produktu końcowego jest kluczowa dla spełnienia standardów jakości. Dlatego regularne monitorowanie wydajności procesu krystalizacji stanowi część dobrych praktyk inżynieryjnych oraz zarządzania jakością.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Piktogram nie jest konieczny dla

A. mieszanin samoreaktywnych typu G
B. substancji, które działają drażniąco na skórę
C. substancji, które mają działanie drażniące na oczy
D. substancji, które powodują korozję metali
Mieszaniny samoreaktywne typu G to substancje, które nie wymagają stosowania piktogramów, ponieważ są one klasyfikowane w inny sposób niż substancje drażniące. Zgodnie z rozporządzeniem CLP (Classification, Labelling and Packaging), piktogramy są stosowane do oznaczania substancji, które posiadają określone właściwości niebezpieczne, takie jak drażniące działanie na oczy czy skórę. Mieszaniny samoreaktywne typu G, do których zalicza się substancje mogące ulegać niekontrolowanym reakcjom chemicznym, są klasyfikowane na podstawie ich właściwości fizykochemicznych i nie są objęte wymaganiami dotyczącymi piktogramów. Przykładem może być pewien rodzaj azotanu, który, będąc samoreaktywnym, nie wymaga dodatkowego oznakowania ostrzegawczego, o ile nie wykazuje innych zagrożeń. Dobrą praktyką w obszarze zarządzania substancjami chemicznymi jest znajomość ich klasyfikacji oraz odpowiednich przepisów, co pozwala na bezpieczne ich stosowanie w przemyśle oraz laboratoriach.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słabą zasadę
B. słaby kwas
C. mieszaninę chromową
D. rozpuszczalnik organiczny
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 15

Który z poniższych zestawów obejmuje jedynie sprzęt do pomiarów?

A. Kolba miarowa, zlewka oraz bagietka
B. Kolba miarowa, cylinder miarowy oraz eza
C. Kolba miarowa, kolba stożkowa oraz pipeta
D. Kolba miarowa, biureta i pipeta
Odpowiedź "Kolba miarowa, biureta i pipeta" jest poprawna, ponieważ wszystkie wymienione narzędzia są klasycznymi przykładami sprzętu miarowego używanego w laboratoriach chemicznych. Kolba miarowa służy do precyzyjnego pomiaru objętości cieczy, co jest kluczowe w wielu reakcjach chemicznych, gdzie dokładność jest niezbędna dla uzyskania powtarzalnych wyników. Biureta, z kolei, jest używana do dozowania cieczy w sposób kontrolowany, najczęściej w titracji, co pozwala na określenie stężenia substancji chemicznej. Pipeta natomiast jest narzędziem, które umożliwia przenoszenie małych objętości cieczy z dużą precyzją. W praktyce laboratoryjnej, wybór odpowiedniego sprzętu pomiarowego jest kluczowy dla uzyskania wiarygodnych danych. Używanie sprzętu zgodnego z normami, takimi jak ISO lub ASTM, zapewnia wysoką jakość pomiarów i minimalizuje ryzyko błędów. Właściwa znajomość i umiejętność posługiwania się tymi narzędziami jest niezbędna dla każdego chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 16

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. istnieje ryzyko zalania palnika
B. wzrost ciśnienia może spowodować wybuch
C. może wystąpić niebezpieczeństwo zgaszenia płomienia
D. może to zwiększyć jej toksyczność
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. filtracji
B. destylacji
C. krystalizacji
D. koagulacji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. destylacja z parą wodną
B. zatężenie i krystalizacja
C. ekstrakcja chloroformem
D. ekstrakcja roztworem zasady
Ekstrakcja chloroformem nie jest skuteczna w rozdziale ketonu i kwasu karboksylowego, ponieważ oba te związki są organiczne i mogą się dobrze rozpuszczać w chloroformie. W praktyce, podczas ekstrakcji, nie zachodzi wystarczająca separacja tych substancji, co prowadzi do trudności w ich dalszej analizie i oczyszczaniu. W przypadku destylacji z parą wodną, metoda ta działa najlepiej dla substancji lotnych, a kwasy karboksylowe często są mniej lotne, co ogranicza jej zastosowanie w tym kontekście. Z kolei zatężenie i krystalizacja są bardziej odpowiednie dla czystych substancji, a nie dla mieszanin, których składniki wykazują złożoną interakcję. Często zdarza się, że studenci błędnie zakładają, że wszystkie metody rozdzielania substancji organicznych są uniwersalne, co prowadzi do niewłaściwych wyborów w laboratoriach. Kluczowe jest zrozumienie chemicznych interakcji pomiędzy substancjami, co jest podstawą efektywnego rozdziału i oczyszczania związków organicznych.

Pytanie 22

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. chłonięcie wody
B. rozpad promieniotwórczy
C. degradacja termiczna
D. utrata lotnych składników
Przechowywanie pobranych próbek laboratoryjnych w lodówce jest kluczowym procesem, gdyż zapobiega degradacji termicznej, która może prowadzić do nieodwracalnych zmian w składzie chemicznym analitów. Degradacja termiczna zachodzi, gdy próbki są narażone na podwyższone temperatury, co może powodować denaturację białek, rozkład enzymów, a także zmiany w składzie chemicznym substancji czynnych. Przechowywanie w lodówce (zwykle w temperaturze 2-8°C) zapewnia stabilność wielu związków, co jest niezbędne w badaniach analitycznych. Przykładowo, próbki krwi, moczu czy tkanek biologicznych często wymagają przechowywania w chłodnych warunkach, aby zminimalizować ryzyko degradacji. Standardy takie jak ISO 15189 dla laboratoriów medycznych podkreślają istotność odpowiednich warunków przechowywania próbek, co jest niezbędne dla uzyskania wiarygodnych wyników analiz. Właściwe przechowywanie nie tylko chroni próbki, ale również zwiększa dokładność wyników badań, co jest kluczowe dla diagnostyki i dalszego leczenia pacjentów.

Pytanie 23

Aby uzyskać roztwór CuSO4 o stężeniu 15%, w jakim stosunku należy połączyć roztwory 10% oraz 20%?

A. 2:3
B. 1:1
C. 3:2
D. 2:1
Stosowanie niepoprawnych odpowiedzi na pytanie o mieszanie roztworów stężonych prowadzi do błędnych wniosków dotyczących proporcji, które są niezbędne do uzyskania określonego stężenia. Na przykład, odpowiedź 2:3 sugeruje, że w bardziej stężonym roztworze (20%) powinno być więcej, co jednak nie jest zgodne z zasadą mieszania stężeń. Przy tej proporcji stężenie końcowe przekroczyłoby 15%, co jest niepożądane. Podobnie, odpowiedzi 3:2 i 1:1 sugerują niewłaściwe rozkłady, które również prowadzą do niemożności osiągnięcia zamierzonego stężenia. W przypadku roztworów o różnych stężeniach kluczowe jest zrozumienie, że roztwór o niższym stężeniu (10%) musi być obecny w większej ilości w celu zredukowania średniego stężenia. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, to ignorowanie zasady zachowania masy oraz niewłaściwe stosowanie matematyki do obliczeń stężenia. W praktyce chemicznej istotne jest przestrzeganie reguły, że dla uzyskania roztworu o pożądanym stężeniu należy stosować równania do obliczeń, co jest zgodne z dobrymi praktykami w laboratoriach chemicznych.

Pytanie 24

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg

A. 0,184 g/cm3
B. 1,84 g/dm3
C. 1,84 g/cm3
D. 0,184 g/dm3
Wybór błędnych odpowiedzi może świadczyć o nieporozumieniach dotyczących definicji gęstości oraz jednostek miary. W odpowiedziach takich jak 0,184 g/dm3 i 0,184 g/cm3, liczby te są nieprawidłowe, ponieważ pomijają kluczowy aspekt masy kwasu siarkowego(VI) w kontekście jego gęstości. W szczególności, warto zauważyć, że 0,184 g/dm3 jest równoznaczne z 0,000184 g/cm3, co jest zbyt niską wartością jak na gęstość stężonego kwasu siarkowego(VI). To podejście jest błędne, ponieważ nie uwzględnia rzeczywistej masy kwasu w 1 litrze, która wynosi 1840 g. Ponadto, 0,184 g/cm3 również jest nieprawidłowe, ponieważ sugeruje, że kwas siarkowy(VI) jest znacznie mniej gęsty niż w rzeczywistości. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, to pomylenie jednostek oraz niewłaściwe przeliczenie masy na gęstość. Wiedza o gęstości substancji chemicznych jest kluczowa dla wielu procesów przemysłowych oraz laboratoryjnych; błędne zrozumienie tego pojęcia może prowadzić do niebezpiecznych sytuacji, takich jak niewłaściwe przygotowanie roztworów lub błędna klasyfikacja substancji w zakresie ich transportu. Dlatego tak ważne jest, aby dokładnie przestudiować dane zawarte na etykietach substancji chemicznych oraz wykorzystywać je w praktycznych zastosowaniach w zgodzie z obowiązującymi normami i najlepszymi praktykami.

Pytanie 25

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, koncentrację i numer katalogowy
B. koncentrację, producenta i wykaz zanieczyszczeń
C. koncentrację, ostrzeżenia H oraz datę przygotowania
D. masę, datę przygotowania i numer katalogowy
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 26

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 20 g KCl i 180 g wody
B. 5 g KCl i 200 g wody
C. 10 g KCl i 190 g wody
D. 10 g KCl i 200 g wody
Wskazanie błędnych odpowiedzi, takich jak 5 g KCl i 200 g wody, 10 g KCl i 200 g wody lub 20 g KCl i 180 g wody, wynika z nieprawidłowego zrozumienia, jak obliczać stężenie roztworu. W pierwszej z tych odpowiedzi, gdy używamy 5 g KCl, stężenie m/m w roztworze będzie znacznie niższe niż 5%, ponieważ masa całkowita roztworu wynosi 205 g (5 g KCl + 200 g wody). Obliczając stężenie, uzyskujemy: (5 g / 205 g) * 100%, co daje około 2,44%. W przypadku odpowiedzi 10 g KCl i 200 g wody, masa całkowita wynosi 210 g, co prowadzi do jeszcze niższego stężenia: (10 g / 210 g) * 100% = około 4,76%. Ostatnia propozycja 20 g KCl i 180 g wody również jest błędna, ponieważ masa całkowita to 200 g, ale stężenie wynosi: (20 g / 200 g) * 100% = 10%, co wykracza poza wymagane 5%. Typowe błędy myślowe w takich przypadkach obejmują nieprawidłowe obliczenia masy rozpuszczonej substancji w odniesieniu do całej masy roztworu oraz nieumiejętność dostosowania proporcji składników, co jest kluczowe w chemii. Zrozumienie, jak właściwie przygotować roztwory o określonym stężeniu, jest nie tylko fundamentalne w naukach chemicznych, ale także w praktyce laboratoryjnej, gdzie precyzja jest niezbędna dla uzyskania wiarygodnych danych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby odróżnić urządzenia w laboratorium chemicznym, rury do próżni maluje się w kolorze

A. szarym
B. czerwonym
C. niebieskim
D. żółtym
Rury do próżni w laboratoriach chemicznych maluje się na kolor szary, aby zapewnić ich łatwe rozróżnienie od innych systemów rurociągów, a także podnieść bezpieczeństwo pracy w laboratoriach. Kolor szary jest standardem w wielu laboratoriach, ponieważ konkretne barwy przypisuje się różnym zastosowaniom i funkcjom rur. Rury do próżni muszą być odpowiednio oznaczone, aby uniknąć pomyłek, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak przypadkowe podłączenie nieprawidłowych systemów. Przykładowo, w sytuacji awaryjnej, kiedy konieczne jest szybkie rozpoznanie systemów, oznakowanie kolorystyczne umożliwia personelowi natychmiastowe zidentyfikowanie rur do próżni i podjęcie odpowiednich działań. Dobre praktyki branżowe, takie jak normy ISO oraz wytyczne dotyczące bezpieczeństwa chemicznego, również podkreślają znaczenie prawidłowego oznakowania infrastruktury laboratoryjnej, co ma kluczowe znaczenie dla minimalizacji ryzyka oraz zapewnienia efektywności operacyjnej.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Który z wymienionych roztworów NaOH, o określonych stężeniach, nie jest roztworem mianowanym?

A. 0,200 mol/dm3
B. 0,100 mol/dm3
C. ściśle 0,2 mol/dm3
D. około 0,2 mol/dm3
Wybór stężenia, które jest oszacowaniem, jak '0,200 mol/dm3', może wydawać się poprawny, jednak nie spełnia ono wymogów dotyczących roztworów mianowanych. Roztwory mianowane wymagają, aby ich stężenie było dokładnie określone i precyzyjnie przygotowane. Stężenia takie jak '0,100 mol/dm3' oraz 'ściśle 0,2 mol/dm3' wskazują na dokładność i precyzję przygotowania roztworu, co jest kluczowe w laboratoriach chemicznych. Przykłady roztworów mianowanych są istotne w kontekście analizy chemicznej, gdzie niewielkie różnice w stężeniu mogą prowadzić do znaczących błędów w wynikach. Typowym błędem myślowym jest zakładanie, że przybliżone wartości stężenia mogą być traktowane jako równe dokładnym pomiarom. W rzeczywistości, takie przybliżenia w kontekście roztworów chemicznych mogą prowadzić do nieodwracalnych błędów w eksperymentach analitycznych. Zrozumienie różnicy między wartościami przybliżonymi a dokładnymi jest kluczowe dla każdego chemika, który pragnie uzyskać wiarygodne wyniki w swoich badaniach.

Pytanie 31

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. pierwotną
B. śladową
C. ogólną
D. średnią
Odpowiedź 'średnia' jest poprawna, ponieważ w kontekście analizy próbek odnosi się do próbki, która jest reprezentatywną redukcją próbki ogólnej. Średnia próbka jest kluczowa w statystyce i analizach laboratoryjnych, gdyż zapewnia zrównoważony przegląd właściwości całej populacji. Na przykład, w badaniach chemicznych, średnia próbka powinna być przygotowana tak, aby uwzględniała różnorodność w składzie chemicznym analizowanej substancji. Przygotowanie średniej próbki może być realizowane poprzez odpowiednie mieszanie prób z różnych miejsc lub czasów, co jest zgodne z normami ISO dotyczącymi przygotowania próbek. W praktyce, stosowanie średnich próbek pomaga w minimalizacji błędów systematycznych i zwiększa wiarygodność wyników analiz, co jest kluczowe w kontekście kontrolowania jakości produktów w przemyśle oraz w badaniach naukowych. Ustalanie średniej próbki jest także niezbędne przy ocenie zmienności parametrów, co ma wpływ na dalsze podejmowanie decyzji w zakresie jakości czy bezpieczeństwa materiałów.

Pytanie 32

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(V) z azotu
B. kwasu azotowego(II) z azotu
C. kwasu azotowego(III) z azotu
D. kwasu azotowego(IV) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 33

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Dekantacja.
B. Destylacja.
C. Filtracja.
D. Sedymentacja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 34

Metodą, która nie umożliwia przeniesienia składników próbki do roztworu, jest

A. liofilizacja
B. mineralizacja
C. stapianie
D. roztwarzanie
Liofilizacja to dość ciekawy proces. W skrócie, to suszenie przez sublimację, czyli woda z lodu od razu przechodzi w parę bez przechodzenia przez płynny stan. To ważne w labie, bo kiedy analizujemy próbki chemiczne, składniki muszą być dobrze rozpuszczone w odpowiednich rozpuszczalnikach, żeby wyniki były dokładne. Liofilizacja nie robi roztworu, a jedynie suszy materiał, więc nie nadaje się do przygotowania próbek do analizy. A tak na marginesie, liofilizacja jest popularna w przemyśle farmaceutycznym i spożywczym, gdzie ważne jest, żeby zachować właściwości produktów. Lepiej sprawdzają się inne metody, jak roztwarzanie, które są zgodne z normalnymi procedurami analitycznymi i zapewniają precyzyjne wyniki.

Pytanie 35

Wskaż definicję fiksanali?

A. Małe ampułki ze ściśle określoną masą substancji chemicznej
B. Małe ampułki z nieokreśloną masą substancji chemicznej
C. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
D. Kapsułki zawierające niewielkie ilości substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 36

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. rozpuszczalność
B. roztwarzalność
C. jednorodność
D. reprezentatywność
Odpowiedź "reprezentatywność" jest kluczowa w kontekście próbki analitycznej, gdyż oznacza, że próbka powinna odzwierciedlać charakterystyki całego materiału badanego. W praktyce oznacza to, że próbka musi być pobrana w sposób, który gwarantuje, że jej skład i właściwości są zgodne z właściwościami całej partii materiału. Przykładem zastosowania reprezentatywności może być proces pobierania próbek w analizie jakościowej gleby, gdzie ważne jest, aby próbki były pobierane z różnych miejsc w polu, aby uzyskać dokładny obraz stanu całej gleby. Standardy takie jak ISO 5667 dostarczają wytycznych na temat pobierania próbek w różnych środowiskach, co podkreśla znaczenie reprezentatywności. Bez zapewnienia, że próbka jest reprezentatywna, wyniki badania mogą być mylące, co może prowadzić do błędnych decyzji w procesach przemysłowych czy badaniach naukowych.

Pytanie 37

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
D. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
Rozważając inne dostępne odpowiedzi, można zauważyć szereg nieprawidłowości wynikających z błędnych obliczeń lub niewłaściwego rozumienia pojęcia stężenia i objętości roztworu. Na przykład, odpowiedź, która sugeruje przygotowanie kolby miarowej o pojemności 500 cm³ z roztworem o stężeniu 0,05 mol/dm³, nie uwzględnia faktu, że stężenie to jest połową wymaganego stężenia, co prowadzi do błędnego wniosku o ilości wymaganej substancji. Przygotowanie roztworu o stężeniu 0,05 mol/dm³ wymagałoby jedynie 0,025 mola AgNO₃, co jest niewystarczające w kontekście zadania. Z kolei sugerowana odpowiedź dotycząca przygotowania czterech kolb miarowych o pojemności 250 cm³ z roztworem o stężeniu 0,025 mol/dm³ nie tylko nie spełnia wymagań dotyczących stężenia, ale także podaje złą ilość moli potrzebną do uzyskania takiego roztworu. Niezrozumienie zależności między objętością, stężeniem i ilością moli prowadzi do typowych błędów myślowych, które mogą skutkować niepoprawnymi wynikami w laboratoriach chemicznych. W kontekście standardów laboratoryjnych, takim jak ISO, kluczowe jest, aby przygotowywanie roztworów było realizowane zgodnie z jasno określonymi procedurami oraz zasadami, co pozwala uniknąć błędów, które mogą wpłynąć na jakość i wiarygodność analiz chemicznych.

Pytanie 38

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
B. Roztwór chlorku potasu o stężeniu 1 mol/dm3
C. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
D. Roztwór kwasu siarkowego(VI) o stężeniu 2%
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 39

Co oznacza skrót AKT?

A. amid kwasu tiooctowego
B. titranta automatyczną kontrolę
C. kontrolno-techniczną analizę
D. krzywą titracyjną analityczną
Skrót AKT odnosi się do amidu kwasu tiooctowego, który jest istotnym związkiem chemicznym o szerokim zastosowaniu w różnych dziedzinach, w tym w chemii analitycznej i syntezie organicznej. Amid kwasu tiooctowego jest wykorzystywany jako odczynnik w reakcjach chemicznych, w tym w tworzeniu złożonych cząsteczek organicznych. Jego unikalne właściwości sprawiają, że jest przydatny w procesach, takich jak modyfikacja powierzchni materiałów i nanoszenie warstw ochronnych. Przykładowo, w laboratoriach chemicznych używa się go do syntezy związków, które następnie mogą być badane pod kątem ich właściwości biologicznych lub fizykochemicznych. Ponadto, amid kwasu tiooctowego ma zastosowanie w branży farmaceutycznej, gdzie jest wykorzystywany w produkcji niektórych leków. Zrozumienie roli AKT w chemii pozwala na lepsze projektowanie eksperymentów i analizę wyników, co jest kluczowe dla zapewnienia wysokiej jakości badań i zgodności z najlepszymi praktykami w branży.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.