Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 13 maja 2025 14:22
  • Data zakończenia: 13 maja 2025 14:36

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Refraktometr typu "trzy w jednym" w diagnostyce pojazdów jest wykorzystywany do oceny

A. oleju w silniku
B. paliwa diesla
C. płynu chłodzącego
D. grubości powłoki lakierniczej
Odpowiedzi dotyczące grubości lakieru, oleju napędowego oraz oleju silnikowego nie są zgodne z zastosowaniem refraktometru w diagnostyce samochodowej. Grubość lakieru oceniana jest zazwyczaj za pomocą mierników grubości, które działają na zasadzie indukcji elektromagnetycznej lub ultradźwięków, a nie na podstawie pomiaru współczynnika załamania światła. Takie narzędzia są kluczowe w diagnostyce stanu nadwozia, szczególnie w przypadku wykrywania napraw blacharskich czy stanu korozji. Z kolei olej napędowy i olej silnikowy, mimo że również mogą być analizowane za pomocą różnych technik, nie są typowymi zastosowaniami refraktometru 'trzy w jednym'. Dla oleju napędowego, istotne jest monitorowanie jego gęstości i zawartości wody, co można osiągnąć przy użyciu wodoodpornych mierników gęstości. Olej silnikowy natomiast oceniany jest na podstawie jego lepkości, a także zawartości zanieczyszczeń, co wymaga zastosowania specjalistycznych analizatorów. Wiele osób może mieć mylne przekonanie, że każdy płyn w samochodzie można badać za pomocą refraktometru, jednak kluczowe jest zrozumienie, że każde narzędzie diagnostyczne ma swoje specyficzne zastosowania i właściwości, które determinują jego skuteczność w danym kontekście. Dlatego ważne jest, aby rozumieć, jakie narzędzia są odpowiednie do danej analizy, co jest nie tylko istotne dla prawidłowego funkcjonowania pojazdu, ale również dla bezpieczeństwa na drodze.

Pytanie 2

Wymiana klocków hamulcowych na tylnej osi w pojazdach z systemem Electronic Power Board lub Sensotronic Brake Control wiąże się z

A. odpowietrzeniem układu hamulcowego
B. dezaktywacją zacisków hamulcowych
C. jednoczesną wymianą tarcz i klocków hamulcowych
D. wymianą płynu hamulcowego
Dezaktywacja zacisków hamulcowych to naprawdę ważny krok, gdy wymieniamy klocki w autach z systemami jak Electronic Power Board czy Sensotronic Brake Control. Chodzi o to, żeby najpierw odłączyć zasilanie lub zresetować system, dzięki czemu możemy bez stresu zdemontować klocki, nie obawiając się o uszkodzenia. Na przykład, jeśli nie zastosujemy się do tego, to możemy przypadkiem zepsuć czujniki czy inne elementy regulacyjne. Dlatego zawsze warto zajrzeć do instrukcji serwisowej przed przystąpieniem do pracy. Dzięki temu mamy pewność, że wszystko zrobimy jak należy, co jest kluczowe dla bezpieczeństwa i prawidłowego działania układu hamulcowego po wymianie. No i przestrzeganie dobrych praktyk serwisowych to podstawa, jeśli chcemy czuć się pewnie za kierownicą.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. gęstości
B. powierzchni
C. długości
D. wagi
Ciśnienie definiuje się jako siłę działającą na jednostkę powierzchni. Jest to kluczowa koncepcja w fizyce i inżynierii, mająca zastosowanie w wielu dziedzinach, od mechaniki płynów po budownictwo. Przykładem praktycznym może być analiza sił działających na konstrukcje, takie jak mosty czy budynki, gdzie inżynierowie muszą uwzględniać ciśnienie wywierane przez wiatr, śnieg czy inne czynniki zewnętrzne. Zgodnie z zasadą Pascala, zmiany ciśnienia w zamkniętym płynie są przenoszone wszędzie równomiernie, co ma istotne znaczenie w hydraulice. Ciśnienie jest również kluczowe w medycynie, gdzie monitorowanie ciśnienia krwi może dostarczać informacji o stanie zdrowia pacjenta. W przemyśle, ciśnienie jest ważne w procesach takich jak pakowanie, gdzie odpowiednia siła musi być zastosowana do uzyskania szczelności opakowań. W myśl norm ISO, pomiar ciśnienia wymaga stosowania odpowiednich instrumentów, takich jak manometry, które muszą być kalibrowane zgodnie z międzynarodowymi standardami.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Rzetelną ocenę gładzi cylindrów wykonuje się na podstawie

A. pomiarów średnic cylindrów przy użyciu średnicówki
B. pomiarów średnic cylindrów przy użyciu suwmiarki
C. oględzin wizualnych
D. badania dotykowego
Pomiar średnic cylindrów przy użyciu średnicówki jest uznawany za najbardziej miarodajny sposób weryfikacji ich gładzi. Średnicówka, jako specjalistyczne narzędzie pomiarowe, pozwala na dokładne określenie średnicy otworów cylindrycznych z wysoką precyzją. W praktyce, pomiar ten jest kluczowy dla oceny stanu technicznego silników spalinowych – zarówno w kontekście diagnostyki, jak i podczas odbudowy jednostek napędowych. Regularne pomiary średnic cylindrów są istotne, ponieważ z czasem mogą występować zużycia mechaniczne, które obniżają jakość pracy silnika. Ponadto, zgodnie z normami branżowymi, takich jak ISO 2768, ocena jakości cylindrów wymaga precyzyjnych pomiarów, aby zapewnić ich odpowiednie dopasowanie do tłoków. Użycie średnicówki umożliwia zbadanie nie tylko średnicy, ale również ewentualnych odchyleń od wymiarów nominalnych, co jest niezbędne do dalszych działań. Warto zatem podkreślić, że wykorzystanie średnicówki w praktyce warsztatowej przyczynia się do zwiększenia żywotności silnika oraz poprawy jego wydajności.

Pytanie 9

W trakcie okresowych przeglądów technicznych pojazdów analizowany jest stan techniczny

A. komponentów wpływających zarówno na bezpieczeństwo, jak i ekologię
B. wszystkich komponentów pojazdu
C. komponentów mających znaczenie jedynie dla ekologii
D. komponentów wpływających wyłącznie na bezpieczeństwo
Niewłaściwe podejście do oceny stanu technicznego pojazdów ogranicza się jedynie do wybranych aspektów, co w dłuższej perspektywie może prowadzić do poważnych konsekwencji. Odpowiedzi sugerujące, że badania techniczne obejmują tylko zespoły mające wpływ na bezpieczeństwo, lub tylko na ekologię, ignorują złożoność i wzajemne powiązania tych dwóch obszarów. Przykładowo, zaniedbanie aspektów ekologicznych może prowadzić do większych emisji spalin, co ma negatywny wpływ na zdrowie publiczne, a tym samym pośrednio zagraża bezpieczeństwu. Z kolei skupienie się wyłącznie na bezpieczeństwie technicznym bez uwzględnienia norm ekologicznych nie jest zgodne z aktualnymi przepisami i nie spełnia standardów branżowych, takich jak dyrektywy Unii Europejskiej dotyczące ochrony środowiska. W praktyce, bezpieczeństwo i ekologia są ze sobą nierozerwalnie związane, a ich równoczesna ocena jest kluczowa dla prawidłowego funkcjonowania systemu transportowego. Ignorowanie ekologicznych aspektów technicznych pojazdu prowadzi nie tylko do ryzyka dla ludzi, ale również do degradacji środowiska, co jest sprzeczne z zasadami zrównoważonego rozwoju. Dlatego istotne jest, aby podczas badań technicznych uwzględniać zarówno bezpieczeństwo, jak i aspekty ekologiczne, co stanowi fundament odpowiedzialnego użytkowania pojazdów.

Pytanie 10

Częścią mechaniczną układu hamulcowego jest

A. zbiornik płynu hamulcowego
B. dźwignia hamulca ręcznego
C. cylinderek hamulcowy
D. korektor siły hamowania
Dźwignia hamulca ręcznego to jeden z najważniejszych elementów w mechanice auta, który pozwala kierowcom zatrzymać pojazd, zwłaszcza w sytuacjach, kiedy trzeba działać szybko. Używa się jej do zaciągania hamulców tylnej osi i działa na zasadzie przenoszenia siły mechanicznej, co jest bardzo praktyczne. Na przykład, gdy parkujesz na stoku, zaciągnięcie hamulca ręcznego jest wręcz kluczowe, żeby auto się nie stoczyło. W branży motoryzacyjnej obowiązują różne normy, jak ISO 26262, które mówią o bezpieczeństwie tych systemów, więc dźwignia ta musi być niezawodna. Ważne, żeby regularnie sprawdzać jej stan, bo wpływa to na nasze bezpieczeństwo na drodze. Moim zdaniem, każdy kierowca i mechanik powinien rozumieć, jak działa ta dźwignia, bo to nie tylko kwestia bezpieczeństwa, ale też komfortu jazdy.

Pytanie 11

Podczas naprawy silnika mechanik zauważył biały dym wydobywający się z rury wydechowej. Co może być tego przyczyną?

A. Uszkodzenie uszczelki pod głowicą
B. Niedrożność układu paliwowego
C. Przegrzanie tarcz hamulcowych
D. Zużycie bieżnika opon
Biały dym wydobywający się z rury wydechowej samochodu jest często symptomem uszkodzenia uszczelki pod głowicą. Uszczelka ta znajduje się między blokiem silnika a głowicą cylindrów i pełni kluczową rolę w zapewnieniu szczelności komory spalania. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynu chłodzącego do komory spalania. Spalanie płynu chłodzącego w cylindrach prowadzi do powstawania białego dymu, który jest widoczny na zewnątrz przez rurę wydechową. Taka sytuacja jest nie tylko oznaką problemu, ale może prowadzić do poważniejszych uszkodzeń silnika, jeśli nie zostanie szybko naprawiona. Dobrą praktyką jest regularne sprawdzanie stanu uszczelki pod głowicą, szczególnie przy objawach takich jak biały dym lub nadmierne zużycie płynu chłodzącego. Wymiana uszczelki jest skomplikowanym zadaniem, które wymaga precyzji i odpowiednich narzędzi, dlatego zazwyczaj powinno być zlecone doświadczonemu mechanikowi. Warto także pamiętać o przestrzeganiu zaleceń producenta dotyczących momentów dokręcania śrub głowicy, co może zapobiec przyszłym problemom.

Pytanie 12

Elementem jest sprężyna centralna (talerzowa)

A. sprzęgła hydrokinetycznego
B. przekładni napędowej
C. docisku sprzęgła ciernego
D. przekładni głównej
Sprężyna centralna, znana również jako sprężyna talerzowa, jest kluczowym elementem docisku sprzęgła ciernego. Jej głównym zadaniem jest zapewnienie odpowiedniego nacisku na tarczę sprzęgłową, co umożliwia efektywne przenoszenie momentu obrotowego z silnika na skrzynię biegów. Dzięki zastosowaniu sprężyny centralnej, docisk sprzęgła może dostosować siłę nacisku w zależności od warunków pracy, co jest niezbędne dla uzyskania optymalnej wydajności i trwałości układu napędowego. W praktyce, sprężyna ta pozwala na automatyczne dostosowanie siły docisku w czasie, co znacząco poprawia komfort jazdy oraz wydajność silnika. W kontekście standardów branżowych, stosowanie sprężyn talerzowych w dociskach sprzęgła ciernego jest zgodne z normami jakościowymi, co zapewnia bezpieczeństwo oraz niezawodność działania układu. To podejście jest szeroko akceptowane w branży motoryzacyjnej, gdzie trwałość i efektywność komponentów są kluczowe dla satysfakcji użytkowników.

Pytanie 13

Czym są elementy wałka rozrządu?

A. krzywki
B. gniazda
C. pierścienie
D. łożyska
Krzywki to istotne elementy wałka rozrządu, które mają kluczowe znaczenie dla synchronizacji ruchu zaworów w silniku spalinowym. Ich głównym zadaniem jest przekształcanie obrotowego ruchu wałka w liniowy ruch zaworów, co pozwala na odpowiednie otwieranie i zamykanie zaworów w ustalonych momentach cyklu pracy silnika. Krzywki są zaprojektowane w taki sposób, aby zapewnić precyzyjne działanie oraz minimalizować tarcie, a ich kształt i rozmiar są dostosowane do specyfikacji danego silnika. W praktyce, projektanci silników bazują na standardach takich jak ISO 9001, co zapewnia wysoką jakość produkcji i niezawodność działania wałków rozrządu. W zastosowaniu motoryzacyjnym, odpowiedni dobór krzywek może znacząco wpłynąć na osiągi silnika, jego efektywność paliwową oraz emisję spalin, dlatego inżynierowie często korzystają z symulacji komputerowych oraz testów w warunkach rzeczywistych, aby zoptymalizować te elementy. Ostatecznie, krzywki są nie tylko kluczowym komponentem, ale również istotnym czynnikiem wpływającym na ogólną wydajność i kulturę pracy silnika.

Pytanie 14

Pierwszym krokiem przed przeprowadzeniem badania okresowego w Stacji Kontroli Pojazdów jest

A. pobranie informacji o badanym pojeździe z Centralnej Ewidencji Pojazdów
B. sprawdzenie oraz regulacja ciśnienia w oponach do wartości nominalnych
C. pomiar zadymienia spalin silnika ZI
D. sprawdzenie indeksu tłumienia amortyzatorów osi przedniej
Prawidłowa odpowiedź to pobranie danych badanego pojazdu z Centralnej Ewidencji Pojazdów (CEP). Jest to kluczowy krok w procesie przeprowadzania badania okresowego, ponieważ pozwala na weryfikację tożsamości pojazdu oraz jego historii. Centralna Ewidencja Pojazdów zawiera dane dotyczące właścicieli, zarejestrowanych pojazdów, a także informacje o ich stanie technicznym oraz ewentualnych stłuczkach czy wypadkach. Praktyczne zastosowanie tego kroku polega na unikaniu nieporozumień związanych z identyfikacją pojazdu, co jest nie tylko zgodne z przepisami prawa, ale również zwiększa bezpieczeństwo podczas przeprowadzania badań. Zgodnie z dobrą praktyką branżową, każda stacja kontroli pojazdów powinna mieć dostęp do CEP, aby móc sprawdzić, czy pojazd spełnia wymogi stawiane przez prawo. Dodatkowo, pozyskanie danych z CEP pozwala na ocenę, czy pojazd został poddany wcześniejszym badaniom, co może wskazywać na jego stan techniczny oraz potrzebne naprawy.

Pytanie 15

Zainstalowanie wtryskiwaczy w dolotowym kolektorze silnika ma miejsce w systemie zasilania

A. wtryskowym z układem bezpośrednim
B. wtryskowym z wtryskiem pośrednim
C. gaźnikowym
D. wtryskowym jednopunktowym
Odpowiedzi związane z wtryskiem jednopunktowym, bezpośrednim oraz gaźnikowym nie oddają rzeczywistego funkcjonowania systemów zasilania w silnikach. Wtrysk jednopunktowy, w przeciwieństwie do wtrysku pośredniego, polega na dostarczaniu paliwa do kolektora dolotowego jedynie w jednym punkcie, co skutkuje gorszym wymieszaniem paliwa z powietrzem. Taki system może prowadzić do nierównomiernej dawki paliwa, co negatywnie wpływa na osiągi silnika oraz podnosi emisję spalin. Wtrysk bezpośredni natomiast, mimo że dostarcza paliwo bezpośrednio do komory spalania, nie wykorzystuje kolektora dolotowego do mieszania paliwa, co może prowadzić do problemów z efektywnością spalania w niskich obrotach. Z kolei gaźnikowy system zasilania był popularny w przeszłości, jednak ze względu na swoją skomplikowaną konstrukcję i ograniczoną precyzję w dozowaniu paliwa, został w dużej mierze wyparty przez nowoczesne układy wtryskowe. Wszystkie te układy mają swoje ograniczenia, które powodują, że nie są one w stanie dostarczyć takiej samej jakości mieszanki jak wtrysk pośredni, co przekłada się na gorsze osiągi silnika i wyższe zużycie paliwa.

Pytanie 16

W hydraulicznej instalacji sterowania sprzęgłem znajduje się

A. płyn hamulcowy
B. olej silnikowy
C. płyn R134a
D. olej ATF 220
Wybór oleju silnikowego jako medium w hydraulicznych układach sterowania sprzęgłem jest błędny z kilku powodów. Po pierwsze, olej silnikowy nie spełnia wymagań dotyczących właściwości fizycznych i chemicznych, które są niezbędne w hydraulice. Posiada on inne charakterystyki lepkości, co może prowadzić do niewłaściwego działania układu i obniżenia efektywności przekazywania siły. Na przykład, przy niskich temperaturach olej silnikowy może gęstnieć, co skutkuje opóźnieniem w reakcji układu, a w skrajnych przypadkach może prowadzić do zacięcia się. Ponadto, olej silnikowy nie wykazuje odporności na wysoką temperaturę i może szybko ulegać degradacji. W kontekście płynu R134a, którym jest czynnik chłodniczy używany w układach klimatyzacji, jego zastosowanie w hydraulice sprzęgła jest całkowicie nieadekwatne. R134a nie jest płynem, który mógłby przenosić siłę mechaniczną. Dlatego wybór tego płynu prowadzi do niewłaściwego działania układu. Wreszcie, olej ATF 220, przeznaczony do przekładni automatycznych, również nie jest odpowiedni. Choć posiada lepsze właściwości niż olej silnikowy, jest zaprojektowany z myślą o zupełnie innych zastosowaniach, co czyni go niewłaściwym wyborem w systemach hydraulicznych sprzęgła. W przypadku układów hydraulicznych, kluczowe jest stosowanie płynów, które są zgodne z normami i standardami, zapewniającymi ich optymalne działanie.

Pytanie 17

Dostosowanie współpracujących ze sobą w parze elementów samochodowych do wymiarów naprawczych polega na

A. obróbce obu elementów na nowe wymiary i przywróceniu każdemu z nich odpowiedniego pasowania
B. wymianie obu elementów na nowe o większych rozmiarach i kształtach
C. obróbce jednego elementu na wymiar nominalny, a drugiego na wymiar naprawczy
D. wymianie jednego elementu na nowy o wymiarze naprawczym i obróbce drugiego na odpowiedni wymiar i kształt
Wybór wymiany obu części na nowe o zwiększonych rozmiarach i kształtach jest nieefektywnym podejściem, które nie uwzględnia zasady właściwego doboru komponentów w systemie mechanicznym. Zwiększenie rozmiarów części może doprowadzić do niezgodności z innymi elementami układu, co w efekcie może prowadzić do poważnych awarii i problemów z funkcjonowaniem pojazdu. Zastosowanie nowych części o zmienionych wymiarach i kształtach może skutkować problemami z montażem, ponieważ istniejące tolerancje oraz pasowania nie będą już odpowiednie. W przypadku obróbki jednej części na wymiar nominalny, a drugiej na wymiar naprawczy, również pojawia się ryzyko, że nie zostanie osiągnięte właściwe dopasowanie, co jest kluczowe w mechanice. Dobór wymiarów nominalnych i naprawczych musi być przeprowadzony zgodnie z dokładnymi specyfikacjami i zaleceniami producenta, aby zapobiec problemom z wydajnością oraz żywotnością podzespołów. Ponadto, wymiana jednej części na nową o wymiarze naprawczym i obróbka drugiej na odpowiedni wymiar i kształt są bardziej efektywne ekonomicznie oraz technologicznie, co pozwala na optymalne wykorzystanie istniejących zasobów i minimalizację kosztów. W rzeczywistości, stosowanie właściwych metod naprawy zgodnych z zasadami inżynierii ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pojazdów.

Pytanie 18

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. masy elektrolitu
B. lepkości elektrolitu
C. objętości elektrolitu
D. gęstości elektrolitu
Gęstość elektrolitu jest kluczowym wskaźnikiem stanu naładowania akumulatora, ponieważ zmienia się w zależności od stężenia kwasu siarkowego w roztworze. W miarę naładowania akumulatora gęstość elektrolitu wzrasta, co można zmierzyć za pomocą areometru. Przykładem praktycznego zastosowania tej metody jest regularne sprawdzanie stanu naładowania w akumulatorach kwasowo-ołowiowych, które są powszechnie stosowane w pojazdach. Zgodnie z normami branżowymi, takich jak SAE J537, pomiar gęstości elektrolitu powinien być przeprowadzany, aby zapewnić odpowiednią konserwację i zapobiec uszkodzeniom akumulatora. Wartości gęstości elektrolitu mogą również różnić się w zależności od temperatury, dlatego istotne jest, aby pomiary były wykonywane w warunkach znormalizowanej temperatury, co pozwala na dokładniejszą ocenę stanu naładowania. Znajomość i umiejętność interpretacji gęstości elektrolitu są niezbędne dla każdej osoby zajmującej się obsługą techniczną akumulatorów.

Pytanie 19

Jaka będzie łączna kwota za wymianę czujników prędkości obrotowej kół na osi przedniej, jeśli nowy czujnik kosztuje 155,00 zł brutto, a czas wymagany na przeprowadzenie tej naprawy to 1,1 rbh dla jednego koła? Koszt jednej roboczogodziny to 125,00 zł brutto.

A. 447,50 zł
B. 585,00 zł
C. 430,00 zł
D. 292,50 zł
Koszt wymiany czujników prędkości obrotowej w przednich kołach to 585,00 zł. Można to obliczyć dosyć prosto. Najpierw, każdy czujnik kosztuje 155,00 zł, a wymieniamy ich dwa, więc 155 zł razy 2 daje nam 310,00 zł. Potem trzeba doliczyć robociznę. Wymiana czujnika dla jednego koła zajmuje 1,1 godziny, więc na dwa koła to będzie 1,1 rbh razy 2, co daje 2,2 rbh. Koszt godziny pracy to 125,00 zł, więc robocizna wynosi 2,2 razy 125 zł, co daje 275,00 zł. Jak to wszystko zsumujemy: 310,00 zł za czujniki i 275,00 zł za robociznę to mamy 585,00 zł. Zrozumienie tych kosztów jest ważne, zwłaszcza jak się zarządza budżetem w serwisie samochodowym. Dobre kalkulacje pomagają dowiedzieć się, czy usługi są opłacalne.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W dokumencie odbioru, sporządzanym w momencie przyjęcia pojazdu do serwisu, powinny być zawarte informacje dotyczące

A. masy całkowitej pojazdu
B. widocznych uszkodzeń nadwozia pojazdu
C. liczby osi pojazdu
D. daty ważności ubezpieczenia pojazdu
Widoczne uszkodzenia nadwozia pojazdu są kluczowym elementem protokołu zdawczo-odbiorczego, ponieważ dokument ten ma na celu dokładne udokumentowanie stanu technicznego pojazdu w momencie jego przyjęcia do naprawy. Właściwe odnotowanie wszelkich uszkodzeń pozwala na późniejsze rozstrzyganie ewentualnych sporów dotyczących zakresu napraw, zarówno pomiędzy klientem a warsztatem, jak i w kontekście roszczeń ubezpieczeniowych. Na przykład, jeżeli pojazd przychodzi do warsztatu z widocznymi wgnieceniami czy rysami, ich szczegółowe opisanie w protokole umożliwia warsztatowi precyzyjne określenie zakresu prac oraz oszacowanie kosztów. Dodatkowo, w branży motoryzacyjnej standardy jakości, takie jak ISO 9001, podkreślają znaczenie dokładnej dokumentacji w procesach zarządzania jakością. Dlatego tak istotne jest, aby każdy pojazd był starannie sprawdzany i dokumentowany przez wykwalifikowany personel przed rozpoczęciem jakichkolwiek prac naprawczych.

Pytanie 23

W celu pielęgnacji powłok lakierniczych karoserii samochodowej zaleca się użycie środków opartych na

A. olejach pochodzenia naftowego
B. alkoholu
C. woskach
D. olejach mineralnych
Preparaty na bazie wosków są najczęściej stosowane do konserwacji powłok lakierniczych nadwozi samochodowych ze względu na swoje właściwości ochronne i estetyczne. Woski, zarówno naturalne, jak i syntetyczne, tworzą na powierzchni lakieru warstwę ochronną, która zabezpiecza go przed działaniem czynników atmosferycznych, takich jak promieniowanie UV, woda, oraz zanieczyszczenia środowiskowe. Dzięki temu lakier dłużej zachowuje swoje właściwości estetyczne, a pojazd wygląda na zadbany. Przykładem zastosowania wosków mogą być regularne zabiegi pielęgnacyjne, które wykonuje się co kilka miesięcy, aby utrzymać samochód w odpowiednim stanie. Wosk tworzy również efekt hydrofobowy, co oznacza, że woda spływa z powierzchni, co minimalizuje ryzyko powstawania zarysowań i osadzania się brudu. W branży samochodowej preferowane są woski twarde, które zapewniają większą trwałość i odporność na ścieranie. Stosowanie produktów na bazie wosków jest zgodne z dobrymi praktykami w pielęgnacji lakierów.

Pytanie 24

Z jakich elementów składa się system napędowy pojazdu?

A. Układ kierowniczy, skrzynia biegów, wał napędowy, tylny most
B. Silnik, sprzęgło, skrzynia biegów
C. Silnik, wał napędowy, stabilizator
D. Skrzynia biegów, półosie napędowe, koła pojazdu
Zespół napędowy w samochodzie to naprawdę ważna sprawa, bo to właśnie on sprawia, że pojazd rusza z miejsca. W skład tego zespołu wchodzi silnik, sprzęgło i skrzynia biegów. Silnik to takie serce auta, które zamienia paliwo na moc. Sprzęgło z kolei pozwala nam na zmiany biegów – jest to kluczowe, gdy chcemy przyspieszyć lub zwolnić. A skrzynia biegów dopasowuje moc silnika do potrzeb jazdy, co sprawia, że możemy jechać z różnymi prędkościami. Przykładowo, w nowoczesnych autach automatyczne skrzynie biegów są super, bo kierowca nie musi się martwić o zmiany biegów, tylko może skupić się na drodze. Te elementy muszą być ze sobą dobrze zgrane, co jest istotne dla efektywności i bezpieczeństwa – w końcu każdy chce jeździć bezpiecznie i komfortowo.

Pytanie 25

W udzielaniu pierwszej pomocy osobie z poparzeniem, jak powinno się postąpić z miejscem oparzenia?

A. nałożyć tłuszcz na miejsce oparzenia
B. schłodzić za pomocą spirytusu
C. schłodzić czystą wodą
D. zabezpieczyć jałowym opatrunkiem
Schłodzenie oparzonego miejsca czystą wodą jest najskuteczniejszą metodą pierwszej pomocy w przypadku oparzeń. Woda powinna być letnia, a nie lodowata, aby uniknąć szoku termicznego. Schładzanie miejsca oparzenia przez co najmniej 10-20 minut pomaga zmniejszyć ból, obrzęk oraz ogranicza głębokość uszkodzenia tkanek. Warto pamiętać, że nie należy stosować lodu ani zimnej wody, ponieważ może to pogorszyć uszkodzenia. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz innych organizacji medycznych, kluczowym krokiem w przypadku oparzeń jest szybkie usunięcie źródła ciepła oraz schłodzenie zranionego miejsca. Należy unikać stosowania tłuszczy, olejów czy spirytusu, ponieważ te substancje mogą prowadzić do dodatkowych podrażnień oraz zwiększać ryzyko infekcji. Po schłodzeniu, miejsce oparzenia warto przykryć jałowym opatrunkiem, co zminimalizuje ryzyko zakażeń. W sytuacjach poważniejszych, lub gdy oparzenie obejmuje dużą powierzchnię ciała, należy natychmiast wezwać pomoc medyczną.

Pytanie 26

Jakiego materiału używa się do produkcji zbiorniczka wyrównawczego dla płynu hamulcowego?

A. żeliwo
B. stop aluminium
C. tworzywo sztuczne
D. szkło
Zbiorniczki wyrównawcze płynu hamulcowego są zazwyczaj wykonane z tworzyw sztucznych, takich jak polipropylen czy poliwęglan. Materiały te charakteryzują się wysoką odpornością na działanie chemikaliów, co jest istotne, biorąc pod uwagę właściwości płynów hamulcowych, które mogą być agresywne. Tworzywa sztuczne są również lekkie, co przyczynia się do zmniejszenia masy pojazdu oraz poprawy efektywności paliwowej. Ponadto, proces produkcji komponentów z tworzyw sztucznych jest bardziej ekonomiczny i pozwala na łatwiejsze formowanie skomplikowanych kształtów, co jest kluczowe w przypadku projektowania zbiorniczków. Użycie tworzyw sztucznych w branży motoryzacyjnej jest zgodne z normami i dobrymi praktykami, co przyczynia się do zwiększenia trwałości i niezawodności układów hamulcowych. Warto również zauważyć, że nowoczesne technologie umożliwiają recykling tych materiałów, co wpisuje się w trend zrównoważonego rozwoju w przemyśle motoryzacyjnym.

Pytanie 27

Ile dm3 powietrza potrzeba do całkowitego spalenia 1 kg benzyny?

A. 14,7 m3 powietrza
B. 14,7 kg powietrza
C. 14,7 mm powietrza
D. 14,7 dm3 powietrza
Poprawna odpowiedź to 14,7 kg powietrza, ponieważ do całkowitego spalenia 1 kg benzyny potrzebna jest odpowiednia ilość tlenu, który jest dostarczany przez powietrze. Benzyna (C8H18) spala się w tlenie, a reakcja spalenia wymaga około 14,7 kg powietrza na każdy kilogram benzyny, co odpowiada stechiometrycznemu obliczeniu proporcji. W praktyce oznacza to, że w warunkach standardowych, gdzie powietrze składa się z około 21% tlenu, potrzebna ilość powietrza jest znacznie większa niż ilość tlenu. Przykładowo, silniki spalinowe, które wykorzystują benzynę, muszą być odpowiednio dostrojone, aby zapewnić optymalne spalanie, co wpływa na emisje spalin i wydajność energetyczną. Zrozumienie tego procesu jest kluczowe w przemyśle motoryzacyjnym oraz w projektowaniu systemów grzewczych, gdzie wydajność spalania ma bezpośredni wpływ na zużycie paliwa oraz emisję zanieczyszczeń. Wiedza ta jest również istotna w kontekście ochrony środowiska oraz regulacji dotyczących emisji gazów cieplarnianych.

Pytanie 28

Luz zaworów w silniku powinno się kontrolować

A. w temperaturze silnika wynoszącej 95°C
B. w temperaturze silnika 70°C
C. po demontażu głowicy silnika
D. w temperaturze silnika według wskazówek producenta
Kontrola luzu zaworów w silniku ma kluczowe znaczenie dla prawidłowego funkcjonowania jednostki napędowej. Przeprowadzanie tej operacji przy temperaturze silnika zgodnej z zaleceniami producenta jest kluczowe, ponieważ różne materiały silnikowe mają różne współczynniki rozszerzalności cieplnej. W wyniku podgrzewania silnika, metalowe części rozszerzają się, co ma wpływ na luz zaworowy. Właściwe ustawienie luzu zaworowego zapewnia odpowiednią wydajność silnika, wpływa na jego moc oraz oszczędność paliwa. Na przykład, w przypadku silników spalinowych, niewłaściwy luz może prowadzić do zjawiska znanego jako „palenie zaworów”, które może skutkować kosztownymi naprawami. W związku z tym, bardzo ważne jest, aby zawsze odnosić się do specyfikacji producenta, które dostarczają szczegółowych informacji na temat optymalnych warunków przeprowadzania tej procedury. W praktyce, mechanicznym standardem jest przeprowadzanie kontroli luzu zaworowego po schłodzeniu silnika, a jeśli zachodzi potrzeba, to po jego nagrzaniu do określonej temperatury, co powinno być zgodne z instrukcją dostarczoną przez producenta pojazdu.

Pytanie 29

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. centralnym systemem blokady drzwi
B. układem wtryskowo-zapłonowym
C. skrzynką biegów
D. układem przeciwpoślizgowym
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 30

Usterka, której kod zaczyna się na literę B, odnosi się do komponentu

A. podwozia
B. układu napędowego
C. systemu komunikacyjnego
D. nadwozia
Odpowiedzi dotyczące takich rzeczy jak układ napędowy, podwozie czy system komunikacji to nie jest to, co szukamy, bo nie dotyczą one właściwego przypisania kodów usterek do nadwozia. Układ napędowy, który obejmuje silnik i skrzynie biegów, zajmuje się tylko przenoszeniem mocy, a to nie ma nic wspólnego z nadwoziem, które zaczyna się na B. Podwozie, które łyka nadwozie z układem napędowym, też nie odnosi się do typowych usterek takich jak wgniecenia czy uszkodzenia wizualne. Ważne, żeby zrozumieć, że kod usterek musimy analizować w kontekście struktury pojazdu i jego funkcji, bo to kluczowe w diagnostyce. A system komunikacyjny, to w ogóle inna bajka, bo dotyczy wymiany danych między różnymi elementami auta, więc nie ma związku z problemami nadwozia. Potknięcia w logicznym myśleniu mogą prowadzić do błędnych wniosków, jakoby każdy element pojazdu miał podobny system kodowania, co jest sporym błędem. Każdy podzespół ma swoje unikalne kody, a to jest niezbędne do skutecznego diagnozowania i napraw, dlatego tak ważna jest wiedza o ich klasach.

Pytanie 31

Klient zgłosił pojazd do serwisu z uszkodzonym systemem wydechowym. Pracownik serwisu określił potrzebę wymiany komponentów: kolektora wydechowego za 290 zł oraz tylnego tłumika wydechowego za 150 zł. Czas niezbędny do przeprowadzenia naprawy wynosi 240 minut, a stawka za roboczogodzinę to 80 zł. Jakie będą łączne koszty naprawy?

A. 440 zł
B. 632 zł
C. 760 zł
D. 520 zł
Całkowity koszt naprawy pojazdu można obliczyć, sumując koszty części oraz robocizny. Koszty części to suma kolektora wydechowego (290 zł) i tylnego tłumika wydechowego (150 zł), co daje 440 zł. Następnie należy obliczyć koszt robocizny. Czas wykonania naprawy wynosi 240 minut, co odpowiada 4 godzinom (240 minut ÷ 60 minut/godzinę). Przy stawce za roboczogodzinę wynoszącej 80 zł, koszt robocizny wyniesie 4 godziny × 80 zł/godzinę = 320 zł. Zatem całkowity koszt naprawy to 440 zł (części) + 320 zł (robocizna) = 760 zł. Przykładem zastosowania tej wiedzy może być sytuacja, w której warsztat serwisowy musi rzetelnie przedstawiać klientom wyceny napraw, uwzględniając zarówno koszty materiałów, jak i robocizny, zgodnie z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 32

Suwmiarka, która służy do pomiaru zębów kół w pompach olejowych, nosi nazwę suwmiarka

A. modułowa
B. elektroniczna
C. uniwersalna
D. noniuszowa
Suwmiarka modułowa jest narzędziem pomiarowym, które jest idealnie przystosowane do precyzyjnego pomiaru zębów kół pompy olejowej. Jej konstrukcja umożliwia pomiar w różnych miejscach z dużą dokładnością, co jest kluczowe w przypadku komponentów silnikowych i hydraulicznych. Suwmiarki modułowe charakteryzują się wymiennymi końcówkami pomiarowymi, co pozwala na dostosowanie narzędzia do specyficznych wymagań pomiarowych. Dzięki temu można dokładnie zmierzyć zarówno wysokość zębów, jak i ich szerokość. W praktyce, przy pomiarach kół zębatych, ważne jest, aby uzyskane wyniki były zgodne z normami PN-EN ISO, które określają wymogi dotyczące precyzji pomiarów w inżynierii mechanicznej. Suwmiarka modułowa jest również często stosowana w warsztatach mechanicznych oraz w przemyśle, gdzie kontrola jakości komponentów jest niezbędna do zapewnienia ich prawidłowego funkcjonowania.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. komory spalania do objętości całkowitej cylindra
B. skokowej do objętości całkowitej cylindra
C. całkowitej cylindra do objętości skokowej
D. całkowitej cylindra do objętości komory spalania
Wszystkie niepoprawne odpowiedzi opierają się na nieprecyzyjnych definicjach związanych z objętościami stosowanymi do obliczeń stopnia sprężania w silnikach spalinowych. Stwierdzenie, że stopień sprężania to stosunek objętości całkowitej cylindra do objętości skokowej, jest błędne, ponieważ objętość skokowa odnosi się do objętości, jaką tłok przemieszcza w czasie swojego ruchu, a nie do objętości komory spalania. Komora spalania to przestrzeń, w której zachodzi proces spalania mieszanki paliwowo-powietrznej, a nie objętość skokowa, która dotyczy ruchu tłoka. Podobnie, stwierdzenie o stosunku komory spalania do objętości całkowitej cylindra nie oddaje prawidłowego znaczenia stopnia sprężania, ponieważ to właśnie objętość całkowita cylindra, a nie komora spalania, powinna być w mianowniku tego stosunku. Kolejna nieprawidłowa koncepcja to pojęcie odwrotności objętości całkowitej cylindra do objętości skokowej, co jest mylące, ponieważ nie uwzględnia podstawowego znaczenia komory spalania w procesie sprężania. Właściwe zrozumienie tych pojęć jest niezbędne dla prawidłowej analizy działania silników spalinowych oraz ich parametrów, a błędne interpretacje mogą prowadzić do nieefektywnego projektowania silników oraz zwiększonego zużycia paliwa, co jest sprzeczne z nowoczesnymi standardami wydajności energetycznej.

Pytanie 35

Aby określić stopień zużycia oleju silnikowego, należy przeprowadzić pomiar

A. multimetrem
B. refraktometrem
C. pirometrem
D. wiskozymetrem
Pomiar zużycia oleju silnikowego nie może być skutecznie dokonany przy użyciu pirometru, refraktometru ani multimetru, ponieważ te urządzenia zostały zaprojektowane do zupełnie innych zastosowań. Pirometr, na przykład, jest urządzeniem służącym do pomiaru temperatury obiektów na odległość, co nie ma żadnego związku z określaniem właściwości oleju. Użycie pirometru w tym kontekście prowadzi do błędnych wniosków, jako że temperatura sama w sobie nie jest wskaźnikiem stanu oleju. Refraktometr mierzy współczynnik załamania światła, co jest przydatne w analizie cieczy, ale nie dostarcza informacji o lepkości oleju, która jest kluczowa dla określenia jego przydatności do dalszego użytku. Natomiast multimetr, używany głównie do pomiaru napięcia, natężenia i oporu, także nie ma zastosowania w ocenie stanu oleju. Niezrozumienie specyfiki tych narzędzi oraz ich właściwego zastosowania w kontekście diagnostyki olejów silnikowych może prowadzić do nieefektywnej konserwacji i potencjalnych uszkodzeń silnika. Dlatego kluczowe jest użycie odpowiedniego sprzętu, takiego jak wiskozymetr, aby uzyskać miarodajny wynik i podjąć decyzje dotyczące serwisowania silnika.

Pytanie 36

Optymalny poziom płynu chłodzącego w zbiorniku wyrównawczym powinien

A. być poniżej dna zbiornika.
B. znajdować się pomiędzy poziomami oznaczającymi minimum i maksimum.
C. przekraczać poziom maksymalny.
D. być poniżej poziomu minimalnego.
Prawidłowy poziom cieczy chłodzącej w zbiorniku wyrównawczym powinien znajdować się pomiędzy kreskami oznaczającymi minimum i maksimum, ponieważ to zapewnia optymalne działanie systemu chłodzenia silnika. Utrzymanie odpowiedniego poziomu cieczy jest kluczowe dla efektywności chłodzenia, co wpływa na prawidłowe funkcjonowanie silnika oraz zapobiega przegrzewaniu. Jeśli poziom cieczy będzie poniżej minimum, może to prowadzić do zjawiska 'wrzenia' płynu chłodzącego, a w konsekwencji do uszkodzenia silnika. Z drugiej strony, zbyt wysoki poziom cieczy może powodować nadmiar ciśnienia w układzie, co również jest niebezpieczne. Przykładowo, w samochodach osobowych, producenci zalecają regularne sprawdzanie poziomu płynu chłodzącego, szczególnie przed dłuższymi trasami. Dobre praktyki sugerują, aby sprawdzać poziom cieczy co najmniej raz w miesiącu oraz pamiętać o sezonowej wymianie płynu chłodzącego zgodnie z zaleceniami producenta pojazdu, co przyczynia się do wydłużenia żywotności silnika.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Po wymianie dolnego przedniego wahacza zawieszenia w samochodzie osobowym konieczne jest sprawdzenie

A. oporów toczenia
B. sił tłumienia
C. geometrii kół
D. sił hamowania
Odpowiedź dotycząca geometrii kół jest prawidłowa, ponieważ po wymianie przedniego dolnego wahacza niezbędne jest przeprowadzenie kontroli geometrii zawieszenia. Wahacz jest kluczowym elementem, który wpływa na ustawienie kół względem siebie oraz względem podłoża. W przypadku jego wymiany, zmiany w położeniu kół mogą prowadzić do nieprawidłowego ustawienia zbieżności i kątów nachylenia kół, co wpływa na stabilność pojazdu, jego prowadzenie oraz zużycie opon. Zgodnie z zaleceniami producentów oraz standardami branżowymi, po każdej takiej naprawie zaleca się wykonanie pomiarów geometrii kół, aby zapewnić optymalne zachowanie się pojazdu na drodze. Nieprawidłowe ustawienia mogą prowadzić do przyspieszonego zużycia opon, a także wpływać na komfort jazdy oraz bezpieczeństwo. Dlatego zaleca się korzystanie z profesjonalnych usług serwisowych, które dysponują odpowiednim sprzętem do pomiaru i regulacji geometrii kół.

Pytanie 39

Który składnik występuje w największej ilości w spalinach z silników ZI oraz ZS?

A. Węglowodorów
B. Tlenu
C. Dwutlenku węgla
D. Azotu
Azot jest najliczniejszym składnikiem spalin silników ZI (zapłon iskrowy) oraz ZS (zapłon samoczynny), a jego obecność wynika głównie z powietrza, które jest niezbędne do spalania paliwa. Powietrze składa się w około 78% z azotu, co oznacza, że podczas procesu spalania, mimo że azot nie uczestniczy aktywnie w reakcjach chemicznych, zostaje wydalony do atmosfery w dużych ilościach. W praktyce oznacza to, że podczas eksploatacji silników, na przykład w pojazdach czy maszynach przemysłowych, azot w spalinach jest nie tylko dominującym składnikiem, ale również ma wpływ na procesy emisji zanieczyszczeń. Zrozumienie tej kwestii jest istotne w kontekście regulacji dotyczących emisji spalin oraz opracowywania technologii redukcji zanieczyszczeń, takich jak systemy selektywnej redukcji katalitycznej (SCR), które mogą redukować inne uciążliwe składniki, ale azot pozostaje w spalinach w znaczącej ilości. Dodatkowo, azot ma zastosowanie w różnych procesach przemysłowych, gdzie służy jako gaz obojętny, co podkreśla jego szeroką obecność i znaczenie w różnych dziedzinach.

Pytanie 40

Głównym celem smaru używanego w piastach kół tylnych jest przede wszystkim

A. utrzymanie w dobrym stanie elementów piasty
B. odprowadzanie nadmiaru ciepła
C. uzupełnienie wolnych przestrzeni
D. zmniejszenie współczynnika tarcia
Smar w piastach kół tylnych odgrywa kluczową rolę w zmniejszaniu współczynnika tarcia, co jest niezwykle istotne dla zapewnienia płynności ruchu oraz wydajności układu. Gdy elementy mechaniczne poruszają się względem siebie, generują tarcie, które może prowadzić do zużycia komponentów oraz obniżenia efektywności energetycznej. Zastosowanie odpowiedniego smaru, który ma niską lepkość, pozwala na zmniejszenie tego tarcia, co z kolei przekłada się na lepsze osiągi pojazdu. Przykładem może być zastosowanie smarów litowych w piastach, które nie tylko redukują tarcie, ale także chronią przed korozją oraz zanieczyszczeniami. W branży motoryzacyjnej stosuje się także smary zgodne z normami ASTM i ISO, co zapewnia ich wysoką jakość i efektywność. Oprócz zapewnienia efektywności mechanicznej, zmniejszenie tarcia wpływa także na oszczędność paliwa, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju i ochrony środowiska. Dlatego właściwy dobór smaru oraz jego regularna wymiana są kluczowe dla długowieczności i bezawaryjności układów napędowych.