Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 kwietnia 2025 12:08
  • Data zakończenia: 25 kwietnia 2025 12:22

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Bezpośrednich
B. Złożonych
C. Pośrednich
D. Uwikłanych
Pomiar długości nagwintowanego odcinka śruby nie może być klasyfikowany jako złożony, uwikłany ani pośredni. Pojęcia te odnoszą się do różnych metod pomiarowych, które obejmują bardziej skomplikowane procesy lub obliczenia. Złożone pomiary wymagają zastosowania kilku różnych narzędzi lub metod do uzyskania końcowego wyniku, co w przypadku bezpośredniego pomiaru długości nie ma miejsca. Uwikłane pomiary odnoszą się do sytuacji, gdzie wyniki są zależne od wielu czynników, co nie ma zastosowania w prostym pomiarze długości. Natomiast pomiary pośrednie polegają na obliczaniu jednego wymiaru na podstawie innych wymiarów, co również nie dotyczy pomiaru bezpośredniego, gdzie mierzona wartość uzyskiwana jest natychmiast. Osiągając niewłaściwą odpowiedź, można wpaść w pułapkę myślową, zakładając, że każdy pomiar, który wymaga użycia narzędzi, musi być złożony lub pośredni. W rzeczywistości prostota pomiaru bezpośredniego w kontekście narzędzi i metod jest kluczowa dla zapewnienia efektywności i dokładności w procesach inżynieryjnych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. iskra prowadząca do pożaru lub wybuchu
B. nadmierny hałas generowany przez pracujące urządzenia
C. odłamki rozrywanych maszyn
D. przenoszenie wibracji na pracownika
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. rozdzielenie folią aluminiową
B. pokrycie klejem
C. rozdzielenie papierem
D. pokrycie pastą termoprzewodzącą
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 7

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. zwiększeniem prędkości obrotowej
B. spadkiem reaktancji uzwojeń
C. wzrostem reaktancji uzwojeń
D. zmniejszeniem prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Silnika.
B. Sterownika PLC.
C. Falownika.
D. Czujnika optycznego.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 75 obr/min
B. 750 obr/min
C. 7500 obr/min
D. 7 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 14

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Zwiększa prąd
B. Dodaje napięcia
C. Wytwarza sygnały sinusoidalne
D. Izoluje galwanicznie sygnały
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W wyniku działania strumienia wysoko ciśnieniowego dwutlenku węgla na rękę pracownika doszło do odmrożenia drugiego stopnia (zaczerwienienie skóry i pojawienie się pęcherzy). Jakie działania należy podjąć, udzielając pierwszej pomocy?

A. należy polać dłoń wodą utlenioną oraz wykonać opatrunek
B. należy zdjąć biżuterię z palców poszkodowanego, rozgrzać dłoń i nałożyć jałowy opatrunek
C. należy podać leki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. należy posmarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
Odpowiedź, która nakazuje zdjęcie biżuterii z palców poszkodowanego, rozgrzanie dłoni oraz nałożenie jałowego opatrunku, jest zgodna z dobrą praktyką udzielania pierwszej pomocy w przypadku odmrożeń. Usunięcie biżuterii jest kluczowe, ponieważ obrzęk dłoni może spowodować ucisk na palce, co zwiększa ryzyko uszkodzenia tkanek. Rozgrzewanie dłoni powinno odbywać się w delikatny sposób, na przykład przez owinięcie jej w ciepłą chustę lub umieszczenie w ciepłej wodzie, co pomoże w stopniowym przywracaniu krążenia. Nałożenie jałowego opatrunku chroni ranę przed zakażeniem oraz utrzymuje odpowiednią wilgotność, co wspomaga proces gojenia. Warto również pamiętać, że podawanie leków przeciwbólowych może być korzystne, jednak w przypadku poważnych obrażeń najlepiej jest zapewnić szybki transport do placówki medycznej, gdzie pacjent otrzyma odpowiednią opiekę. Działania te są zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takimi jak Czerwony Krzyż, które zalecają natychmiastowe i adekwatne działania w sytuacjach medycznych.

Pytanie 19

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. korbowe
B. śrubowe toczne
C. jarzmowe
D. cierne pośrednie
Wybór odpowiedzi związanych z przekładniami korbowymi, jarzmowymi oraz ciernymi pośrednimi wskazuje na pewne nieporozumienia dotyczące mechanizmów stosowanych w tokarkach CNC. Przekładnie korbowe, choć używane w niektórych maszynach, nie są odpowiednie do precyzyjnego ruchu posuwowego, ponieważ charakteryzują się większymi luzami i mniejszą powtarzalnością, co prowadzi do niedokładności w obróbce. Z kolei przekładnie jarzmowe są zazwyczaj stosowane w mechanizmach przekształcających ruch obrotowy w ruch liniowy, ale ich skomplikowana budowa i większe opory tarcia sprawiają, że nie są one efektywne w kontekście tokarek CNC, gdzie kluczowa jest szybkość i dokładność. Przekładnie cierne pośrednie, choć mogą być stosowane w różnych aplikacjach, nie oferują odpowiedniego poziomu precyzji wymaganej w obróbce skrawaniem. Wymagane parametry obróbcze, takie jak dokładność wymiarowa, są trudne do osiągnięcia przy użyciu tych mechanizmów, co może prowadzić do błędów i odchyleń w finalnym produkcie. Kluczowym aspektem jest to, że w technice CNC, każdy ruch musi być ściśle kontrolowany, a wybór odpowiednich mechanizmów jest niezbędny do zapewnienia wysokiej jakości produkcji. Wybór niewłaściwego typu przekładni może prowadzić do zwiększonej awaryjności maszyn oraz wyższych kosztów eksploatacji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20

A. 3 urządzenia.
B. 4 urządzenia.
C. 2 urządzenia.
D. 1 urządzenie.
Wybór niewłaściwej odpowiedzi może wynikać z błędnego zrozumienia liczby dostępnych interfejsów w module CSM 1277. Istnieje mylne przekonanie, że wszystkie 4 interfejsy są dostępne do podłączenia urządzeń, co prowadzi do wniosków, że można podłączyć np. 4 lub 2 urządzenia. To podejście ignoruje kluczowy fakt, że jeden interfejs jest zarezerwowany dla połączenia z sterownikiem. Zatem, w przypadku wyboru odpowiedzi wskazującej na większą liczbę urządzeń, np. 4, użytkownik pomija fundamentalną zasadę dotycząca alokacji zasobów w sieciach. Warto również zauważyć, że niektóre odpowiedzi, takie jak 1 urządzenie, wskazują na zbyt restrykcyjne podejście do zasobów dostępnych w module. Dobrą praktyką jest zawsze mieć na uwadze, ile interfejsów jest faktycznie dostępnych po uwzględnieniu połączeń z innymi urządzeniami. Na przykład w sytuacjach, gdzie zasoby sieciowe są ograniczone, projektanci muszą podejmować decyzje oparte na rzeczywistej dostępności portów, aby uniknąć problemów z komunikacją oraz przeładowaniem sieci. W związku z tym, kluczowe jest nie tylko zapoznanie się z parametrami technicznymi, ale także zrozumienie zasad działania sieci i ich struktury. Tylko w ten sposób można skutecznie projektować i wdrażać systemy, które będą funkcjonowały zgodnie z oczekiwaniami i wymaganiami branżowymi.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie parametry mierzy prądnica tachometryczna?

A. prędkość obrotową
B. naprężenia mechaniczne
C. prędkość liniową
D. napięcie elektryczne
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką metodę pomiaru prędkości obrotowej powinno się zastosować do uwzględnienia ustalonej prędkości małego obiektu, gdy przerwanie procesu produkcyjnego jest niemożliwe, a miejsce pomiaru jest trudno dostępne?

A. Stroboskopową
B. Elektromagnetyczną
C. Optyczną
D. Mechaniczną
Metoda pomiaru prędkości obrotowej za pomocą stroboskopu jest idealnym wyborem w sytuacjach, gdy zachowanie ciągłości procesu produkcji jest kluczowe, a dostęp do miejsca pomiaru jest ograniczony. Stroboskopy działają na zasadzie emitowania błysków światła o określonym interwale czasowym, co pozwala na 'zamrożenie' ruchu obiektu i jego obserwację w czasie rzeczywistym. Taki sposób pomiaru jest nieinwazyjny, co oznacza, że nie zakłóca pracy urządzenia ani nie wymaga jego zatrzymywania. W praktyce stroboskopy wykorzystywane są w różnych gałęziach przemysłu, np. w produkcji, gdzie monitorowanie prędkości obrotowej silników jest kluczowe dla zachowania normatywnych wartości pracy maszyn. Zgodnie z normą ISO 10816, regularne kontrolowanie parametrów pracy maszyn pozwala na identyfikację potencjalnych problemów, co jest niezwykle istotne dla utrzymania efektywności i bezpieczeństwa produkcji. Stroboskopy są zatem uniwersalnym narzędziem, które pozwala na precyzyjny pomiar prędkości obrotowej w trudnych warunkach operacyjnych.

Pytanie 29

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Zaciskarkę konektorów
B. Zaciskarkę tulejek
C. Klucz dynamometryczny
D. Klucz płaski
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zwiększenia lepkości oleju
B. zmniejszenia lepkości oleju
C. zmniejszenia objętości oleju
D. zwiększenia efektywności układu
Mówiąc krótko, jak ktoś myśli, że wzrost lepkości oleju jest w porządku, to się myli. W rzeczywistości, jak temperatura oleju rośnie, lepkość powinna maleć, a to jest coś, co niektórzy mogą mylić. Właśnie, oleje mineralne i syntetyczne działają na zasadzie, że ich lepkość jest odwrotnie proporcjonalna do temperatury. Jakby lepkość wzrosła, to opory wewnętrzne też by się zwiększyły, a to na pewno nie będzie dobrze działać na układ hydrauliczny. Co do objętości oleju, to jej zmiany niekoniecznie są związane z temperaturą. Właściwie mogą się dziać z innych powodów, jak na przykład nieszczelności. Współczesne układy hydrauliczne potrzebują odpowiednich parametrów pracy, bo inaczej mogą się zepsuć. Rozumienie fizyki płynów jest kluczowe, żeby układy hydrauliczne działały, więc warto znać zasady i właściwości olejów w tych systemach.

Pytanie 34

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Panel operatorski HMI
B. Sterownik PLC
C. Robot przemysłowy
D. Przekaźnik programowalny
Sterownik PLC, robot przemysłowy i przekaźnik programowalny to urządzenia, które pełnią różne funkcje w systemach automatyki, ale nie służą jako bezpośredni interfejs komunikacyjny pomiędzy operatorem a maszyną. Sterownik PLC (Programmable Logic Controller) jest używany do automatyzacji procesów i zarządzania urządzeniami w zakładach produkcyjnych. Jego główną rolą jest monitorowanie sygnałów wejściowych z czujników i wykonywanie odpowiednich działań na wyjściu, jednak nie jest zaprojektowany do bezpośredniego interakcji z operatorem. Robot przemysłowy z kolei wykonuje precyzyjnie zaprogramowane ruchy i operacje, ale również nie komunikuje się bezpośrednio z użytkownikiem w sposób interaktywny. Przekaźnik programowalny działa na zasadzie przełączania sygnałów elektrycznych, co czyni go przydatnym w prostych aplikacjach, ale również nie spełnia roli interfejsu operatora. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów mechatronicznych. Często mylnie zakłada się, że te urządzenia mogą pełnić rolę interfejsu, co prowadzi do nieefektywności w obsłudze i nadzoru nad procesami technologicznymi. Odpowiednie zastosowanie technologii HMI pozwala na lepsze zarządzanie systemami oraz poprawę wydajności pracy operatorów poprzez dostarczenie im narzędzi do efektywnej interakcji z maszynami.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 3 bar, pABS = 3 bar
B. pNAD = 1 bar, pABS = 2 bar
C. pNAD = 3 bar, pABS = 4 bar
D. pNAD = 2 bar, pABS = 1 bar
Wartości ciśnienia podane w niepoprawnych odpowiedziach wskazują na nieporozumienia dotyczące podstawowych zasad ciśnienia. Często zdarza się, że mylnie przyjmuje się, iż ciśnienie względne jest równe ciśnieniu absolutnemu, co prowadzi do błędnych obliczeń. Na przykład, odpowiedzi, które wskazują pNAD = 2 bar czy pNAD = 1 bar, ignorują podstawowy fakt, że ciśnienie względne dodaje się do ciśnienia atmosferycznego, a nie je zastępuje. W przypadku gdy pNAD wynosi 2 bary, ciśnienie absolutne wynosiłoby tylko 3 bary, co jest sprzeczne z danymi w pytaniu. Również koncepcja, w której pNAD = 3 bar i pABS = 3 bar, jest błędna, ponieważ ciśnienie absolutne nie może być niższe lub równe ciśnieniu nadciśnienia. W rzeczywistości, aby właściwie zrozumieć relacje między ciśnieniem względnym a ciśnieniem absolutnym, ważne jest, aby wiedzieć, że pABS zawsze musi być równe lub wyższe od pNAD, co wynika z definicji tych parametrów. W praktyce, w inżynierii mechanicznej i procesowej istotne jest zrozumienie i poprawne obliczanie tych ciśnień, aby zapewnić bezpieczeństwo oraz efektywność przy projektowaniu systemów, takich jak zbiorniki ciśnieniowe, które muszą spełniać odpowiednie normy, takie jak dyrektywa ciśnieniowa 2014/68/UE.