Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 24 maja 2025 15:42
  • Data zakończenia: 24 maja 2025 16:03

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wybór lokalizacji dla elektrowni wiatrowej wymaga analizy miejscowego planu zagospodarowania przestrzennego, który można znaleźć w

A. Urzędzie Wojewódzkim
B. Urzędzie Miasta (lub Gminy)
C. Starostwie Powiatowym
D. Urzędzie Marszałkowskim
Zrozumienie, gdzie można znaleźć miejscowy plan zagospodarowania przestrzennego, jest kluczowe dla prawidłowego planowania inwestycji, takich jak elektrownie wiatrowe. Wybór Starostwa Powiatowego jako instytucji odpowiedzialnej za ten dokument jest błędny, ponieważ Starostwo zajmuje się innymi aspektami administracyjnymi, takimi jak wydawanie pozwoleń budowlanych czy nadzór nad prawidłowością realizowanych inwestycji, ale nie prowadzi miejscowych planów zagospodarowania przestrzennego, które są kompetencją gmin. Przypisanie tej odpowiedzialności Urzędowi Marszałkowskiemu również jest niepoprawne, gdyż ta instytucja zajmuje się planowaniem regionalnym i strategią rozwoju województwa, a nie bezpośrednim zarządzaniem planami na poziomie lokalnym. Urząd Wojewódzki, podobnie jak Marszałkowski, ma bardziej ogólny zasięg działań i nie jest odpowiedzialny za lokalne regulacje dotyczące zagospodarowania przestrzennego. W każdym przypadku, niewłaściwe zrozumienie roli tych instytucji może prowadzić do opóźnień w projektowaniu i realizacji inwestycji, a także do nieefektywnego wykorzystania zasobów. Właściwe zidentyfikowanie źródeł informacji i ich funkcji jest kluczowe dla sukcesu projektów budowlanych i powinno być traktowane jako fundament każdej decyzji inwestycyjnej.

Pytanie 2

Największe ryzyko stłuczenia podczas transportu elementów systemu solarnego mają

A. pompy obiegowe
B. karbowane rury do łączenia kolektora z grupą pompową
C. czujniki temperatury
D. rury próżniowe
Rury próżniowe są elementem systemu solarnego, który odgrywa kluczową rolę w efektywności energetycznej instalacji. Ich delikatna konstrukcja, oparta na szkle, pozwala na utrzymanie próżni wewnętrznej, co znacząco zwiększa ich zdolność do absorpcji energii słonecznej. W praktyce, podczas transportu, rury te wymagają szczególnej ostrożności ze względu na ich kruchość. W standardach transportu i przechowywania elementów systemów solarnych zaleca się używanie specjalnych opakowań ochronnych oraz unikanie uderzeń i upadków, które mogłyby skutkować stłuczeniem. Dobre praktyki wskazują również na konieczność oznaczania miejsc, gdzie rury są transportowane, aby zmniejszyć ryzyko uszkodzeń. Podczas montażu systemów solarnych, ważne jest, aby technicy byli świadomi wrażliwości tych elementów i zachowywali odpowiednie środki ostrożności, co nie tylko zwiększa trwałość instalacji, ale również zapewnia jej efektywność w dłuższym okresie czasu.

Pytanie 3

Który typ kotła pozwala na odzyskanie ciepła z pary wodnej obecnej w spalinach?

A. Nadkrytyczny
B. Przepływowy
C. Kondensacyjny
D. Odzyskowy
Wybór innych typów kotłów w kontekście odzyskiwania ciepła pary wodnej może prowadzić do mylnych koncepcji dotyczących ich działania i zastosowania. Kocioł odzyskowy, choć również skierowany na poprawę efektywności, nie jest zaprojektowany do kondensacji pary wodnej, lecz do odzyskiwania ciepła z różnych procesów przemysłowych, co nie zawsze wiąże się z wykorzystaniem spalin. Kocioł przepływowy, z kolei, ma na celu podgrzewanie wody w czasie rzeczywistym, bez magazynowania, co sprawia, że jego struktura i zasady działania nie przewidują odzyskiwania ciepła spalin. W przypadku kotłów nadkrytycznych, ich działanie opiera się na pracy przy wysokim ciśnieniu, co ogranicza możliwości kondensacji pary wodnej i tym samym odzysku energii cieplnej. Typowe błędy myślowe związane z wyborem niewłaściwego kotła mogą wynikać z niewłaściwego zrozumienia procesu kondensacji oraz korzyści, jakie niesie ze sobą efektywne wykorzystanie energii zawartej w spalinach. Zrozumienie podstawowych zasad działania tych różnych typów kotłów oraz ich zastosowania w praktyce jest kluczowe dla wyboru odpowiedniego systemu grzewczego, który odpowiada specyficznym potrzebom użytkownika.

Pytanie 4

Kluczową wartością niezbędną do przygotowania przedmiaru robót instalacji solarnej jest średnie zapotrzebowanie na wodę użytkową w trakcie

A. doby
B. roku
C. miesiąca
D. tygodnia
Przy projektowaniu instalacji solarnych niepełne zrozumienie kryteriów obliczeniowych może prowadzić do poważnych błędów w oszacowaniu wydajności systemu. Ustalanie zapotrzebowania na wodę użytkową w skali tygodnia, miesiąca czy roku nie uwzględnia codziennych wahań i specyfiki użytkowania wody. Na przykład, wybierając tydzień jako okres, w którym chcemy określić średnie zapotrzebowanie, możemy nie uwzględnić dni, w które generowane jest większe zużycie, jak weekendy czy święta. Takie podejście może prowadzić do zaniżenia wymagań, co w konsekwencji sprawia, że system solarny nie będzie w stanie zaspokoić bieżących potrzeb użytkowników. Co więcej, dobranie parametrów w skali miesięcznej lub rocznej nie oddaje dynamicznych zmian w zużyciu wody, co jest kluczowe dla precyzyjnego projektowania. W praktyce, nieprecyzyjne określenie średniego zapotrzebowania może prowadzić do niewłaściwego dobrania wielkości zbiornika, co skutkuje nadmiernym zużyciem energii i obniżeniem efektywności systemu. Standardy branżowe oraz dobre praktyki w projektowaniu instalacji solarnych zalecają uwzględnianie danych dobowych, aby zapewnić optymalną wydajność i efektywność ekonomiczną systemu. Stąd kluczowe jest posługiwanie się odpowiednimi danymi, które odzwierciedlają rzeczywiste potrzeby użytkownika w codziennych warunkach.

Pytanie 5

W Katalogach Nakładów Rzeczowych (KNR) jednostką miary nakładów pracy sprzętu jest

A. godzina
B. robocizna
C. r-g
D. m-g
Robocizna jako jednostka nakładów pracy odnosi się do pracy ludzkiej, a nie do pracy sprzętu, co czyni ją nieadekwatną odpowiedzią w kontekście KNR. Używanie robocizny zamiast m-g może prowadzić do mylnych obliczeń, ponieważ nie oddaje rzeczywistego czasu pracy sprzętu, który zazwyczaj jest szacowany w jednostkach czasowych, takich jak godziny czy miesiące robocze. R-g, czyli robotogodzina, to również jednostka, która nie jest standardowo stosowana dla sprzętu, a raczej odnosi się do godzin pracy pojedynczego pracownika, co również nie jest zgodne z koncepcją nakładów pracy sprzętu. Godzina, jako jednostka, także nie jest idealna, ponieważ nie uwzględnia dłuższych okresów eksploatacji sprzętu, które są niezbędne do oceny ich wydajności w dłuższym horyzoncie czasowym. Miesięczne analizy wykorzystania sprzętu są kluczowe dla oceny kosztów operacyjnych oraz planowania inwestycji, dlatego stosowanie jednostek takich jak m-g jest zgodne z najlepszymi praktykami w budownictwie i planowaniu projektów. Używanie niewłaściwych jednostek może prowadzić do nieefektywnego zarządzania zasobami, co w dłuższej perspektywie może negatywnie wpłynąć na rentowność projektów budowlanych.

Pytanie 6

Montaż paneli fotowoltaicznych na dachu o płaskiej powierzchni zrealizował instalator w towarzystwie dwóch asystentów. Stawka wynagrodzenia instalatora to 48,00 zł, a stawka asystenta wynosi 25,00 zł za każdą godzinę pracy. Jaka jest kosztorysowa wartość robocizny, jeśli czas pracy wynosi 5 godzin?

A. 365,00 zł
B. 490,00 zł
C. 98,00 zł
D. 605,00 zł
Aby obliczyć kosztorysową wartość robocizny przy montażu paneli fotowoltaicznych, należy uwzględnić stawki robocze dla instalatora oraz pomocników. Instalator otrzymuje 48,00 zł za godzinę, a każdy z dwóch pomocników 25,00 zł za godzinę. Przy nakładzie robocizny wynoszącym 5 godzin, obliczenia przeprowadzamy w następujący sposób: koszt pracy instalatora wynosi 5 godzin x 48,00 zł = 240,00 zł. Koszt pracy dwóch pomocników wynosi 5 godzin x 25,00 zł x 2 = 250,00 zł. Łączny kosztorys robocizny wynosi zatem 240,00 zł + 250,00 zł = 490,00 zł. Tego rodzaju kalkulacje są kluczowe w branży odnawialnych źródeł energii, ponieważ pomagają w dokładnym oszacowaniu kosztów projektu oraz w planowaniu budżetu. Praktyczne zastosowanie takich obliczeń pozwala na precyzyjne zarządzanie kosztami, co jest zgodne z dobrymi praktykami w zakresie zarządzania projektami budowlanymi oraz finansami.

Pytanie 7

Która z boków dachu jest najodpowiedniejsza do instalacji kolektorów słonecznych?

A. Wschodnia
B. Zachodnia
C. Południowa
D. Północna
Montaż kolektorów słonecznych na dachu południowym jest uważany za najbardziej efektywny, ponieważ ta strona dachu otrzymuje najwięcej promieniowania słonecznego w ciągu dnia. W zależności od lokalizacji geograficznej, dachy skierowane na południe mogą korzystać ze słońca przez większą część dnia, co znacznie zwiększa wydajność systemu solarnego. Na przykład, w Polsce, instalacje na dachu południowym mogą osiągać ponad 80% efektywności w porównaniu z innymi kierunkami. W praktyce oznacza to, że kolektory słoneczne zamontowane na tej stronie będą produkować więcej energii cieplnej, co przekłada się na niższe rachunki za energię i szybszy zwrot z inwestycji. Ponadto, zgodnie z dobrymi praktykami i standardami branżowymi, zaleca się unikanie zacienienia dachu, co jest istotne na południowej stronie, gdzie słońce jest najbardziej intensywne. Instalacja powinna być również skierowana pod odpowiednim kątem, aby maksymalizować eksponowanie na promieniowanie słoneczne przez cały rok.

Pytanie 8

Inwerter to sprzęt instalowany w systemie

A. fotowoltaicznej
B. pompy ciepła
C. biogazowni
D. słonecznej grzewczej
Inwerter jest kluczowym elementem instalacji fotowoltaicznej, służącym do przekształcania prądu stałego (DC) generowanego przez panele słoneczne na prąd zmienny (AC), który może być używany w domowych instalacjach elektrycznych oraz wprowadzany do sieci energetycznej. Jego działanie opiera się na przetwarzaniu energii słonecznej w sposób umożliwiający jej wykorzystanie w codziennym życiu. Przykładowo, w systemach fotowoltaicznych na dachach budynków, inwertery są odpowiedzialne za optymalizację produkcji energii, co przekłada się na niższe rachunki za prąd i zwiększenie efektywności energetycznej. Zgodnie z normami, inwertery powinny spełniać standardy jakości, takie jak IEC 62109, które gwarantują bezpieczeństwo i niezawodność ich działania. Właściwy dobór inwertera, jego moc oraz funkcje, takie jak monitoring wydajności, mają kluczowe znaczenie dla efektywności całego systemu, co podkreśla ich rolę w nowoczesnych instalacjach OZE.

Pytanie 9

Aby zamontować kocioł na biomasę inwestor zebrał 4 oferty i dokonał ich zestawienia. Wskaż ofertę, w której sprawność kotła jest największa.

Nominalna moc kotła kWSprawność cieplna %Zużycie paliwa kg/hMaksymalna temperatura robocza °CPojemność wodna kotła dm³
A.2387,7-88,12,685100
B.2381,8-83,52,685100
C.25902,495190
D.3090-922,48570

A. D.
B. B.
C. A.
D. C.
Oferta D jest zdecydowanie najlepsza, bo ma najwyższą sprawność kotła, w granicach 90-92%. Wybór kotła o takiej sprawności to kluczowa sprawa, jeśli chodzi o efektywność energetyczną instalacji grzewczej. Według europejskich norm, kotły na biomasę powinny mieć sprawność przynajmniej 85%, a te powyżej 90% to już naprawdę świetny wynik. Wysoka sprawność oznacza, że spalimy mniej paliwa i emitujemy mniej spalin. Krótko mówiąc, to w końcu oszczędności dla użytkownika i lepsza sytuacja dla środowiska. Także, warto zwracać uwagę na parametry techniczne przy wyborze kotłów, porównując nie tylko sprawność, ale także emisję CO2. To pasuje do najlepszych praktyk związanych z ekologią. Dobrze dobrany kocioł na biomasę to nie tylko komfort cieplny, ale także rozsądne wykorzystanie odnawialnych źródeł energii.

Pytanie 10

Izolacja przewodów elektrycznych w odcieniu żółto-zielonym określa przewody

A. fazowe
B. neutralne
C. zerowe
D. ochronne
Izolacja przewodów elektrycznych w kolorze żółto-zielonym jest standardem stosowanym w Polsce do oznaczania przewodów ochronnych. Przewody te pełnią kluczową rolę w zapewnieniu bezpieczeństwa instalacji elektrycznych, co jest zgodne z normą PN-IEC 60446. Ich głównym zadaniem jest ochrona przed porażeniem elektrycznym poprzez uziemienie metalowych części instalacji, które w normalnych warunkach nie przewodzą prądu. Przewody ochronne łączą się z systemem uziemiającym, co sprawia, że w przypadku zwarcia prąd płynie w bezpieczny sposób do ziemi, minimalizując ryzyko dla użytkowników. Przykładem zastosowania przewodów ochronnych jest ich wykorzystanie w instalacjach elektrycznych w budynkach mieszkalnych oraz w urządzeniach przemysłowych. Zgodnie z przepisami, każda instalacja elektryczna musi być wyposażona w przewody ochronne, co jest niezbędnym elementem zapewniającym bezpieczeństwo użytkowników.

Pytanie 11

Jakie kryterium oddziałuje na ocenę stanu technicznego pompy ciepła podczas przeglądu technicznego?

A. Prąd przy zwarciu
B. Natężenie prądu w punkcie maksymalnej mocy
C. Ciśnienie czynnika chłodniczego
D. Tempo obrotowe wirnika
Ciśnienie czynnika chłodniczego jest kluczowym wskaźnikiem stanu technicznego pompy ciepła, ponieważ ma bezpośredni wpływ na jej wydajność oraz efektywność energetyczną. Podczas przeglądów technicznych, monitorowanie ciśnienia czynnika chłodniczego pozwala na ocenę, czy system działa w optymalnych warunkach. Zbyt niskie ciśnienie może sugerować nieszczelność w układzie lub niedobór czynnika chłodniczego, co prowadzi do obniżenia efektywności pompy. Z kolei zbyt wysokie ciśnienie może wskazywać na problemy z odprowadzaniem ciepła lub zator w układzie. Standardy branżowe, takie jak normy ISO 5151 dotyczące wydajności pomp ciepła, podkreślają znaczenie monitorowania ciśnienia czynnika chłodniczego jako części rutynowych przeglądów oraz diagnostyki. Praktyczne przykłady zastosowania tej wiedzy obejmują regulację parametrów pracy urządzenia i planowanie działań serwisowych, co przekłada się na zwiększenie żywotności systemu oraz oszczędności energetyczne.

Pytanie 12

Z jakich materiałów produkowane są łopaty wirników dużych turbin wiatrowych?

A. Z aluminium
B. Z włókna szklanego
C. Ze stali
D. Z miedzi elektrolitycznej
Łopaty wirników dużych turbin wiatrowych są najczęściej wykonane z włókna szklanego, co wynika z jego korzystnych właściwości mechanicznych. Włókno szklane charakteryzuje się wysoką wytrzymałością na rozciąganie oraz niską gęstością, co przekłada się na lekkość konstrukcji. To istotne, ponieważ zmniejsza obciążenie strukturalne turbiny i pozwala na efektywniejsze wykorzystanie energii wiatru. Dodatkowo, materiał ten jest odporny na korozję i działanie niekorzystnych warunków atmosferycznych, co zapewnia długotrwałą żywotność łopat. W praktyce, zastosowanie włókna szklanego w budowie turbin wiatrowych jest zgodne z zaleceniami branżowymi, które promują wykorzystanie materiałów kompozytowych w celu zwiększenia efektywności energetycznej. To podejście jest również zgodne z nowoczesnymi trendami w inżynierii, które stawiają na zrównoważony rozwój i efektywność energetyczną.

Pytanie 13

Jeśli całkowity opór cieplny przegrody wynosi 4,00 (m2-K)/W, to jaką wartość ma współczynnik przenikania ciepła?

A. 0,35 W/(m2-K)
B. 0,25 W/(m2-K)
C. 0,10 W/(m2-K)
D. 0,50 W/(m2K)
Współczynnik przenikania ciepła, oznaczany jako U, jest odwrotnością całkowitego oporu cieplnego R przegrody. Całkowity opór cieplny to suma oporów poszczególnych warstw materiałów budowlanych. Wzór na obliczenie współczynnika przenikania ciepła przedstawia się jako U = 1/R. W tym przypadku, mając całkowity opór cieplny R równy 4,00 (m2-K)/W, obliczamy U jako U = 1/4,00 = 0,25 W/(m2-K). W praktyce oznacza to, że przez każdy metr kwadratowy przegrody o tym oporze cieplnym przepływa 0,25 wata ciepła przy różnicy temperatur wynoszącej 1 K. Wartość współczynnika U ma istotne znaczenie w kontekście projektowania budynków, ponieważ pozwala ocenić efektywność energetyczną przegrody. Zgodnie z normami budowlanymi, niższe wartości U są pożądane, co wskazuje na lepsze właściwości izolacyjne. Przykładowo, w budynkach pasywnych współczynnik U dla ścian zewnętrznych nie powinien przekraczać 0,15 W/(m2-K).

Pytanie 14

Podaj aktualną wartość współczynnika przewodzenia ciepła dla zewnętrznej ściany pomieszczenia, gdzie temperatura wynosi 20°C, zgodnie z rozporządzeniem dotyczącym warunków technicznych, jakim powinny odpowiadać budynki oraz ich lokalizacja?

A. Min. 0,3 W/m2K
B. Maks. 0,25 W/m2K
C. Maks. 0,5 W/m2K
D. Min. 0,25 W/m2K
Odpowiedź "Maks. 0,25 W/m2K" jest prawidłowa, ponieważ według aktualnych przepisów zawartych w rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, maksymalna wartość współczynnika przenikania ciepła (U) dla ścian zewnętrznych wynosi właśnie 0,25 W/m2K. Przestrzeganie tych norm jest kluczowe dla zapewnienia odpowiedniej efektywności energetycznej budynków, co ma znaczenie nie tylko dla komfortu mieszkańców, ale również dla ochrony środowiska. W praktyce oznacza to, że przy projektowaniu budynków warto stosować materiały o dobrych właściwościach izolacyjnych, takie jak styropian czy wełna mineralna, aby nie przekroczyć tego limitu. Właściwy dobór materiałów i technologii budowlanych przyczynia się do zmniejszenia strat ciepła, co z kolei prowadzi do niższych kosztów ogrzewania i mniejszej emisji gazów cieplarnianych. To podejście jest zgodne z zasadami zrównoważonego rozwoju oraz polityką energetyczną Unii Europejskiej, która dąży do zwiększenia efektywności energetycznej budynków.

Pytanie 15

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Hybrydowe
B. Amorficzne
C. Monokrystaliczne
D. Polikrystaliczne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 16

Jaką minimalną odległość powinny mieć rurociągi w poziomym wymienniku gruntowym, aby została zachowana odpowiednia normatywność?

A. 400 cm
B. 200 cm
C. 20 cm
D. 80 cm
Minimalna odległość pomiędzy rurociągami poziomego wymiennika gruntowego wynosząca 80 cm jest zgodna z obowiązującymi standardami projektowania systemów geotermalnych. Ustalenie odpowiedniej odległości pomiędzy rurociągami jest kluczowe dla zapewnienia efektywności wymiany ciepła oraz uniknięcia problemów związanych z przepływem cieczy. Zbyt mała odległość może prowadzić do niedostatecznego przewodzenia ciepła, co w efekcie obniża wydajność instalacji. Na przykład, w zastosowaniach komercyjnych, takich jak ogrzewanie budynków, zachowanie tego odstępu może znacząco wpłynąć na koszty operacyjne i efektywność energetyczną systemu. Dodatkowo, w praktyce inżynieryjnej, projektanci uwzględniają również czynniki takie jak rodzaj gruntu, ciśnienie cieczy oraz warunki hydrologiczne, co podkreśla znaczenie właściwych odległości w kontekście bezpieczeństwa i wydajności. Warto również zaznaczyć, że normy techniczne, takie jak EN 15316-4-3, wskazują na te minimalne odległości jako standardowe praktyki, co sprawia, że ich przestrzeganie jest niezbędne dla zapewnienia prawidłowego funkcjonowania systemów geotermalnych.

Pytanie 17

W jakim dokumencie znajdują się informacje dotyczące montażu oraz użytkowania kotła na biomasę?

A. W aprobacie technicznej
B. W deklaracji zgodności
C. W karcie gwarancyjnej
D. W dokumentacji techniczno-ruchowej
Dokumentacja techniczno-ruchowa to kluczowy dokument, w którym zawarte są szczegółowe informacje dotyczące montażu, eksploatacji oraz konserwacji kotła na biomasę. W tym dokumencie użytkownik znajdzie instrukcje dotyczące instalacji, parametrów technicznych, zasad użytkowania oraz procedur bezpieczeństwa. Dobrze opracowana dokumentacja techniczno-ruchowa jest zgodna z normami branżowymi, takimi jak PN-EN 303-5, które określają wymagania dotyczące efektywności energetycznej oraz emisji zanieczyszczeń. Przykładowo, w dokumentacji mogą być zawarte schematy instalacji oraz wskazówki dotyczące optymalnych warunków pracy kotła, co jest niezbędne dla osiągnięcia najwyższej sprawności. Stosowanie się do zaleceń zawartych w tym dokumencie pozwala na bezpieczne i efektywne użytkowanie kotła, minimalizując ryzyko awarii oraz zapewniając zgodność z przepisami prawa.

Pytanie 18

Jakie problemy mogą powodować elektrownie wiatrowe dla fauny w ich pobliżu?

A. cienie aerodynamiczne dla pobliskich budynków
B. znaczne zmiany w mocy generowanej przez wiatrak
C. wysokość konstrukcji wiatraka
D. zakłócenia w przepływie wiatru w rejonie wiatraka
Cień aerodynamiczny dla okolicznych budynków, duże wahania mocy produkowanej przez wiatrak oraz wysokość wiatraka to aspekty, które choć istotne w kontekście technicznym, nie mają bezpośredniego wpływu na dobrostan zwierząt w otoczeniu elektrowni wiatrowych. Cień aerodynamiczny dotyczy jedynie zjawisk związanych z budynkami czy innymi strukturami, a nie z samych turbin. Zmiany w cieple, jakie mogą być generowane przez strukturę turbiny, nie oddziałują na zwierzęta w tym samym bezpośrednim sensie, jak zaburzenia przepływu wiatru. Duże wahania mocy produkowanej przez wiatrak są wynikiem zmiennej natury wiatru, ale nie mają wpływu na same zwierzęta. Z kolei wysokość wiatraka, chociaż może być czynnikiem wpływającym na widoczność i potencjalne kolizje, nie wyjaśnia bezpośredniej interakcji między turbinami a zwierzętami. W kontekście ochrony środowiska, kluczowe jest zrozumienie, że to nie tylko konstrukcja, ale i ergonomia i lokalizacja turbin mają decydujące znaczenie dla ich wpływu na ekosystem. Warto również zauważyć, że niewłaściwe identyfikowanie problemów ekologicznych może prowadzić do błędnych decyzji w zakresie polityki energetycznej oraz ochrony przyrody. Właściwe podejście do projektowania farm wiatrowych powinno opierać się na rzetelnych badaniach i zrozumieniu interakcji między tymi systemami a lokalnymi ekosystemami.

Pytanie 19

Na aksonometrycznym widoku instalacji ogrzewczej w skali 1:100 miedziany pion ma długość 20 cm. Jaką ilość przewodów miedzianych trzeba nabyć do montażu tego pionu?

A. 0,2 m
B. 2 m
C. 20 m
D. 200 m
Wiele osób może pomylić długość przewodów z długością na rzucie aksonometrycznym, co prowadzi do niepoprawnych obliczeń. Odpowiedzi takie jak 200 m, 2 m czy 0,2 m bazują na błędnych założeniach dotyczących przeliczeń skali. Odpowiedź 200 m sugeruje, że uczestnik testu nie uwzględnił przelicznika skali, błędnie myśląc, że 20 cm na rysunku odpowiada 20 m w rzeczywistości. Taki błąd może wynikać z nieuwagi lub nieznajomości procedur. Odpowiedź 2 m może pochodzić z błędnego przeliczenia skali, na przykład z pomylenia wartości 20 cm z 2 m, co pokazuje typowy błąd w komunikacji między jednostkami miary. Z kolei odpowiedź 0,2 m przejawia skrajne niedoszacowanie długości, co może świadczyć o pomieszczeniu długości przewodu do długości przedstawionej w rysunku, pomijając ważny kontekst skali. Fundamentalną zasadą w projektowaniu instalacji grzewczych, a także w innych dziedzinach inżynieryjnych, jest precyzyjne przeliczanie wymiarów między różnymi formatami, co jest niezbędne do zapewnienia prawidłowości wykonania projektu oraz bezpieczeństwa użytkowania. Właściwe zrozumienie tych koncepcji jest kluczowe, aby uniknąć kosztownych błędów w przyszłej eksploatacji systemu.

Pytanie 20

Wskaż gaz, który powinien być wykorzystywany do przewozu biomasy w formie pyłu?

A. Ziemny
B. Inertny
C. Węglowy
D. Błotny
Wybór gazu do transportu biomasy w postaci pyłu jest kluczowy, a odpowiedzi "Węglowy", "Ziemny" oraz "Błotny" są nieprawidłowe z kilku powodów. Gaz węglowy, będący często synonymem dla gazu ziemnego, może zawierać związki chemiczne, które reagują z biomateriałami, co stwarza ryzyko zapłonu. W przypadku biomasy, która jest organicznym materiałem łatwopalnym, obecność gazu węglowego może być niebezpieczna, zwłaszcza w zamkniętych systemach transportowych. Z kolei gaz ziemny jest złożonym węglowodorem, który również może prowadzić do niekontrolowanych reakcji chemicznych. Odpowiedzi "Błotny" i "Ziemny" wydają się w ogóle nie odnosić do standardów transportowych w kontekście biomasy. Gazy te nie są zwykle używane w przemyśle i mogą pozostawać w sferze nieprecyzyjnych terminów. W rzeczywistości, dla efektywnego transportu biomasy w postaci pyłu, kluczowe jest zastosowanie gazów neutralnych, które nie wchodzą w reakcje chemiczne z transportowanym materiałem. W przeciwnym razie, istnieje ryzyko nieprzewidywalnych reakcji, które mogą prowadzić do poważnych zagrożeń, w tym do pożarów. W przemyśle energetycznym oraz chemicznym, wybór odpowiednich mediów transportowych powinien być oparty na solidnych podstawach naukowych oraz przemysłowych standardach bezpieczeństwa.

Pytanie 21

Współczynnik efektywności COP pompy ciepła o parametrach podanych w tabeli przy podgrzewaniu wody do temperatury 30 oC przy temperaturze otoczenia 2 oC wynosi

Parametry pompy
ParametrJednostkaWartość
Moc cieplna*kW15,0
Moc elektryczna doprowadzona do sprężarki*kW3,0
Pobór prądu*A6,5
Moc cieplna**kW16,5
Moc elektryczna doprowadzona do sprężarki**kW3,6
Pobór prądu*A6,7
* temp. otoczenia 2°C, temp wody 30°C
** temp. otoczenia 7°C, temp wody 50°C

A. 3,6
B. 3,0
C. 4,6
D. 5,0
Współczynnik efektywności COP, czyli Coefficient of Performance, to taki wskaźnik, który pokazuje, jak dobrze działa pompa ciepła. Krótko mówiąc, pokazuje ile energii cieplnej dostajemy na każdą jednostkę energii elektrycznej zużytej przez sprężarkę. Jeśli podgrzewamy wodę do 30 °C przy temperaturze otoczenia 2 °C, a COP wynosi 5,0, to znaczy, że pompa dostarcza pięć jednostek ciepła za każdą jednostkę energii elektrycznej. To jest super wynik, bo oznacza, że system jest skuteczny i może pomóc w oszczędzaniu energii. Wyższy COP to niższe koszty eksploatacji, co jest ważne przy projektowaniu budynków. Wiele norm, takich jak te od ASHRAE, zaleca używanie pomp ciepła o wysokim COP, bo to wspiera zrównoważony rozwój i efektywność energetyczną budynków.

Pytanie 22

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Inwestorskiego
B. Powykonawczego
C. Zamiennego
D. Ofertowego
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 23

Podczas wymiany rotametru w instalacji grzewczej zasilanej energią słoneczną, w jaki sposób powinien być on zamontowany?

A. pionowo w zgodzie z kierunkiem przepływu.
B. poziomo w zgodzie z kierunkiem przepływu.
C. poziomo w kierunku przeciwnym do przepływu.
D. pionowo w kierunku przeciwnym do przepływu.
Montaż rotametru w pionie, zgodnie z kierunkiem przepływu, to naprawdę istotna sprawa, jeśli chcemy, żeby to urządzenie działało jak należy. Rotametry to takie fajne sprzęty, które mierzą przepływ cieczy albo gazu przez rurę, a ich konstrukcja pozwala na odczytwanie przepływu w zależności od tego, gdzie znajduje się pływak. Gdy rotametr jest zamontowany tak, jak trzeba, pływak ma luz i może swobodnie się poruszać, co daje dokładne pomiary. W branży mówi się, że zgodność z normami, jak ISO 5167, jest kluczowa, żeby uniknąć błędów w pomiarze. W instalacjach słonecznych, gdzie temperatura może się zmieniać, dobry montaż rotametru jest niezbędny do monitorowania efektywności systemu. Warto również pamiętać o regularnym sprawdzaniu kalibracji, żeby mieć pewność, że wyniki są miarodajne.

Pytanie 24

Aby biogaz produkowany w biogazowni był odpowiedni do spalania, należy go wcześniej właściwie przystosować. Głównie usuwa się z niego szkodliwy

A. tlenek węgla
B. siarkowodoru
C. dwutlenek węgla
D. wodoru
Wybór dwutlenku węgla, tlenku węgla lub wodoru jako zanieczyszczeń do usunięcia z biogazu nie jest zgodny z rzeczywistością procesów technologicznych związanych z jego oczyszczaniem. Dwutlenek węgla, chociaż jest na tyle ważnym składnikiem biogazu, nie jest bezpośrednio szkodliwy w kontekście jego spalania, a wręcz może być pożądanym gazem ze względu na swoje właściwości energetyczne. W rzeczywistości, CO2 jest często stosowany w procesach wzbogacania biogazu i może być później oddzielany dla innych zastosowań, takich jak produkcja syntetycznego metanu. Tlenek węgla, z drugiej strony, może być niebezpieczny, ale jego obecność w biogazie jest znacznie niższa niż siarkowodoru. Warto zauważyć, że siarkowodór jest o wiele bardziej szkodliwy dla instalacji i zdrowia ludzi, co czyni jego usunięcie kluczowym krokiem w procesie przygotowania biogazu do spalania. Wreszcie, wodór, będący gazem o wysokiej wartości energetycznej, w kontekście biogazu nie stanowi problemu, a jest raczej pozytywnym dodatkiem do składu gazu. Zauważając te różnice, można zrozumieć, dlaczego usuwanie siarkowodoru jest kluczowe, a skupienie się na innych związkach nie odnosi się do rzeczywistych wyzwań technologicznych w obszarze biogazowni.

Pytanie 25

Pompa ciepła typu sprężarkowego określana jest jako rewersyjna, gdy jest zainstalowana w obiekcie

A. ma 4 wymienniki ciepła
B. ma sprężarkę umieszczoną na zewnątrz budynku
C. ma modulowaną moc grzewczą sprężarki
D. może zimą pełnić funkcje grzewcze, a latem chłodnicze
Sprężarkowa pompa ciepła nazywana jest rewersyjną, ponieważ może w zależności od potrzeb zmieniać kierunek przepływu czynnika chłodniczego, co pozwala jej pełnić różne funkcje: zimą jako urządzenie grzewcze, a latem jako system chłodzący. W praktyce oznacza to, że pompa ciepła może efektywnie wykorzystać energię z otoczenia do ogrzewania pomieszczeń, pobierając ciepło z powietrza, gruntu lub wody, a w okresie letnim może tę energię odprowadzać, schładzając budynek. Współczesne systemy oparte na tej technologii są zgodne z normami efektywności energetycznej, co czyni je ekologicznymi i ekonomicznymi rozwiązaniami. Przykładem zastosowania mogą być budynki mieszkalne, biura czy obiekty przemysłowe, które dzięki zastosowaniu rewersyjnych pomp ciepła mogą zredukować koszty eksploatacji oraz emisję dwutlenku węgla. Warto zauważyć, że rewersyjne pompy ciepła przyczyniają się do zrównoważonego rozwoju, co jest istotne w kontekście globalnych wyzwań związanych ze zmianami klimatycznymi.

Pytanie 26

Ciepło pozyskiwane z otoczenia do produkcji ciepłej wody użytkowej jest używane przez

A. wymiennik ciepła
B. kolektor płaski
C. ogniwo fotowoltaiczne
D. pompę ciepła
Ogniwa fotowoltaiczne to technologie, które przekształcają energię słoneczną bezpośrednio w energię elektryczną, a nie w ciepło. Chociaż mogą być używane w połączeniu z innymi systemami grzewczymi, ich głównym zastosowaniem jest produkcja prądu, a nie bezpośrednie wytwarzanie ciepłej wody. Kolektory płaskie również mają na celu pozyskiwanie energii ze słońca, jednak ich działanie opiera się na bezpośrednim podgrzewaniu cieczy, co sprawia, że są bardziej efektywne w regionach słonecznych. Kolektory te nie są jednak w stanie korzystać z energii cieplnej zawartej w otoczeniu w tak szerokim zakresie jak pompy ciepła, które mogą pracować w różnych warunkach. Wymienniki ciepła to urządzenia, które mają na celu transfer ciepła pomiędzy dwoma płynami, ale same w sobie nie generują ciepła. Pomylenie tych dwóch pojęć może prowadzić do błędnego postrzegania ich funkcji, co skutkuje nieefektywnym doborem systemów grzewczych. Kluczowe jest zrozumienie, że pompy ciepła wykorzystują zewnętrzne źródła energii, co czyni je bardziej wydajnymi w kontekście pozyskiwania ciepłej wody użytkowej w porównaniu do wskazanych technologii.

Pytanie 27

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy wodą zimną a obiegiem wody ciepłej
B. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
C. pomiędzy obiegiem solarnym a obiegiem wody zimnej
D. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
Mieszacz wody użytkowej w instalacji solarnej jest kluczowym elementem, który zapewnia optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Jego prawidłowe umiejscowienie pomiędzy obiegiem wody zimnej a obiegiem wody ciepłej pozwala na efektywne zarządzanie temperaturą wody dostarczanej do odbiorników, takich jak krany czy urządzenia sanitarno-grzewcze. Mieszacz umożliwia regulację proporcji wody zimnej i ciepłej, co jest niezbędne do uzyskania komfortu użytkowania oraz ochrony instalacji przed przegrzewaniem. Przykładowo, w sytuacji, gdy temperatura wody z kolektorów jest zbyt wysoka, mieszacz może wprowadzać zimną wodę, obniżając tym samym temperaturę mieszanki. Zgodnie z dobrymi praktykami branżowymi, takie rozwiązanie minimalizuje ryzyko uszkodzenia urządzeń oraz poprawia ich żywotność. Ponadto, zastosowanie mieszacza przyczynia się do efektywności energetycznej całego systemu solarnego, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 28

Jaką moc wygeneruje moduł fotowoltaiczny o parametrach znamionowych U = 30 V, I = 10 A, gdy zostanie zaciśnięty, a nasłonecznienie wyniesie Me = 1000 W/m2?

A. 30 W
B. 0 W
C. 300 W
D. 1 000 W
Odpowiedź 0 W jest jak najbardziej poprawna. Kiedy mamy zwarcie w module fotowoltaicznym, napięcie spada do zera. To znaczy, że prąd dalej płynie, ale wyjściowe napięcie z modułu jest zerowe, co sprawia, że nie mamy żadnej mocy, którą możemy wykorzystać. Wiesz, moc elektryczna to produkt napięcia (U) i prądu (I), czyli P = U * I. W przypadku zwarcia, U wynosi 0 V, więc moc na wyjściu też wynosi 0 W. Ważne jest jednak, żeby przy projektowaniu systemów fotowoltaicznych dbać o to, aby unikać zwarć, bo to może być naprawdę niebezpieczne. Dlatego używa się różnych zabezpieczeń, takich jak bezpieczniki czy wyłączniki, żeby chronić zarówno układ, jak i ludzi go używających. Dodatkowo, systemy monitorujące działanie modułów mogą pomóc zauważyć, że coś się dzieje nie tak i zapobiec zwarciom.

Pytanie 29

Jaką jednostkę stosuje się do wyrażania stopnia mineralizacji wody?

A. mg/l
B. l/°C
C. l/mg
D. °C/l
Jednostka "mg/l" (miligramy na litr) jest powszechnie stosowana do pomiaru stopnia mineralizacji wody, co oznacza ilość rozpuszczonych substancji mineralnych w danym litrze wody. W praktyce, pomiar ten jest kluczowy w takich obszarach jak analiza jakości wody, zarządzanie zasobami wodnymi oraz ocena wpływu różnych czynników na ekosystemy wodne. Na przykład, w procesie uzdatniania wody, dokładne określenie jej mineralizacji pozwala na dobranie odpowiednich metod filtracji i oczyszczania, co jest zgodne z normami ustalonymi przez organizacje takie jak WHO czy EPA. Zastosowanie jednostki mg/l jest również istotne w kontekście gospodarki wodnej, gdzie monitorowanie mineralizacji pozwala na ocenę stanu wód gruntowych i powierzchniowych. Dodatkowo, w przemyśle spożywczym, dokładne oznaczanie mineralizacji wody jest niezbędne, aby zapewnić odpowiednią jakość produktów oraz spełnić wymogi regulacyjne. W związku z tym, znajomość i umiejętność posługiwania się jednostką mg/l jest niezbędna w wielu dziedzinach związanych z ochroną środowiska oraz zdrowiem publicznym.

Pytanie 30

Płynem, który ma wysoką temperaturę wrzenia w rurce cieplnej (heat-pipe) w systemie kolektora rurowego próżniowego nie jest

A. woda
B. propan
C. R410
D. butan
Woda nie jest płynem szybko wrzącym w rurce cieplnej (heat-pipe) w kolektorze rurowym próżniowym, ponieważ jej punkt wrzenia wynosi 100°C przy normalnym ciśnieniu atmosferycznym, co czyni ją niewłaściwym wyborem w kontekście systemów, które muszą działać w niskich temperaturach oraz w próżni. W kolektorach rurowych, takich jak heat-pipe, preferuje się czynniki robocze o niższym ciśnieniu wrzenia, co zapewnia bardziej efektywne transfery ciepła. Przykładowo, butan i propan, których temperatury wrzenia wynoszą odpowiednio około -0,5°C i -42°C, umożliwiają skuteczne odprowadzanie ciepła w warunkach, które są typowe dla systemów próżniowych. Dobre praktyki w projektowaniu takich systemów zalecają użycie płynów, które w odpowiednich warunkach mogą łatwo przechodzić między fazami, co maksymalizuje ich efektywność. W przypadku zastosowań w kolektorach słonecznych, odpowiedni dobór czynnika roboczego jest kluczowy dla optymalizacji wydajności energetycznej.

Pytanie 31

Przy jakim ciśnieniu powinien zadziałać zawór bezpieczeństwa w systemie solarnym?

A. 4 barów
B. 2 barów
C. 8 barów
D. 6 barów
Wybór niewłaściwego ciśnienia dla zaworu bezpieczeństwa może prowadzić do poważnych konsekwencji w funkcjonowaniu instalacji solarnej. Ciśnienia 4 barów lub niższego mogą okazać się niewystarczające do zapewnienia efektywnego zabezpieczenia systemu. Zawór otwierający się przy takim ciśnieniu może nie zareagować na nagłe, dynamiczne zmiany ciśnienia, jakie mogą wystąpić w układzie pod wpływem na przykład wzrostu temperatury w słoneczny dzień. Również ciśnienie 2 barów jest zdecydowanie zbyt niskie, co może skutkować nieodpowiednią reakcją układu na sytuacje awaryjne. Z drugiej strony, ciśnienie 8 barów oznaczałoby, że zawór otwiera się w momencie, gdy ciśnienie w systemie osiągnie niebezpieczny poziom, co zwiększa ryzyko uszkodzeń instalacji. Prawidłowe ciśnienie powinno być dostosowane do wymagań konkretnej instalacji, a nadmierna wartość ciśnienia może prowadzić do zjawiska znanego jako "wodna młotka", które jest szkodliwe dla rur i podzespołów. Zrozumienie tych zasad jest kluczowe dla właściwego projektowania oraz utrzymania systemów solarnych, a także dla zapewnienia ich bezpieczeństwa i długowieczności.

Pytanie 32

Kto tworzy plan budowy domu pasywnego?

A. Instalator systemów solarnych
B. Przedsiębiorca
C. Inspektor z działu budownictwa
D. Kierownik budowy
Wybierając inspektora wydziału budownictwa jako osobę odpowiedzialną za tworzenie harmonogramu budowy domu pasywnego, to nie jest dobry wybór. Inspektor w zasadzie zajmuje się nadzorowaniem zgodności z przepisami budowlanymi i kontrolą jakości wykonania, a nie planowaniem prac. Zazwyczaj to inwestor podejmuje decyzje dotyczące finansów i ogólnych założeń, ale on też nie robi harmonogramu. Jego rola to raczej zlecanie etapów budowy, a szczegóły organizacyjne to już zadanie kierownika budowy. Monter instalacji solarnej z kolei nie ma za dużo do powiedzenia, jeśli chodzi o harmonogram budowy, bo jego zadanie to realizacja konkretnej części projektu. Ważne jest, aby zrozumieć, że każda z tych osób ma inną rolę i odpowiedzialność za harmonogram powinna leżeć na kierowniku budowy, bo to on ma wiedzę i umiejętności do ogarnięcia całego procesu budowlanego. Zrozumienie tych ról jest istotne, by uniknąć zamieszania i błędów na budowie, bo to może prowadzić do opóźnień czy dodatkowych kosztów.

Pytanie 33

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60

A. 4,5
B. 3,0
C. 1,0
D. 4,0
Współczynnik wydajności pompy ciepła (COP) jest kluczowym wskaźnikiem efektywności energetycznej tych urządzeń. Odpowiedź 3,0 jest poprawna, ponieważ wskazuje na relację między mocą grzewczą a mocą elektryczną potrzebną do jej wytworzenia. W przypadku podanych wartości, moc grzewcza wynosi 3,0 kW, a moc elektryczna 1,0 kW. Obliczenie COP polega na podzieleniu mocy grzewczej przez moc elektryczną: COP = 3,0 kW / 1,0 kW = 3,0. Taki współczynnik oznacza, że pompa ciepła dostarcza trzy razy więcej energii cieplnej niż zużywa energii elektrycznej, co jest korzystne z perspektywy ekonomicznej oraz ekologicznej. W praktyce, wysoki współczynnik COP wskazuje na lepszą wydajność urządzenia, co jest szczególnie istotne przy obliczaniu kosztów eksploatacji systemów ogrzewania. W branży pomp ciepła zaleca się dążenie do COP na poziomie co najmniej 3,0, aby zapewnić opłacalność inwestycji.

Pytanie 34

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. aluminium lub miedzi
B. plastiku lub stali
C. aluminium lub mosiądzu
D. miedzi lub żeliwa
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 35

Od jakiej temperatury powinno się dopuszczać przegrzanie ciepłej wody użytkowej w systemie solarnym w celu dezynfekcji (tj. legionelli)?

A. 50°C
B. 55°C
C. 70°C
D. 45°C
Temperatura 70°C jest uznawana za minimalną wartość, która pozwala na skuteczną dezynfekcję wody użytkowej w instalacjach solarnych. Utrzymywanie wody w tym zakresie jest kluczowe dla eliminacji bakterii, takich jak Legionella, które mogą rozwijać się w systemach wodociągowych. Zgodnie z normami, rekomenduje się podgrzewanie wody do temperatury co najmniej 60°C w celu ograniczenia ryzyka wystąpienia legionellozy, jednak aby zapewnić pełną dezynfekcję, temperatura 70°C jest bardziej efektywna. W praktyce, wiele systemów solarnych jest wyposażonych w automatyczne układy, które monitorują i regulują temperaturę wody, co pozwala na skuteczne zarządzanie ryzykiem związanym z rozwojem bakterii. Dodatkowo, przegrzanie wody do tej temperatury powinno być realizowane okresowo, co zapobiega stagnacji wody i potencjalnemu rozwojowi niepożądanych mikroorganizmów. Dzięki odpowiednim praktykom, takim jak regularne przeglądy i konserwacja instalacji, można zapewnić nie tylko bezpieczeństwo sanitarno-epidemiologiczne, ale również wydajność systemu solarnego.

Pytanie 36

Rozmieszczenie podłączeń urządzeń oraz armatury w instalacji ilustrują rysunki

A. dokładnych
B. lokalnych
C. schematycznych
D. przybliżonych
Odpowiedź "schematycznych" jest prawidłowa, ponieważ schematy instalacji przedstawiają ogólny układ i połączenia pomiędzy urządzeniami w instalacjach budowlanych, takich jak instalacje elektryczne, wodociągowe czy grzewcze. Schematy te są kluczowe dla inżynierów i techników, ponieważ ułatwiają zrozumienie zasady działania systemu oraz kolejności podłączeń. W praktyce, schematyczne rysunki stosowane są podczas projektowania i instalacji, co pozwala na szybsze lokalizowanie problemów oraz planowanie serwisów. W branży budowlanej istnieją standardy, takie jak normy ISO i PN, które regulują sposób tworzenia takich schematów, co zapewnia ich jednolitość i zrozumiałość dla wszystkich użytkowników. Przykładem może być schemat instalacji elektrycznej, który ilustruje rozmieszczenie gniazdek, włączników oraz źródeł światła, co jest niezbędne do poprawnego wykonania instalacji oraz późniejszego jej użytkowania.

Pytanie 37

Kotły z paleniskiem są odpowiednie do spalania materiałów charakteryzujących się wysoką zawartością żużla?

A. rusztowym
B. narzutowym
C. korytkowym
D. przednim
Kotły z paleniskiem rusztowym są najczęściej stosowane do spalania materiałów o wysokiej zawartości żużla, ponieważ ich konstrukcja umożliwia efektywne odprowadzanie popiołów oraz żużla powstającego podczas procesu spalania. Palenisko rusztowe charakteryzuje się dużą powierzchnią grzewczą, co pozwala na równomierne spalanie paliwa. Dzięki różnym typom rusztów, takim jak ruszty stałe czy ruchome, możliwe jest dostosowanie procesu spalania do specyficznych właściwości paliwa, co zwiększa efektywność energetyczną kotła. Przykładem zastosowania kotłów rusztowych mogą być elektrociepłownie, które wykorzystują węgiel o dużej zawartości popiołu. Dodatkowo, zgodnie z normami emisji, kotły te są zaprojektowane w taki sposób, aby minimalizować emisję zanieczyszczeń, co jest istotnym aspektem w kontekście ochrony środowiska. Warto także zauważyć, że wiele nowoczesnych kotłów rusztowych jest wyposażonych w systemy automatycznego podawania paliwa, co zwiększa komfort eksploatacji oraz efektywność procesu spalania.

Pytanie 38

Z jakiego rodzaju materiału można zrealizować instalację łączącą kolektory słoneczne z zasobnikiem na ciepłą wodę użytkową?

A. Stal stopowa.
B. Poliamid.
C. Polipropylen.
D. Polietylen.
Wybór materiału do budowy instalacji łączącej kolektory słoneczne z zasobnikiem ciepłej wody użytkowej jest kluczowy dla efektywności i trwałości całego systemu. Polipropylen, polietylen oraz poliamid, pomimo że są popularnymi materiałami używanymi w różnych instalacjach, nie są odpowiednie do tego typu zastosowań. Polipropylen i polietylen, będąc tworzywami sztucznymi, mają ograniczoną odporność na wysokie temperatury. W systemach solarnych, gdzie temperatura wody może sięgać nawet 95 stopni Celsjusza, te materiały mogą ulegać deformacjom, co prowadzi do nieszczelności i utraty efektywności systemu. Poliamid, chociaż bardziej odporny na temperaturę niż polipropylen czy polietylen, ma problem z odpornością na działanie wody gorącej, co w dłuższym czasie może prowadzić do degradacji materiału. W kontekście instalacji słonecznych ważne jest, aby zastosowane materiały były zgodne z normami i wymaganiami, jak np. EN 10088 dla stali, które zapewniają odpowiednią jakość i trwałość. Często popełnianym błędem jest mylenie materiałów kompozytowych z metalowymi, co prowadzi do przekonania, że wszystkie tworzywa sztuczne mogą zastąpić stal w wymagających aplikacjach. Dlatego kluczowe jest, aby przy wyborze materiałów kierować się ich właściwościami fizycznymi oraz warunkami, w jakich będą stosowane, unikając pułapek wynikających z niedoinformowania o właściwościach materiałów.

Pytanie 39

System solarny składa się z 3 kolektorów o pojemności 1,1 litra każdy. Pojemność wężownicy w zasobniku c.w.u. wynosi 4,5 dm3, grupy pompowej 1,5 dm3, a przeponowego naczynia wzbiorczego 15 dm3. Długość zamontowanych rur osiąga 30 mb. W jednym metrze rury mieści się 0,05 litra cieczy. Ile glikolu należy przygotować do napełnienia instalacji?

A. 25,3 dm3 glikolu
B. 24,3 dm3 glikolu
C. 26,8 dm3 glikolu
D. 25,8 dm3 glikolu
Aby obliczyć całkowitą pojemność cieczy potrzebnej do napełnienia instalacji solarnej, należy uwzględnić wszystkie elementy składowe systemu. W tym przypadku mamy trzy kolektory o pojemności 1,1 litra każdy, co daje łącznie 3,3 litra. Następnie dodajemy pojemność wężownicy zasobnika c.w.u. wynoszącą 4,5 dm3 (czyli 4,5 litra), grupy pompowej 1,5 dm3 (1,5 litra) oraz przeponowego naczynia wzbiorczego o pojemności 15 dm3 (15 litrów). Obliczając całkowitą pojemność, otrzymujemy: 3,3 + 4,5 + 1,5 + 15 = 24,3 litra. Dodatkowo, musimy uwzględnić objętość cieczy w rurach. Mając 30 mb rur, a w jednym metrze mieści się 0,05 litra, całkowita objętość cieczy w rurach wynosi 1,5 litra (30 * 0,05). Zatem całkowita objętość glikolu potrzebna do napełnienia instalacji wynosi 24,3 + 1,5 = 25,8 litra. Zastosowanie odpowiednich ilości glikolu w instalacjach solarnych jest kluczowe dla zapewnienia efektywności oraz ochrony przed zamarzaniem, co jest zgodne z dobrymi praktykami w branży.

Pytanie 40

Jakie narzędzia należy zastosować do łączenia rur PE Ø 32 mm podczas instalacji poziomego kolektora, obok gratownika zewnętrznego i wewnętrznego oraz nożyc do cięcia rur?

A. klucza łańcuchowego 1"
B. pilnika w kształcie trójkąta
C. kształtek zaciskowych 11/4"
D. piły metalowej
Kształtki zaciskowe 11/4" są kluczowym elementem w montażu rur PE, zwłaszcza przy instalacji kolektorów poziomych. Te kształtki umożliwiają solidne i szczelne połączenie rur, co jest niezbędne w systemach hydraulicznych i instalacjach wodociągowych. Wykorzystanie kształtek zaciskowych pozwala na łatwe i efektywne złączenie rur, minimalizując ryzyko wycieków, które mogą prowadzić do poważnych uszkodzeń oraz kosztownych napraw. Stosowanie tych kształtek jest zgodne z normami branżowymi, które zalecają użycie komponentów kompatybilnych z materiałem rur, co w przypadku PE jest kluczowe dla zapewnienia długotrwałości i wytrzymałości instalacji. Przykładem zastosowania kształtek zaciskowych 11/4" może być ich użycie w systemach nawadniania, gdzie efektywne połączenia są niezbędne do utrzymania odpowiedniego ciśnienia i przepływu wody. Przed przystąpieniem do montażu warto również zwrócić uwagę na odpowiednie przygotowanie rur, takie jak ich odtłuszczenie oraz użycie gratownika do wygładzenia krawędzi, co dodatkowo zwiększa szczelność połączenia.