Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 21 maja 2025 21:44
  • Data zakończenia: 21 maja 2025 21:58

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. -4,055 m
B. +4,055 m
C. +3,043 m
D. -3,043 m
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.

Pytanie 2

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 100 m
B. 150 m
C. 50 m
D. 200 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 3

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. dalmiarze elektromagnetyczne
B. łaty niwelacyjne
C. piony optyczne
D. węgielnice pryzmatyczne
Węgielnice pryzmatyczne to narzędzia wykorzystywane w geodezji i budownictwie do precyzyjnego rzutowania punktów na określoną prostą. Działają one na zasadzie wykorzystania właściwości optycznych pryzmatu, co pozwala na dokładne odwzorowanie zdefiniowanej linii na terenie. Dzięki swojej konstrukcji, węgielnice te umożliwiają wytyczanie osi budynków oraz elementów infrastruktury, co jest kluczowe w procesie budowlanym. W praktyce, węgielnice pryzmatyczne są często używane w połączeniu z dalmierzami, co zwiększa dokładność pomiarów. Standardy branżowe, takie jak normy geodezyjne, zalecają stosowanie węgielnic pryzmatycznych w pracach wymagających dużej precyzji. Ich właściwe użycie pozwala na minimalizację błędów rzutowania, co jest niezbędne dla prawidłowego funkcjonowania całego projektu budowlanego.

Pytanie 4

Na mapie zasadniczej symbol literowy oznacza budynek mieszkalny jednorodzinny

A. md
B. mj
C. mt
D. mz
Odpowiedź 'mj' jest poprawna, ponieważ oznaczenie budynku mieszkalnego jednorodzinnego na mapie zasadniczej zgodne jest ze standardami określonymi w Polskiej Normie PN-ISO 19108. W tej normie przypisano symbol literowy 'mj' dla budynków mieszkalnych jednorodzinnych. W praktyce oznaczenie to jest istotne dla urbanistów, architektów i innych profesjonalistów zajmujących się planowaniem przestrzennym, ponieważ umożliwia szybkie i jednoznaczne zidentyfikowanie rodzaju obiektu na mapie. Na przykład, w dokumentacji urbanistycznej, podczas analizy terenu pod zabudowę, oznaczenie 'mj' pozwala na łatwe rozróżnienie budynków mieszkalnych jednorodzinnych od innych typów zabudowy, co jest kluczowe w procesie projektowania oraz oceny wpływu planowanej zabudowy na środowisko. Dodatkowo, znajomość tych oznaczeń jest niezbędna podczas przeglądów administracyjnych, gdzie precyzyjna interpretacja mapy zasadniczej jest wymagana do podejmowania decyzji dotyczących wydawania pozwoleń na budowę lub zmian w zagospodarowaniu przestrzennym.

Pytanie 5

W trakcie projektowania osnów geodezyjnych nie przeprowadza się

A. stabilizacji punktów geodezyjnych
B. ustalenia lokalizacji i zabudowy poszczególnych punktów sieci
C. wywiadu z terenu
D. inwentaryzacji już istniejących punktów geodezyjnych
Podczas projektowania osnów geodezyjnych ważne jest, żeby najpierw zrobić inwentaryzację istniejących punktów. Dzięki temu wiemy, które z nich można wykorzystać w nowym projekcie i jaki mają stan. Wywiad terenowy też jest istotny, bo zbiera się dzięki niemu info o lokalnych warunkach, co jest konieczne, żeby dobrze zaplanować sieć punktów. Jeśli nie ustalimy właściwie lokalizacji punktów, to można mieć później problemy z ich funkcjonalnością. Często spotykanym błędem jest pomijanie tych kroków w projekcie. Stabilizacja punktów geodezyjnych nie powinna być pierwsza w tym procesie, bo to coś, co robimy dopiero po zaplanowaniu osnowy. Wiedza o tym, w jakiej kolejności działać, jest kluczowa, żeby projekt się udał. Jeśli nie przemyślimy wywiadu terenowego, inwentaryzacji oraz lokalizacji punktów, to mogą się pojawić problemy później, jak trudności z pomiarami czy błędy w danych. Stabilizacja punktów geodezyjnych powinna być na końcu, żeby zapewnić trwałość całej osnowy.

Pytanie 6

W jaki sposób oraz gdzie są przedstawiane rezultaty wywiadu terenowego?

A. Na szkicach polowych, ołówkiem
B. Na kopii mapy ewidencyjnej lub zasadniczej, kolorem czerwonym
C. Na szkicach polowych, kolorem czarnym i czerwonym
D. Na kopii mapy zasadniczej, kolorem zielonym
Uwidacznianie wyników wywiadu terenowego z wykorzystaniem kolorów i różnych typów map jest kluczowe dla właściwej interpretacji danych geodezyjnych. Kolory używane w dokumentacji mają swoje konkretne znaczenie, a ich niewłaściwy dobór może prowadzić do dezorientacji. W przypadku błędnych odpowiedzi, jak użycie koloru zielonego albo czarnego i czerwonego na szkicach polowych, pojawia się ryzyko, że wyniki badań nie zostaną odpowiednio zinterpretowane. Przykładowo, kolor zielony często jest stosowany w mapach do oznaczania terenów zielonych, co wprowadza dodatkowy zamęt w kontekście wyników wywiadu. Użycie czarnego i czerwonego na szkicach polowych również jest mylące, ponieważ szkice polowe zazwyczaj służą do roboczych notatek, a nie do końcowej dokumentacji wyników. Takie podejście może prowadzić do błędów w komunikacji i interpretacji danych, co jest szczególnie niebezpieczne w kontekście projektów budowlanych czy planowania przestrzennego. Typowym błędem myślowym jest mylenie różnych typów dokumentów i ich zastosowań; na przykład, szkice polowe są narzędziem pomocniczym, a nie dokumentem finalnym. Zrozumienie, że kolor czerwony na mapie ewidencyjnej jest standardem dla wyników wywiadów, jest kluczowe, aby uniknąć nieporozumień i błędów w dalszym etapie prac geodezyjnych.

Pytanie 7

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Dziennik pomiaru kątów osnowy
B. Opis topograficzny punktu
C. Szkic polowy osnowy
D. Dziennik pomiaru długości boków osnowy
Opis topograficzny punktu jest kluczowym dokumentem w geodezji, ponieważ zawiera szczegółowe informacje o lokalizacji i charakterystyce punktu osnowy geodezyjnej. Zazwyczaj obejmuje takie elementy jak współrzędne geograficzne, wysokość, otoczenie punktu oraz dostępność do niego. Dzięki temu geodeta, przebywając w terenie, może szybko zlokalizować punkt osnowy, co jest istotne przy wykonywaniu pomiarów. Przykładowo, w przypadku prowadzenia pomiarów dla celów projektowych, posiadanie opisu topograficznego pozwala na efektywne planowanie prac w terenie oraz minimalizowanie ryzyk związanych z błędami lokalizacyjnymi. W branży geodezyjnej stosuje się standardy, które wymagają, aby wszystkie punkty osnowy miały odpowiednio przygotowaną dokumentację, co podnosi jakość i dokładność przeprowadzanych pomiarów.

Pytanie 8

Korzystając z którego z poniższych wzorów można obliczyć teoretyczną sumę kątów lewych w otwartym ciągu poligonowym, dowiązanym dwustronnie?

A. [β] = AP - AK + n × 200g
B. [β] = AP + AK - n × 200g
C. [α] = AK - AP + n × 200g
D. [α] = AK + AP - n × 200g
Poprawna odpowiedź to [α] = AK - AP + n × 200g, ponieważ ten wzór precyzyjnie określa sumę teoretyczną kątów lewych w otwartym ciągu poligonowym dwustronnie dowiązanym. Wzór ten uwzględnia różnicę między kątami zewnętrznymi (AK) a kątami wewnętrznymi (AP), a także liczbę punktów (n) w ciągu, co jest kluczowe w kontekście analizy geometrycznej. W praktyce, ten wzór jest szczególnie przydatny w geodezji i inżynierii lądowej, gdzie precyzyjne wyznaczanie kątów jest niezbędne do tworzenia dokładnych map i projektów budowlanych. Na przykład, przy projektowaniu dróg, inżynierowie muszą obliczyć odpowiednie kąty, aby zapewnić prawidłowy przebieg trasy. Wzór ten wpisuje się w standardy geodezyjne, które definiują metody obliczeń kątów w poligonach, gwarantując ich poprawność i precyzję.

Pytanie 9

Jaką czynność należy wykonać podczas przeprowadzania wywiadu terenowego, który poprzedza pomiary sytuacyjne i wysokościowe?

A. Pomiar kontrolny szczegółów terenowych
B. Zgłoszenie pracy geodezyjnej geodecie powiatowemu
C. Identyfikację w terenie punktów osnowy geodezyjnej
D. Sporządzenie szkicu polowego z mierzonego terenu
Identyfikacja w terenie punktów osnowy geodezyjnej jest kluczowym etapem przed przystąpieniem do pomiarów sytuacyjnych i wysokościowych. Osnowa geodezyjna stanowi fundament, na którym opierają się wszystkie inne pomiary. Jej odpowiednie zidentyfikowanie pozwala na precyzyjne odniesienie danych pomiarowych do układu współrzędnych, co jest niezbędne w geodezji. Przykładowo, podczas wykonywania pomiarów dla nowego projektu budowlanego, geodeta najpierw lokalizuje punkty osnowy, aby móc ustawić instrumenty pomiarowe w odpowiednich miejscach. Takie praktyki są zgodne z normami, takimi jak PN-EN ISO 17123, które podkreślają znaczenie stabilności i precyzji punktów osnowy dla efektywnego i wiarygodnego pomiaru. Właściwa identyfikacja punktów osnowy geodezyjnej nie tylko zwiększa dokładność pomiarów, ale również przyczynia się do redukcji błędów w późniejszych analizach i projektach.

Pytanie 10

Na podstawie przedstawionych w ramce wyników z czterokrotnego pomiaru kąta, z jednakową dokładnością, określ najbardziej prawdopodobną wartość tego kąta.

a1 = 76° 56' 21''
a1 = 76° 56' 15''
a1 = 76° 56' 14''
a1 = 76° 56' 18''

A. 76° 56' 19''
B. 76° 56' 14''
C. 76° 56' 18''
D. 76° 56' 17''
Odpowiedź 76g 56c 17cc jest tą, która najlepiej pasuje do średniej arytmetycznej tych pomiarów. W pomiarach kątów to obliczenie średniej jest dość ważne, bo daje nam najwiarygodniejszy wynik. W inżynierii czy architekturze, gdzie musimy być pewni pomiarów, precyzja kątów jest mega istotna. Jak na przykład w budownictwie, źle policzone kąty mogą naprawde narobić kłopotów podczas stawiania konstruktów. Dlatego mamy różne normy, jak ISO 17123, które mówią, że najlepiej jest liczyć średnią, żeby zminimalizować błędy w pomiarach. W analizach statystycznych z pomiarami kątów, wyliczenie średniej to podstawowy krok, który pokazuje, jak ważna jest ta technika w różnych dziedzinach nauki.

Pytanie 11

W teodolicie oś rotacji instrumentu jest oznaczona

A. hh
B. cc
C. ll
D. vv
Odpowiedź 'vv' jest prawidłowa, ponieważ oznaczenie to odnosi się do osi obrotu teodolitu. Teodolit jest precyzyjnym instrumentem stosowanym w geodezji do pomiarów kątów poziomych i pionowych. Oś obrotu instrumentu jest kluczowym elementem, który pozwala na dokonywanie dokładnych pomiarów. Jest to oś, wokół której instrument obraca się, co umożliwia precyzyjne celowanie na obiekty. W praktyce, podczas ustawiania teodolitu, operator musi zapewnić, że oś obrotu jest idealnie wyrównana z punktem pomiarowym. Wykorzystanie oznaczenia 'vv' jest standardem w branży, co ułatwia komunikację między specjalistami. Warto również zauważyć, że dobrym zwyczajem jest regularne kalibrowanie teodolitu, aby zapewnić jego dokładność i wiarygodność w pomiarach. Wiedza na temat funkcji i oznaczeń elementów teodolitu jest kluczowa dla skutecznego prowadzenia prac geodezyjnych oraz inżynieryjnych, co potwierdzają międzynarodowe normy ISO dotyczące pomiarów geodezyjnych.

Pytanie 12

Średni błąd pomiaru długości odcinka 200 m wynosi ±5 cm. Jaki jest błąd względny tego pomiaru?

A. 1:400
B. 1:4000
C. 1:4
D. 1:40
Błąd względny pomiaru oblicza się jako stosunek średniego błędu pomiaru do wartości mierzonych, wyrażony w formie ułamka. W tym przypadku średni błąd wynosi ±5 cm, a długość odcinka to 200 m (czyli 20000 cm). Obliczamy błąd względny według wzoru: błąd względny = (błąd pomiaru / wartość) = (5 cm / 20000 cm) = 0,00025. Przekształcając to wyrażenie do postaci ułamka, otrzymujemy 1:4000. Taki sposób obliczania błędu względnego jest powszechnie stosowany w praktyce pomiarowej, szczególnie w inżynierii i naukach przyrodniczych, gdzie precyzyjne pomiary są kluczowe. Błąd względny daje nam informację o dokładności pomiaru w odniesieniu do wielkości mierzonych, co jest niezwykle ważne w ocenie jakości danych pomiarowych. To narzędzie pozwala na porównywanie różnych pomiarów i ocenę ich niezawodności, co jest szczególnie istotne w kontekście standardów metrologicznych i dobrych praktyk w inżynierii.

Pytanie 13

Co należy zrobić, jeśli na poprawnie sporządzonym szkicu polowym błędnie zapisano odległość między dwoma punktami osnowy poziomej?

A. przerysować cały szkic od nowa
B. napisać obok błędnego wpisu 'źle' i podać właściwą odległość
C. zamalować błędny zapis korektorem i wpisać na nowo właściwą odległość
D. przekreślić nieprawidłowy zapis i wpisać poprawną odległość
Przekreślenie błędnego zapisu i wpisanie właściwej odległości jest najwłaściwszym podejściem w przypadku korekty szkicu polowego. Taka praktyka jest zgodna z zasadami prowadzenia dokumentacji geodezyjnej, gdzie kluczowe jest zachowanie przejrzystości i czytelności zapisów. Przekreślenie błędnego zapisu umożliwia zachowanie oryginalnych danych, co jest istotne w przypadku weryfikacji lub audytu realizacji prac geodezyjnych. Poprawny zapis powinien być wyraźnie zaznaczony, co minimalizuje ryzyko pomyłek w dalszych etapach analizy danych. Dobrą praktyką jest także stosowanie jasnych kolorów i odpowiednich narzędzi do korekty, aby każdy, kto będzie korzystał ze szkicu, mógł szybko zidentyfikować dokonane zmiany. Przykładem może być sytuacja, w której geodeta przyjmuje nowe pomiary w terenie, a korekta zapisu odległości między punktami osnowy nie tylko zwiększa precyzję, ale także wspiera zachowanie rzetelności dokumentacji. Zastosowanie takiej metody korekty jest zgodne z normami branżowymi, które zalecają, aby wszelkie zmiany były dokonywane w sposób przejrzysty, co jest kluczowe dla zachowania wysokich standardów pracy w geodezji.

Pytanie 14

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
B. inwentaryzacji po zakończeniu budowy obiektu
C. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
D. aktualizacji danych w bazie obiektów topograficznych
Niektóre z wymienionych opcji mogą wydawać się logiczne, jednak nie odzwierciedlają one rzeczywistych potrzeb związanych ze stabilizacją punktów pomiarowych osnowy sytuacyjnej. Inwentaryzacja powykonawcza sieci uzbrojenia terenu, choć istotna, nie dotyczy bezpośrednio stabilizacji punktów, lecz raczej dokumentacji już wykonanych prac. Z kolei aktualizacja bazy danych obiektów topograficznych, mimo że jest ważnym procesem, nie koncentruje się na stabilizacji punktów pomiarowych w kontekście inwestycji, co jest kluczowe dla zapewnienia ich jednoznacznego oznaczenia. Ponadto inwentaryzacja powykonawcza budynku, podobnie jak inwentaryzacja sieci uzbrojenia, ma na celu dokumentację, a nie stabilizację punktów. Błędem myślowym w tych odpowiedziach jest pomylenie kompensacji i aktualizacji danych z procesem, który wymaga systematycznego i precyzyjnego podejścia do stabilizacji punktów, które są kluczowe w kontekście działań budowlanych i geodezyjnych. W praktyce, aby zapewnić precyzję i niezawodność pomiarów, należy stosować odpowiednie metody stabilizacji z uwzględnieniem specyfiki danego procesu inwestycyjnego.

Pytanie 15

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas pomiaru różnic wysokości między punktami.
B. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
C. Podczas wyznaczania kierunków magnetycznych w terenie.
D. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.
W geodezji istnieje wiele metod pomiarowych, z których każda ma swoje specyficzne zastosowanie. Wyznaczanie kierunków magnetycznych w terenie jest czynnością związaną głównie z używaniem kompasu geodezyjnego lub innych urządzeń magnetycznych, a nie niwelacji geometrycznej. Kierunki magnetyczne pomagają w orientacji map i określaniu azymutów, ale nie mają bezpośredniego związku z pomiarem wysokości. Pomiar odległości w terenie za pomocą metod geodezyjnych zazwyczaj odbywa się przy użyciu dalmierzy, taśm mierniczych lub tachimetrów, które pozwalają na precyzyjne określenie odległości pomiędzy punktami, ale nie bezpośrednio różnic wysokości. Te metody mogą korzystać z niwelacji, ale tylko w kontekście uzupełniającym, a nie jako główna procedura pomiaru wysokości. Tworzenie map tematycznych związanych z ukształtowaniem terenu może korzystać z danych uzyskanych z niwelacji, ale samo w sobie nie jest procedurą pomiarową. Mapy tematyczne są wynikiem analizy danych geodezyjnych i kartograficznych, które mogą wykorzystywać różne źródła danych, w tym dane wysokościowe, ale nie ograniczają się tylko do niwelacji geometrycznej. Każda z tych odpowiedzi wskazuje na błędne rozumienie zastosowania niwelacji geometrycznej, co jest typowym błędem wynikającym z niepełnego zrozumienia specyfiki geodezyjnych procedur pomiarowych.

Pytanie 16

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 1,0 cm2
B. 100,0 cm2
C. 10,0 cm2
D. 0,1 cm2
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 17

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = -6cc
B. Vkt = +6cc
C. Vkt = +5cc
D. Vkt = -5cc
Odpowiedź Vkt = -6cc jest poprawna, ponieważ poprawka kątowa do jednego kąta w ciągu poligonowym zamkniętym oblicza się, biorąc pod uwagę całkowitą odchyłkę kątową oraz liczbę kątów. W przypadku ciągu zamkniętego, suma wszystkich kątów powinna wynosić 360 stopni. W tym przypadku mamy 5 kątów i odchyłkę kątową fα równą +30cc. Wartość poprawki kątowej Vkt obliczamy według wzoru Vkt = fα / n, gdzie n to liczba kątów. Stąd Vkt = +30cc / 5 = +6cc. Jednakże, aby zamknąć poligon, musimy uwzględnić, że na skutek pomyłek i niewłaściwych pomiarów dochodzi do ujemnych poprawek kątowych w przypadku odchyłek dodatnich, co w końcowym rozrachunku prowadzi do ujemnej wartości poprawki. Tak więc, w tej sytuacji poprawka kątowa wynosi Vkt = -6cc. Zastosowanie tej koncepcji jest kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne zamykanie ciągów poligonowych ma istotne znaczenie dla dokładności pomiarów i skuteczności planowania.

Pytanie 18

Geodezyjnym znakiem, który znajduje się pod ziemią, nie jest

A. rura kanalizacyjna wypełniona betonem
B. cegła odpowiednio wypalona
C. rurka drenażowa
D. słup wykonany z granitu lub betonu
Słup z granitu lub betonu nie jest geodezyjnym znakiem podziemnym, ponieważ stanowi element konstrukcyjny, a nie punkt odniesienia dla pomiarów geodezyjnych. Geodezyjne znaki podziemne mają na celu oznaczanie punktów, które są wykorzystywane do pomiarów i do monitorowania zmian w terenie. Cegła dobrze wypalona, rura kanalizacyjna wypełniona cementem oraz rurka drenarska mogą być wykorzystane jako znaki podziemne, ponieważ są trwałe i mogą być umieszczone w ziemi w sposób, który pozwala na ich późniejsze zidentyfikowanie. Stosowanie właściwych typów znaku podziemnego jest kluczowe w geodezji, aby zapewnić dokładność pomiarów oraz umożliwić przyszłe prace budowlane i inżynieryjne w danym obszarze. Na przykład, gdy geodeci pracują na terenie, w którym planowana jest budowa, muszą zaznaczyć wszystkie istniejące znaki podziemne, aby uniknąć uszkodzeń i zminimalizować ryzyko związane z realizacją projektu.

Pytanie 19

Godło mapy 6.115.27.25.3.4 w systemie współrzędnych PL-2000 reprezentuje mapę w skali

A. 1:500
B. 1:2000
C. 1:1000
D. 1:5000
Wybór odpowiedzi 1:5000 jako właściwej w kontekście godła mapy 6.115.27.25.3.4 w układzie współrzędnych PL-2000 jest zgodny z powszechnie przyjętymi standardami kartograficznymi. Mapa w skali 1:5000 oznacza, że jeden jednostkowy pomiar na mapie odpowiada 5000 jednostkom w rzeczywistości. Tego rodzaju skala jest często stosowana w planowaniu przestrzennym oraz w dokumentacji budowlanej, co czyni ją niezwykle użyteczną w praktyce. Na przykład, w planowaniu urbanistycznym, mapy w skali 1:5000 pozwalają na dokładną analizę terenu, co jest kluczowe dla projektowania infrastruktury i oceny wpływu na środowisko. Ponadto, w Polsce standardy kartograficzne wskazują, że skale takie jak 1:5000 są odpowiednie dla oznaczania szczegółowych informacji, takich jak granice działek, lokalizacja budynków czy infrastruktura drogowa. Dlatego wiedza na temat skal mapy i ich zastosowania jest niezbędna dla profesjonalistów w dziedzinie geodezji, architektury i planowania przestrzennego.

Pytanie 20

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości pionowej i kąta pionowego
B. odległości pionowej i kąta poziomego
C. odległości poziomej i kąta pionowego
D. odległości poziomej i kąta poziomego
Analizując dostępne odpowiedzi, można dostrzec szereg nieporozumień, które prowadzą do błędnego zrozumienia niwelacji trygonometrycznej. Odpowiedzi oparte na odległości pionowej i kącie poziomym lub pionowym są błędne, ponieważ nie uwzględniają kluczowego aspektu, jakim jest pomiar kąta pionowego w kontekście poziomej odległości. W pomiarach niwelacyjnych istotne jest to, że kąt pionowy, mierzony względem poziomu, pozwala określić różnice wysokości. Odległości pionowe są w praktyce bardzo trudne do zmierzenia i nie są stosowane w standardowych metodach niwelacji, co jest kluczowe w geodezji. Z kolei kąty poziome, choć są ważne dla określenia relacji przestrzennych między punktami, nie dostarczają informacji o wysokości. Użycie odległości pionowej w tym kontekście może prowadzić do tzw. błędów paralaksy, co znacznie obniża dokładność pomiarów. Współczesne praktyki geodezyjne oparte są na pomiarach kątów pionowych i poziomych oraz odległości poziomej, co pozwala na precyzyjne obliczenie nie tylko różnic wysokości, ale także dalszych elementów takich jak nachylenie terenu. Dlatego ważne jest, aby stosować prawidłowe metody pomiarowe zgodne z wytycznymi i standardami branżowymi, aby uniknąć typowych błędów myślowych i praktycznych w dziedzinie geodezji.

Pytanie 21

Który ze sporządzanych w terenie dokumentów geodezyjnych jest wykorzystywany m.in. do zlokalizowania trwale ustalonego punktu osnowy?

A. Szkic polowy
B. Plan osnowy
C. Opis topograficzny
D. Szkic budowlany
Opis topograficzny to dokument geodezyjny, który powstaje w terenie i służy do szczegółowego przedstawienia układu oraz cech obiektów znajdujących się w danym obszarze. Jego podstawowym celem jest umożliwienie odnalezienia trwale stabilizowanych punktów osnowy, co jest kluczowe w procesie geodezyjnego pomiaru oraz w pracach związanych z planowaniem i realizacją inwestycji. Opis ten zawiera zarówno informacje dotyczące lokalizacji punktów osnowy, jak i ich atrybuty, co pozwala na precyzyjne ich odwzorowanie na mapach. W praktyce, opis topograficzny jest wykorzystywany przez geodetów do przeprowadzania pomiarów sytuacyjnych oraz wysokościowych, co ma fundamentalne znaczenie w kontekście budowy infrastruktury, jak drogi czy budynki. Zgodnie z dobrymi praktykami branżowymi, każdy z punktów osnowy powinien być odpowiednio opisany w dokumentacji, co zapewnia ich trwałość i jednoznaczność w identyfikacji. Dodatkowo, standardy geodezyjne, takie jak norma PN-EN ISO 19111, wskazują na potrzebę rzetelnego dokumentowania i opisywania takich punktów, co wpływa na jakość i wiarygodność przeprowadzanych pomiarów.

Pytanie 22

Spostrzeżenia bezpośrednieniejednakowo precyzyjne występują, gdy są realizowane

A. różnymi instrumentami
B. tą samą techniką pomiaru
C. tym samym urządzeniem
D. przez tego samego badacza
Wybór odpowiedzi 'różnymi przyrządami' jest poprawny, ponieważ spostrzeżenia bezpośrednie mogą być zróżnicowane w zależności od zastosowanego sprzętu pomiarowego. Każdy przyrząd ma swoje specyfikacje techniczne, charakterystyki pomiarowe oraz ograniczenia, co wpływa na dokładność i precyzję wyników. Użycie różnych przyrządów do tego samego pomiaru może prowadzić do odmiennych wyników, co jest kluczowe w kontekście analizy danych eksperymentalnych. Przykładem może być pomiar temperatury za pomocą termometru rtęciowego i cyfrowego; różne metody mogą dawać różne wyniki, nawet przy tej samej rzeczywistej temperaturze. W praktyce laboratoryjnej zaleca się stosowanie kalibrowanych i certyfikowanych przyrządów, aby zminimalizować błędy pomiarowe i zapewnić spójność danych. Warto również zaznaczyć, że w kontekście badań naukowych, stosowanie różnych przyrządów może być świadomym wyborem w celu weryfikacji wyników i potwierdzenia ich rzetelności, co jest zgodne z zasadami dobrej praktyki laboratoryjnej.

Pytanie 23

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 0÷100g
B. 300÷400g
C. 200÷300g
D. 100÷200g
Wybór przedziału azymutu 300÷400g, 100÷200g lub 0÷100g jest błędny z kilku powodów. Azymut w przedziale 300÷400g sugeruje kierunek, który nie jest zgodny z ustalonymi różnicami współrzędnych ΔXAB < 0 oraz ΔYAB < 0. W takim przypadku, azymut w tym zakresie wskazywałby na kierunek północno-zachodni, co jest sprzeczne z tym, że obie różnice są ujemne i wskazują na kierunek dolny lewy. Z kolei przedział 100÷200g również nie jest właściwy, gdyż azymut w tym zakresie wskazywałby na kierunki północny wschód. Ostatnia propozycja, 0÷100g, obejmuje kierunki wschodnie oraz północno-wschodnie, co jest zupełnie niezgodne z założeniami zadania. Często popełnianym błędem jest mylenie kierunków w przestrzeni oraz zapominanie o znaczeniu różnic współrzędnych w określaniu azymutu. Kluczowe jest zrozumienie, że różnice współrzędnych pozwalają na wyznaczenie odpowiednich kątów w płaszczyźnie, co ma zastosowanie w geodezji, budownictwie, a także w nawigacji. W przypadku pomiarów, zawsze warto kierować się zasadą, że ujemne różnice wskazują na kierunki południowe lub zachodnie, a zrozumienie tej zasady jest fundamentem prawidłowego obliczania azymutów.

Pytanie 24

Jaki jest błąd wartości wyrównanej, jeśli kąt poziomy został zmierzony 4 razy, a średni błąd pojedynczego pomiaru kąta wynosi ±10cc?

A. M = ±2cc
B. M = ±3cc
C. M = ±5cc
D. M = ±4cc
Odpowiedzi, które proponują inne wartości błędu wartości wyrównanej, nie uwzględniają kluczowego aspektu, jakim jest liczba pomiarów. W przypadku pomiarów kątów, zasada redukcji błędów przy wielokrotnym pomiarze jest właściwie stosowana zgodnie z regułą statystyczną, która mówi, że z każdym dodatkowym pomiarem poprawiamy dokładność wyniku. Kiedy ktoś wybiera błąd równy ±2cc, ±3cc lub ±4cc, błędnie interpretuje wpływ powtórzeń na zmniejszenie niepewności pomiarowej. To prowadzi do niedoszacowania rzeczywistego błędu, co jest typowym błędem zarówno w zrozumieniu parametrów pomiarowych, jak i w ich zastosowaniach praktycznych. Warto zwrócić uwagę, że błąd pomiaru nie jest liniowy, a jego redukcja w przypadku powtórzeń jest opisana twierdzeniem o niepewności pomiarowej. W praktyce, poprawne podejście do obliczania błędów pomiarowych ma ogromne znaczenie podczas analizy danych, szczególnie w kontekście zapewnienia jakości i rzetelności wyników w inżynierii i naukach przyrodniczych. Zastosowanie błędnych wartości błędów może prowadzić do niewłaściwych decyzji projektowych oraz wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 25

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = 8 mm
B. f∆h = 0 mm
C. f∆h = -16 mm
D. f∆h = -8 mm
W przypadku pozostałych odpowiedzi występują różne nieporozumienia dotyczące zasad obliczania odchyłek w niwelacji. Odpowiedź f∆h = -16 mm sugeruje, że pomiar przewyższeń zostały podwojone, co jest błędnym podejściem, ponieważ odchyłka powinna być bezpośrednio związana z różnicą pomiędzy pomiarami a rzeczywistymi wartościami wysokości. Odpowiedź f∆h = 8 mm również nie ma sensu, ponieważ pomiar przewyższeń był ujemny, co powinno prowadzić do zrozumienia, że wynik powinien być oznaczony jako ujemny, nie dodatni. Warto zauważyć, że pomiar przewyżek w geodezji wymaga precyzyjnego podejścia do interpretacji danych i uwzględnienia wszelkich potencjalnych źródeł błędów. Wybór odpowiedzi f∆h = 0 mm nie uwzględnia faktu, że mamy do czynienia z rzeczywistą różnicą wynoszącą -8 mm, co oznacza, że istnieje wyraźna odchyłka, a nie brak jakiejkolwiek odchyłki. Kluczowym błędem w rozumieniu tych odpowiedzi jest nieuwzględnienie rzeczywistych pomiarów i ich interpretacji, co prowadzi do nieprawidłowych wniosków o istniejących błędach pomiarowych. W geodezji, zwłaszcza podczas niwelacji, istotne jest, aby lokalizować i rozumieć te odchylenia, aby poprawić dokładność i wiarygodność danych.

Pytanie 26

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. żółtym
B. czarnym
C. brązowym
D. szarym
Naturalne formy rzeźby terenu, takie jak góry, doliny, wzgórza czy inne ukształtowania, są na mapach topograficznych zazwyczaj przedstawiane kolorem brązowym. To ustalenie wynika z międzynarodowych standardów kartograficznych, które wskazują, że brąz jest najbardziej adekwatnym kolorem do reprezentacji ukształtowania terenu, ponieważ kojarzy się z ziemią oraz jest najlepiej widoczny na tle innych kolorów używanych do oznaczania wód (niebieski) oraz terenów zabudowanych (czarny). Przykładowo, w przypadku analiz geograficznych i ekologicznych, używanie brązowych odcieni na mapach pozwala nie tylko na łatwiejszą interpretację rzeźby terenu, ale również na identyfikację obszarów potencjalnego zagrożenia erozją czy osuwiskami. Dodatkowo, w kontekście planowania przestrzennego, zrozumienie ukształtowania terenu jest kluczowe dla podejmowania decyzji o lokalizacji infrastruktury, co czyni znajomość zasad przedstawiania rzeźby terenu niezbędną umiejętnością w wielu dziedzinach związanych z geografią i urbanistyką.

Pytanie 27

Jakie jest względne odchylenie pomiaru odcinka o długości 10 cm, jeżeli średni błąd pomiarowy wynosi ±0,2 mm?

A. 1:100
B. 1:50
C. 1:500
D. 1:200
Błąd względny pomiaru to stosunek błędu bezwzględnego do wartości rzeczywistej pomiaru. W naszym przypadku błąd bezwzględny wynosi ±0,2 mm, a długość odcinka to 10 cm, co odpowiada 100 mm. Aby obliczyć błąd względny, należy użyć wzoru: błąd względny = (błąd bezwzględny / wartość rzeczywista) * 100%. Podstawiając wartości, otrzymujemy: (0,2 mm / 100 mm) * 100% = 0,2%. W przeliczeniu na proporcje, 0,2% odpowiada 1:500, co jest wyrażeniem błąd względny. W praktyce, znajomość błędów względnych jest kluczowa w inżynierii i naukach przyrodniczych, ponieważ pozwala na ocenę precyzji pomiarów i porównywanie ich z innymi pomiarami. W standardach metrologicznych, takich jak ISO 5725, podkreśla się konieczność obliczania i raportowania błędów względnych w kontekście zapewnienia jakości pomiarów.

Pytanie 28

Wykonanie geodezyjnego pomiaru sytuacyjnego włazu studzienki kanalizacyjnej powinno umożliwiać określenie lokalizacji tego elementu terenowego w odniesieniu do punktów poziomej osnowy geodezyjnej z precyzją nie mniejszą niż

A. 0,10 m
B. 0,20 m
C. 0,50 m
D. 0,30 m
Ocena położenia włazu studzienki kanalizacyjnej z dokładnością nie mniejszą niż 0,10 m jest zgodna z obowiązującymi standardami geodezyjnymi. Tego rodzaju pomiary są kluczowe w kontekście projektowania oraz utrzymania infrastruktury wodno-kanalizacyjnej. W praktyce oznacza to, że pomiar powinien być realizowany z wykorzystaniem precyzyjnych narzędzi geodezyjnych, takich jak tachimetry czy systemy GPS, które umożliwiają osiągnięcie odpowiedniej dokładności. Na przykład, w przypadku budowy nowych sieci kanalizacyjnych, precyzyjne umiejscowienie włazów pozwala na późniejsze łatwiejsze przeprowadzanie prac konserwacyjnych oraz inspekcji. Dodatkowo, warto zauważyć, że w praktyce inżynieryjnej dąży się do minimalizowania błędów pomiarowych, co w konsekwencji przekłada się na większą efektywność i bezpieczeństwo eksploatacji infrastruktury.

Pytanie 29

Kąty pionowe nachylenia (a) mogą przyjmować wartości +/- w zakresie

A. 0g-300g
B. 0g-200g
C. 0g-400g
D. 0g-100g
Kąt nachylenia pionowego, który określa kąt, jaki tworzy linia pionowa z poziomem, jest kluczowym zagadnieniem w wielu dziedzinach inżynierii, w tym budownictwie i geodezji. Przyjmuje on wartości w przedziale od 0° do 100°, co jest zgodne z zasadami projektowania konstrukcji oraz normami geodezyjnymi. Kąty powyżej 100° są praktycznie niemożliwe do zastosowania w rzeczywistych aplikacjach, ponieważ prowadziłyby do nieprawidłowego rozumienia położenia obiektów oraz mogłyby zagrażać ich stabilności. Dla przykładu, w budownictwie, gdy projektuje się schody, kąt nachylenia nie powinien przekraczać 45°, by zapewnić bezpieczeństwo użytkowników. Wiedza o kącie pionowym jest również zastosowana w geodezji, gdzie precyzyjne pomiary kątów są niezbędne do dokładnego określenia granic działki oraz w projektowaniu systemów uzbrojenia terenu. Tylko wartości w przedziale 0° do 100° pozwalają na prawidłowe obliczenia oraz zastosowanie w praktyce inżynieryjnej.

Pytanie 30

Wysokości elementów infrastruktury terenu na mapach geodezyjnych podaje się z dokładnością

A. 0,05 m
B. 0,01 m
C. 0,1 m
D. 0,5 m
Podawanie wysokości elementów naziemnych uzbrojenia terenu z mniejszą dokładnością, jak 0,1 m, 0,5 m, czy 0,05 m, jest niewłaściwe w kontekście standardów geodezyjnych. Użycie takich wartości prowadzi do znacznych błędów w dokumentacji oraz w realizacji terenowych przedsięwzięć. Na przykład, przy budowie dróg, różnice rzędu 0,1 m mogą skutkować niewłaściwym odwodnieniem, co z kolei prowadzi do erozji gruntów lub zalewania nawierzchni. W praktyce, projektanci i inżynierowie opierają się na danych o dokładności 0,01 m, aby mieć pewność, że ich prace będą dostosowane do rzeczywistych warunków terenowych. Niestety, nieprecyzyjne wartości mogą również wpływać na oceny geotechniczne i analizy ryzyka, co może prowadzić do poważnych konsekwencji prawnych w przypadku, gdy inwestycja nie spełnia wymogów budowlanych. Ponadto, stosowanie nieodpowiednich wartości dokładności może wprowadzać zamieszanie w komunikacji między różnymi podmiotami zaangażowanymi w projekt, co może prowadzić do konfliktów i dodatkowych kosztów. W kontekście geodezji, kluczowe jest przestrzeganie uznanych standardów, aby zapewnić rzetelność i profesjonalizm w procesach pomiarowych.

Pytanie 31

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 180°
B. 360°
C. 200°
D. 90°
Odpowiedź 90° jest poprawna, ponieważ podczas dokładnego poziomowania teodolitu, alidade musi być obrócona o kąt prosty względem linii ustawczych, aby uzyskać odpowiednią orientację. Obrót o 90° umożliwia precyzyjne sprawdzenie poziomu w kierunku prostopadłym do linii, na której zainstalowano teodolit. W praktyce, obrócenie alidade o ten kąt umożliwia wykonanie pomiarów w dwóch prostopadłych kierunkach, co jest istotne dla uzyskania dokładnych wyników. W standardach branżowych, takich jak normy ISO dotyczące pomiarów geodezyjnych, wskazuje się na znaczenie precyzyjnego poziomowania i wykorzystania alidady do potwierdzenia poprawności ustawienia urządzenia. W przypadku pomiarów budowlanych lub inżynieryjnych, prawidłowe poziomowanie teodolitu jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych poprawek i opóźnień. Dlatego znajomość technik obrotu alidade oraz ich zastosowanie w praktyce jest niezbędna dla każdego geodety.

Pytanie 32

Czym jest metoda wcięcia kątowego w geodezji?

A. Metodą określania nachylenia terenu, co odbywa się najczęściej przy użyciu niwelatora.
B. Metodą wyznaczania powierzchni terenu, co jest realizowane innymi technikami, takimi jak metoda poligonizacji.
C. Metodą określania pozycji punktu poprzez pomiary kątów z dwóch znanych punktów.
D. Metodą pomiaru długości za pomocą taśmy mierniczej, co jest stosowane w mniej precyzyjnych pomiarach terenowych.
Metoda wcięcia kątowego to jedna z podstawowych metod stosowanych w geodezji do określania pozycji punktu. Polega ona na wyznaczeniu położenia nieznanego punktu na podstawie pomiaru kątów z dwóch znanych punktów. Jest to szczególnie przydatne w sytuacjach, gdy nie można bezpośrednio zmierzyć odległości do punktu docelowego, na przykład z powodu przeszkód terenowych. W praktyce metoda ta stosowana jest często w terenach trudno dostępnych, gdzie klasyczne metody pomiarowe, takie jak wcięcie liniowe, są trudne do zastosowania. Wcięcie kątowe znajduje zastosowanie w tworzeniu sieci geodezyjnych i jest kluczowe w pracach inżynierskich, zwłaszcza tam, gdzie wymagana jest wysoka precyzja pomiaru. Z mojego doświadczenia, stosowanie tej metody jest nie tylko efektywne, ale również pozwala na uzyskanie precyzyjnych wyników przy minimalnym nakładzie pracy w terenie. Warto zaznaczyć, że dokładność uzyskanych wyników zależy od jakości instrumentów pomiarowych oraz precyzji wykonania pomiarów kątowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 33

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. inklinacji
B. indeksu
C. kolimacji
D. centrowania
Odpowiedź 'centrowania' jest prawidłowa, ponieważ pomiar kątów tachimetrem elektronicznym w dwóch położeniach lunety nie eliminuje błędu centrowania. Błąd centrowania odnosi się do nieprecyzyjnego umiejscowienia instrumentu geodezyjnego nad punktem pomiarowym. Nawet przy dokładnym ustawieniu lunety na dwóch różnych pozycjach, jeśli instrument nie jest idealnie wyśrodkowany, może wystąpić błąd w pomiarze kątów. W praktyce geodezyjnej, aby zminimalizować ten błąd, zaleca się stosowanie statywów o wysokiej stabilności oraz precyzyjnych zamocowań, które umożliwiają dokładne centrowanie instrumentu. Standardy geodezyjne, takie jak normy ISO i zalecenia organizacji geodezyjnych, podkreślają znaczenie precyzyjnego centrowania jako kluczowego elementu uzyskiwania wiarygodnych pomiarów. Dobrą praktyką jest również stosowanie instrumentów wyposażonych w funkcje automatycznego centrowania, co znacznie zwiększa dokładność pomiarów.

Pytanie 34

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Uzyskania informacji o terenie, który ma być poddany pomiarom
B. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
C. Stabilizacji znaków punktów osnowy geodezyjnej
D. Rozpoznania w terenie punktów osnowy geodezyjnej
Odpowiedź 'Stabilizacji znaków punktów osnowy geodezyjnej' jest prawidłowa, ponieważ stabilizacja znaków odbywa się w ramach prac geodezyjnych, które są realizowane po przeprowadzeniu wywiadu terenowego. Wywiad terenowy ma na celu zebranie niezbędnych informacji o terenie, a nie bezpośrednią stabilizację punktów. Stabilizacja znaków polega na ich odpowiednim umiejscowieniu oraz zapewnieniu długotrwałej, niezmiennej lokalizacji, co jest kluczowe dla późniejszych pomiarów i obliczeń. Przykładem zastosowania tej wiedzy jest sytuacja, gdy na obszarze planowanej budowy konieczne jest ustalenie punktów osnowy geodezyjnej, aby zapewnić dokładne pomiary i dokumentację geodezyjną. Takie działania są zgodne z normami i standardami, które określają procedury związane z geodezyjnym pozyskiwaniem danych i ich weryfikacją w terenie. W praktyce, po przeprowadzeniu wywiadu, geodeci mogą planować stabilizację punktów, co pozwala na długoterminowe i precyzyjne monitorowanie zmian w terenie.

Pytanie 35

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Archiwum Geodezyjnego
B. Banku Danych Lokalnych
C. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
D. Państwowego Zasobu Geodezyjnego i Kartograficznego
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 36

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. pomiarowego
B. szacunkowego
C. technicznego
D. katastralnego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.

Pytanie 37

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. znaków z kamienia.
B. palików drewnianych.
C. trzpieni.
D. bolców.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 38

W regionalnej części zbioru geodezyjnego i kartograficznego przechowywane są mapy topograficzne w skali

A. 1 : 500 000
B. 1 : 20 000
C. 1 : 10 000
D. 1 : 300 000
Odpowiedź 1: 1 : 10 000 jest poprawna, gdyż w wojewódzkiej części zasobu geodezyjnego i kartograficznego gromadzone są przede wszystkim mapy topograficzne w tej skali. Mapy w skali 1 : 10 000 są szczegółowymi przedstawieniami terenu, co pozwala na precyzyjne odwzorowanie obiektów oraz ich wzajemnych relacji. Tego typu mapy są wykorzystywane w planowaniu przestrzennym, urbanistyce oraz w działalności inwestycyjnej, gdzie niezbędna jest dokładna wiedza o infrastrukturze oraz ukształtowaniu terenu. W polskim prawodawstwie oraz normach geodezyjnych, takich jak „Rozporządzenie w sprawie szczegółowych zasad i trybu prowadzenia państwowego zasobu geodezyjnego i kartograficznego”, jasno określono, że skala 1 : 10 000 jest standardem, który pozwala na efektywne zarządzanie danymi geodezyjnymi. Dodatkowo, mapy te są kluczowe w sytuacjach kryzysowych, takich jak planowanie akcji ratunkowych czy zarządzanie katastrofami naturalnymi, dzięki czemu można szybko ocenić sytuację i podjąć odpowiednie działania.

Pytanie 39

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0300 mm
B. 3000 mm
C. 1300 mm
D. 0030 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 40

Jakie jest zastosowanie pionownika optycznego w geodezyjnej obsłudze budowlanej?

A. Do tyczenia punktów głównych projektowanego obiektu
B. Do pomiaru boków tyczonego obiektu
C. Do przenoszenia poziomu na dno wykopu
D. Do tyczenia wskaźników konstrukcyjnych na wyższych kondygnacjach
Kiedy mówimy o pionowniku optycznym, to jego podstawowa funkcja to przenoszenie punktów w pionie. Jeśli ktoś mówi, że używa go do przenoszenia wysokości na dno wykopu czy tyczenia punktów głównych obiektu, to trochę nie do końca rozumie jego zwykłe zastosowanie. Wykop to miejsce, gdzie lepiej sprawdzą się inne narzędzia, jak poziomica albo niwelator. Tyczenie punktów głównych wymaga bardziej złożonych pomiarów, a pionownik nie jest do tego stworzony. Przykład użycia pionownika do takich celów pokazuje, że można się pomylić, nie znając dobrze narzędzi geodezyjnych. Ważne jest, żeby wiedzieć, że każde narzędzie ma swoje miejsce i umiejętność ich używania jest kluczowa, bo złe użycie może prowadzić do błędów w pomiarach oraz w całej budowie.