Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 29 maja 2025 01:37
  • Data zakończenia: 29 maja 2025 02:02

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Które z instrukcji dotyczących obsługi frezarki jest niewłaściwe?

A. Śruby mocujące narzędzia oraz imadła maszynowe i dociski śrubowe należy dociskać ręcznie, unikając używania przedłużek do kluczy
B. Należy chłodzić obrabiany element podczas obróbki za pomocą mokrych szmat
C. W trakcie obróbki materiałów odpryskowych i pylących należy nosić okulary ochronne oraz półmaski przeciwpyłowe
D. Należy zakładać i stabilizować narzędzia w rękawicach roboczych
Chłodzenie obrabianego elementu podczas obróbki przy pomocy specjalnych płynów chłodzących jest kluczowym elementem zapewniającym prawidłowe działanie frezarki. Podczas intensywnej obróbki mechanicznej, temperatura narzędzia oraz obrabianego materiału może osiągnąć bardzo wysokie wartości, co prowadzi do ich uszkodzenia, zniekształceń, a nawet przyspieszonego zużywania się narzędzi. Użycie odpowiednich płynów chłodzących, które mają za zadanie nie tylko obniżenie temperatury, ale także usuwanie wiórów oraz zanieczyszczeń, jest zgodne z najlepszymi praktykami w branży. Warto pamiętać, że chłodzenie mokrymi szmatkami jest niewystarczające, ponieważ nie zapewnia odpowiedniej penetracji w obszary robocze, co może prowadzić do powstawania punktów przegrzewania. Aby uzyskać najlepsze rezultaty, należy stosować płyny chłodzące zgodne z normami ISO, które posiadają odpowiednie właściwości smarne i chłodzące oraz są bezpieczne dla zdrowia operatora.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki typ zaworu powinno się użyć w układzie pneumatycznym, aby zachować ciśnienie na określonym poziomie?

A. Zawór nastawny podwójnego sygnału
B. Zawór nastawny dławiąco-zwrotny
C. Zawór redukcyjny
D. Zawór przełączający
Wybór niewłaściwego zaworu w układzie pneumatycznym może prowadzić do poważnych problemów operacyjnych. Zawór nastawny podwójnego sygnału, mimo że pełni funkcję regulacyjną, nie jest przeznaczony do bezpośredniego utrzymania ciśnienia na stałym poziomie. Jego działanie opiera się na regulacji strumienia powietrza w odpowiedzi na zmieniające się sygnały, co w kontekście utrzymania ciśnienia może prowadzić do fluktuacji, a nie stabilizacji. Zawór nastawny dławiąco-zwrotny z kolei, chociaż może być używany do regulacji przepływu, również nie jest odpowiedni do bezpośredniej kontroli ciśnienia, co może skutkować niedostatecznym lub nadmiernym ciśnieniem w systemie. Zawory przełączające, które zmieniają kierunek przepływu medium, również nie mają zastosowania w kontekście regulacji ciśnienia na zadanym poziomie. Te koncepcje mogą wynikać z mylnego założenia, że jakiekolwiek urządzenie regulacyjne może działać jako skuteczny zawór redukcyjny. W rzeczywistości, zawór redukcyjny jest zaprojektowany specjalnie do tego celu, co czyni go niezastąpionym w wielu systemach pneumatycznych. Ignorowanie tej zasady może prowadzić do nieefektywności procesów oraz kosztownych napraw, dlatego zrozumienie właściwego zastosowania każdego typu zaworu jest kluczowe dla prawidłowego funkcjonowania układów pneumatycznych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Pomiar rezystancji izolacji
B. Zasilanie obwodów niskim napięciem
C. Zwiększenie częstotliwości sygnałów
D. Obserwacja kształtu sygnałów elektrycznych
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 10

Jaki typ systemu wizualizacji procesów przemysłowych powinien być użyty do ustawiania parametrów produkcji, gdy nie ma dostępnego miejsca na komputer?

A. Specjalistyczne środowisko wizualizacyjne ISO/OSI.
B. System SCADA.
C. Aplikacja oparta na architekturze NET Framework.
D. Panel operatorski HMI.
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w nowoczesnych systemach automatyki przemysłowej, umożliwiającym operatorom interakcję z maszynami i procesami produkcyjnymi. Jego podstawową funkcją jest wprowadzanie i monitorowanie parametrów pracy maszyn bezpośrednio na urządzeniu, co jest niezwykle istotne w sytuacjach, gdy przestrzeń robocza jest ograniczona. W odróżnieniu od rozbudowanych systemów SCADA, które wymagają stacji komputerowej do nadzoru i sterowania, panele HMI mają kompaktową budowę, co umożliwia ich łatwe umiejscowienie w obiektach produkcyjnych. Przykładami zastosowania paneli HMI mogą być linie montażowe, gdzie operatorzy mogą szybko reagować na zmiany w procesie, wprowadzać korekty oraz monitorować stany awaryjne. W kontekście standardów branżowych, panele HMI wspierają interoperacyjność z różnymi protokołami komunikacyjnymi, co jest zgodne z dobrymi praktykami inżynieryjnymi w automatyce przemysłowej. Dodatkowo, panele te często posiadają funkcje diagnostyczne, co zwiększa efektywność utrzymania ruchu.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Ręczne sterowanie prasą hydrauliczną postanowiono zastąpić automatycznym zarządzaniem przy pomocy sterownika PLC. Parametry technologiczne prasy pozostają bez zmian. Jakie elementy powinien uwzględniać projekt modernizacji prasy?

A. Obliczenie parametrów elementów prasy oraz stworzenie programu
B. Przygotowanie schematów układu sterowania oraz opracowanie programu
C. Określenie parametrów wytrzymałościowych mechanizmów i sprawdzenie zabezpieczeń
D. Obliczenie parametrów mediów zasilających prasę oraz zaprojektowanie zabezpieczeń
Sporządzenie schematów układu sterowania oraz opracowanie programu jest kluczowym krokiem w procesie modernizacji prasy hydraulicznej. Przeniesienie ręcznego sterowania na automatyczne za pomocą sterownika PLC wymaga precyzyjnego zaplanowania architektury układu sterowania, co obejmuje zarówno schematy ideowe, jak i szczegółowe. Schematy te powinny zawierać wszystkie elementy systemu, takie jak czujniki, wykonawcze elementy hydrauliczne oraz interfejsy komunikacyjne. Opracowanie programu sterującego jest równie istotne, gdyż to właśnie on definiuje logikę działania urządzenia, umożliwiając precyzyjne kontrolowanie procesu w czasie rzeczywistym. W praktyce, zastosowanie standardów takich jak IEC 61131-3 pozwala na tworzenie programów w sposób modularny, co ułatwia ich późniejszą modyfikację i konserwację. Dodatkowo, przy projektowaniu układu sterowania warto uwzględnić protokoły komunikacyjne, co pozwoli na integrację prasy z innymi elementami linii produkcyjnej, zapewniając większą elastyczność i efektywność w procesie produkcji.

Pytanie 14

W przypadku siłownika zasilanego powietrzem pod ciśnieniem równym 8 barów, który jest w stanie wykonać maksymalnie nmax = 50 cykli/min, a w trakcie jednego cyklu zużywa 1,4 litra powietrza, jakie powinny być parametry sprężarki do jego zasilania?

A. Wydajność 80 l/min, ciśnienie maksymalne 1,0 MPa
B. Wydajność 60 l/min, ciśnienie maksymalne 1,0 MPa
C. Wydajność 80 l/min, ciśnienie maksymalne 0,7 MPa
D. Wydajność 60 l/min, ciśnienie maksymalne 0,7 MPa
Wydajność sprężarki powinna wynosić 80 l/min, ponieważ siłownik zużywa 1,4 litra powietrza na jeden cykl pracy, a przy maksymalnej liczbie 50 cykli na minutę, całkowite zużycie powietrza wynosi 70 litrów na minutę (1,4 l/cykl * 50 cykli/min = 70 l/min). Dodatkowa wydajność jest zalecana, aby zapewnić stabilną pracę systemu i uwzględnić ewentualne straty ciśnienia w układzie. Ustalając ciśnienie maksymalne, należy wziąć pod uwagę, że 8 barów to równowartość 0,8 MPa. Dlatego sprężarka powinna być w stanie dostarczyć ciśnienie o 20% wyższe, aby zapewnić odpowiednią moc roboczą i uniknąć problemów z wydajnością. Ponadto, zgodnie z normami branżowymi, sprężarki z wyższym ciśnieniem roboczym są bardziej efektywne w zastosowaniach przemysłowych, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Przykładem zastosowania tego typu sprężarki jest zasilanie narzędzi pneumatycznych oraz systemów automatyzacji w zakładach produkcyjnych.

Pytanie 15

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Zawór ssący
B. Gładź cylindra
C. Uszczelka głowicy
D. Korbowód tłoka
Wybór zaworu ssącego, gładzi cylindra lub uszczelki głowicy jako elementów, które na pewno nie uległy uszkodzeniu, jest błędny, ponieważ każdy z tych komponentów może być bezpośrednio związany z problemem niskiego poziomu sprężania powietrza. Zawór ssący, odpowiedzialny za wprowadzenie powietrza do cylindra, może być zanieczyszczony lub uszkodzony, co prowadzi do nieszczelności. Nieszczelności te mogą drastycznie wpłynąć na wydajność sprężarki, uniemożliwiając prawidłowe sprężanie powietrza. Gładź cylindra, która tworzy powierzchnię do ruchu tłoka, również jest kluczowa. Jej zużycie lub zarysowanie mogą prowadzić do nieefektywnego uszczelnienia między tłokiem a cylindrem, co z kolei skutkuje utratą ciśnienia. Uszczelka głowicy pełni rolę uszczelniającą, a jej wada może także powodować przecieki, co jest główną przyczyną obniżonego poziomu sprężania. Takie podejście do oceny stanu sprężarki często prowadzi do błędnych wniosków, ponieważ nie uwzględnia się, iż uszkodzenia mogą być subtelne, ale mają istotny wpływ na wydajność całego systemu. W praktyce, diagnozowanie uszkodzeń w sprężarce wymaga szerokiego zrozumienia mechaniki i współdziałania tych elementów, a skupienie się tylko na korbowodzie jako stanie nienaruszonym może prowadzić do pominięcia krytycznych problemów w układzie. Ważne jest, aby każdy z tych komponentów był regularnie sprawdzany oraz konserwowany zgodnie z najlepszymi praktykami w branży, aby zapewnić optymalną wydajność sprężarki.

Pytanie 16

Zidentyfikuj sieć przemysłową z topologią w kształcie pierścienia.

A. Modbus
B. InterBus-S
C. Profibus DP
D. LonWorks
Modbus, Profibus DP oraz LonWorks to również popularne protokoły komunikacyjne w automatyce, jednak nie wykorzystują one topologii pierścieniowej, co stanowi podstawową różnicę w porównaniu do InterBus-S. Modbus jest protokołem stosującym topologię magistralową, co oznacza, że wszystkie urządzenia komunikują się z centralnym kontrolerem poprzez wspólną linię. Taki układ może prowadzić do opóźnień w komunikacji, szczególnie w przypadku dużych systemów, gdzie wiele urządzeń przesyła dane jednocześnie. Profibus DP, z kolei, to protokół, który również opiera się na topologii magistralowej, ale dodatkowo wprowadza różne typy komunikacji, w tym tryb cykliczny i acykliczny, co może skomplikować projektowanie sieci. LonWorks z kolei jest przeznaczony głównie do systemów zarządzania budynkami i działa w oparciu o topologię gwiazdową, co nie sprzyja elastyczności w aplikacjach przemysłowych. Wybór niewłaściwej topologii może prowadzić do niedoskonałości w transmisji danych oraz utrudnień w rozbudowie systemów. Zrozumienie różnic w topologiach sieci przemysłowych jest kluczowe dla efektywnego projektowania i wdrażania systemów automatyki, dlatego istotne jest, aby dokładnie analizować wymagania aplikacji przed podjęciem decyzji o wyborze odpowiedniego protokołu.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Optyczny
B. Piezoelektryczny
C. Kontaktronowy
D. Ultradźwiękowy
Wybór czujnika do wykrywania położenia tłoczyska z magnesem wymaga zrozumienia, jakie właściwości i zasady działania mają różne typy czujników. Optyczny czujnik, choć popularny w wielu zastosowaniach, nie jest najlepiej przystosowany do lokalizacji obiektów magnetycznych. Działa na zasadzie wykrywania zmian w świetle lub przeszkód optycznych, co czyni go mniej skutecznym w kontekście siłowników z magnesem, gdzie położenie nie jest związane z obiektami optycznymi. Z kolei czujnik piezoelektryczny działa na zasadzie generowania napięcia w reakcji na deformacje, co również nie odpowiada na potrzeby identyfikacji położenia tłoczyska w sposób precyzyjny i bezpośredni. Piezoelektryczność jest wykorzystywana głównie w czujnikach ciśnienia lub drgań. Natomiast czujnik ultradźwiękowy, mimo że jest zdolny do mierzenia odległości, wymaga, aby obiekt był wystarczająco duży i dobrze odbijał fale dźwiękowe, co w przypadku tłoczyska z magnesem może nie być zrealizowane w sposób efektywny. Typowe błędy, które prowadzą do wyboru niewłaściwego czujnika, to brak zrozumienia zasady działania danego typu czujnika oraz nieodpowiednie przypisanie jego właściwości do konkretnego zastosowania. W związku z tym, aby dokonać właściwego wyboru, ważne jest, aby dobrze poznać wymagania konkretnego zastosowania oraz właściwości dostępnych technologii.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Który z parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku
B. Powtarzalność pozycjonowania
C. Liczba wrzecion
D. Maksymalna prędkość ruchu dla poszczególnych osi
Gramatura wtrysku jest pojęciem związanym z procesem wtryskiwania tworzyw sztucznych, który nie ma żadnego związku z frezarkami numerycznymi. Frezarka numeryczna jest narzędziem wykorzystywanym w obróbce metalu i innych materiałów, gdzie kluczowe parametry obejmują liczbę wrzecion, maksymalną prędkość ruchu dla poszczególnych osi oraz powtarzalność pozycjonowania. Zrozumienie tych parametrów jest istotne dla optymalizacji procesu obróbczo-produkcyjnego. Na przykład, wyższa liczba wrzecion umożliwia jednoczesne przetwarzanie wielu elementów, co zwiększa efektywność. Wysoka maksymalna prędkość ruchu pozwala na szybsze przemieszczenie narzędzi w obrabianym materiale, co przyspiesza cały proces produkcji. Powtarzalność pozycjonowania jest kluczowym czynnikiem w zapewnieniu wysokiej jakości produkcji, gdyż pozwala na dokładność i eliminację błędów w każdej iteracji procesu. W związku z tym, gramatura wtrysku nie jest parametrem, który miałby zastosowanie w kontekście frezarek numerycznych, co czyni tę odpowiedź prawidłową.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie symptomy pracy jednofazowego silnika klatkowego mogą wskazywać na uszkodzenie kondensatora?

A. Trudności z uruchomieniem silnika
B. Brak jakiejkolwiek reakcji po włączeniu zasilania
C. Zmiana kierunku obrotu wirnika
D. Skłonności do samoczynnego rozbiegnięcia się wirnika
Kierunek wirowania wirnika w silniku klatkowym jednofazowym jest zdeterminowany przez sposób podłączenia uzwojeń oraz kierunek prądu wytwarzanego przez kondensator. Zmiana kierunku wirowania nie jest typowym objawem uszkodzenia kondensatora, a zatem nie można jej łączyć z tym rodzajem awarii. Tendencje do rozbiegania się wirnika mogą być związane z innymi problemami, takimi jak nierównomierne obciążenie lub uszkodzenie mechaniczne, a niekoniecznie z kondensatorem. Z kolei brak jakiejkolwiek reakcji na załączenie zasilania wskazuje na poważniejsze problemy, takie jak zasilanie, uszkodzenia w uzwojeniach, czy całkowite uszkodzenie silnika. Te objawy często prowadzą do błędnych wniosków, które mogą skutkować niewłaściwą diagnozą i naprawą. W praktyce, aby prawidłowo zidentyfikować problem w silniku klatkowym jednofazowym, konieczne jest przeprowadzenie szczegółowej analizy, w tym sprawdzeniu kondensatora, ale także innych elementów układu elektrycznego. Zrozumienie złożoności działania silników elektrycznych i umiejętność oceny objawów awarii to kluczowe kompetencje dla techników i inżynierów zajmujących się elektroniką i elektrotechniką.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Grubą linią punktową.
B. Cienką ciągłą linią zygzakową.
C. Grubą kreską.
D. Cienką z długą kreską oraz kropką.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie urządzenie pneumatyczne ma następujące cechy: napięcie 230 V, moc 1,1 kW, ciśnienie 8 bar, wydajność ssawna 200 l/min, wydajność wyjściowa 115 l/min, pojemność zbiornika 24 l, liczba cylindrów 1, prędkość obrotowa 2850 obr/min?

A. Silnik tłokowy
B. Siłownik obrotowy
C. Zbiornik ciśnieniowy
D. Sprężarka tłokowa
Sprężarka tłokowa wyróżnia się parametrami, które zostały podane w pytaniu. Napięcie 230 V i moc 1,1 kW są typowe dla sprężarek, które często są zasilane z sieci jednofazowej, co czyni je łatwymi do zastosowania w różnych środowiskach, od warsztatów po małe zakłady przemysłowe. Ciśnienie robocze 8 bar jest standardowe dla sprężarek tłokowych, które są szeroko wykorzystywane do zasilania narzędzi pneumatycznych, takich jak wkrętarki czy młoty udarowe. Wydajność ssawna 200 l/min oraz wydajność wyjściowa 115 l/min wskazują na efektywność pracy sprężarki, co jest kluczowe w zastosowaniach wymagających ciągłego dostarczania sprężonego powietrza. Dodatkowo, pojemność zbiornika 24 l pozwala na akumulację sprężonego powietrza, co poprawia stabilność ciśnienia w systemie. Prędkość obrotowa 2850 obr/min jest standardowa dla sprężarek tłokowych, co podkreśla ich wydajność i zdolność do szybkiego generowania ciśnienia. Sprężarki tłokowe są na ogół preferowane w zastosowaniach, gdzie wymagana jest duża moc i wydajność, co czyni je niezastąpionymi w wielu branżach."

Pytanie 34

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. MUL
B. DIV
C. SUB
D. ADD
Kod 'ADD' jest skrótem od angielskiego słowa 'addition', co w kontekście programowania assemblerowego oznacza operację dodawania. W zasadzie instrukcja ta instruuje procesor, aby dodał wartości znajdujące się w dwóch rejestrach lub pomiędzy rejestrami a pamięcią. Przykładowo, jeśli mamy rejestry R1 i R2, używając instrukcji 'ADD R1, R2', procesor doda wartość z R2 do wartości w R1 i zapisze wynik z powrotem w R1. To podejście jest kluczowe w obliczeniach arytmetycznych i w wielu algorytmach przetwarzania danych. Dodatkowo, stosowanie instrukcji 'ADD' w kodzie assemblera jest zgodne z najlepszymi praktykami w programowaniu niskopoziomowym, gdzie precyzyjne zarządzanie operacjami arytmetycznymi jest niezbędne dla wydajności aplikacji. Użycie tej instrukcji jest również powszechne w kontekście optymalizacji kodu, gdzie reducowanie liczby operacji arytmetycznych przekłada się na szybsze działanie programów.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie urządzenie stosuje się do pomiaru rezystancji izolacji w systemach mechatronicznych?

A. mostek pomiarowy
B. induktor pomiarowy
C. omomierz
D. multimetr
Pomiar rezystancji izolacji w urządzeniach mechatronicznych jest procesem, który wymaga zastosowania odpowiednich narzędzi, a wykorzystanie omomierza, mostka pomiarowego czy multimetru do tego celu jest niewłaściwe z wielu powodów. Omomierz, mimo że jest przyrządem dedykowanym do pomiaru rezystancji, nie jest w stanie sprostać wymaganiom związanym z pomiarem izolacji. W jego przypadku mogą występować problemy z niskimi wartościami rezystancji, co prowadzi do zniekształcenia wyników, a także do ryzyka uszkodzenia izolacji. Mostek pomiarowy, z drugiej strony, zazwyczaj stosowany jest w przypadku pomiarów precyzyjnych, ale jego zastosowanie do pomiaru rezystancji izolacji może być nieodpowiednie, gdyż nie jest zaprojektowany do wykrywania problemów związanych z izolacjami przy wysokich napięciach, co jest istotne w kontekście bezpieczeństwa. Multimetr to narzędzie wszechstronne, jednak jego pomiarowe ograniczenia dotyczące rezystancji izolacji i niskiej pewności pomiarowej w takich zastosowaniach sprawiają, że nie jest on odpowiedni do tego zadania. Niezrozumienie różnic między tymi urządzeniami może prowadzić do wniosków, które mogą zagrażać bezpieczeństwu urządzeń oraz ich użytkowników. Właściwe metody pomiaru są kluczowe dla zapewnienia długotrwałej i bezpiecznej pracy urządzeń mechatronicznych oraz zgodności z normami branżowymi.