Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 3 czerwca 2025 09:58
  • Data zakończenia: 3 czerwca 2025 10:19

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W dwóch sąsiadujących pomieszczeniach w pewnej firmie występują bardzo silne zakłócenia elektromagnetyczne. Aby osiągnąć jak największą przepustowość podczas działania istniejącej sieci LAN, jakie medium transmisyjne powinno zostać użyte?

A. kabel telefoniczny
B. skrętkę nieekranowaną
C. fale elektromagnetyczne w zakresie podczerwieni
D. kabel światłowodowy
Kabel światłowodowy jest najlepszym rozwiązaniem w przypadku silnych zakłóceń elektromagnetycznych, jak te występujące w przyległych pomieszczeniach. Dzięki wykorzystaniu światła jako medium transmisyjnego, kable światłowodowe są całkowicie odporne na zakłócenia elektromagnetyczne, co zapewnia nieprzerwaną i wysoką przepustowość danych. W zastosowaniach biznesowych, gdzie stabilność i prędkość połączenia są kluczowe, światłowody stają się standardem. Przykłady ich zastosowania obejmują centra danych oraz infrastruktury telekomunikacyjne, gdzie duża ilość danych musi być przesyłana w krótkim czasie. Co więcej, światłowody mogą przesyłać sygnały na dużą odległość bez znacznej degradacji jakości, co jest istotne w dużych biurowcach czy kampusach. Według standardów IEEE, światłowody są zalecane do zastosowań w sieciach lokalnych, zwłaszcza tam, gdzie wymagane są wysokie prędkości oraz niezawodność, co czyni je najlepszym wyborem w warunkach dużych zakłóceń.

Pytanie 2

Na ilustracji widoczne jest urządzenie służące do

Ilustracja do pytania
A. zaciskania złącz BNC
B. zaciskania złącz RJ-45
C. usuwania izolacji z przewodów
D. instalacji okablowania w gniazdku sieciowym
Urządzenie przedstawione na rysunku to narzędzie do zdejmowania izolacji z kabli powszechnie używane w pracach elektrycznych i telekomunikacyjnych. Jego główną funkcją jest bezpieczne i precyzyjne usunięcie warstwy izolacyjnej z przewodów bez uszkodzenia ich wewnętrznej struktury. Urządzenia tego typu są niezbędne w sytuacjach, gdy wymagane jest przygotowanie kabla do połączenia elektrycznego lub montażu złącza. Przy korzystaniu z tych narzędzi przestrzega się standardów branżowych takich jak IEC 60352 dotyczących połączeń elektrycznych aby zapewnić bezpieczeństwo i funkcjonalność instalacji. Przykładem zastosowania może być przygotowanie przewodów do zaciskania złącz RJ-45 w sieciach komputerowych gdzie precyzyjne zdjęcie izolacji jest kluczowe dla zapewnienia poprawności działania sieci. Profesjonalne narzędzia do zdejmowania izolacji mogą być regulowane do różnych średnic przewodów co zwiększa ich uniwersalność w zastosowaniach zawodowych. Operatorzy tych narzędzi powinni być odpowiednio przeszkoleni aby zapewnić dokładność i bezpieczeństwo pracy z elektrycznością.

Pytanie 3

Jak nazywa się zestaw usług internetowych dla systemów operacyjnych z rodziny Microsoft Windows, który umożliwia działanie jako serwer FTP oraz serwer WWW?

A. IIS
B. APACHE
C. PROFTPD
D. WINS
APACHE to oprogramowanie serwera WWW, które jest szeroko stosowane w środowisku Linux, ale nie jest rozwiązaniem stworzonym dla systemów Windows, co czyni go nietrafionym wyborem w kontekście pytania. WINS, czyli Windows Internet Name Service, jest protokołem służącym do przekształcania nazw NetBIOS na adresy IP, a nie serwerem WWW ani FTP, co dowodzi, że ta odpowiedź nie koreluje z wymaganiami pytania. PROFTPD to z kolei serwer FTP, który również nie jest rozwiązaniem przeznaczonym dla systemów Windows, choć jest popularny w środowisku Linux. Błędem myślowym, który prowadzi do wyboru tych odpowiedzi, jest mylenie różnych funkcji i protokołów z pełnym zestawem usług serwera internetowego. IIS wyróżnia się nie tylko swoją funkcjonalnością, ale również integracją z innymi usługami Microsoft, co jest kluczowe dla efektywnego zarządzania serwerem. Wybierając odpowiedzi, należy zwrócić szczególną uwagę na specyfikę i przeznaczenie oprogramowania, co pozwoli uniknąć nieporozumień i błędnych wniosków. Zrozumienie różnic między tymi technologiami oraz ich właściwym zastosowaniem jest niezwykle ważne dla każdego specjalisty IT, dlatego zawsze warto analizować kontekst pytania przed podjęciem decyzji.

Pytanie 4

NAT64 (Network Address Translation 64) to proces, który przekształca adresy

A. IPv4 na adresy IPv6
B. MAC na adresy IPv4
C. IPv4 na adresy MAC
D. prywatne na adresy publiczne
Zrozumienie procesu NAT64 wymaga znajomości podstawowych zasad działania adresacji w sieciach komputerowych. Odpowiedzi, które wskazują na mapowanie adresów IPv4 na adresy MAC, prywatne na publiczne czy MAC na IPv4, wskazują na istotne nieporozumienia w zakresie funkcji i zastosowania NAT. NAT64 nie jest związany z adresacją MAC, która dotyczy warstwy drugiej modelu OSI, podczas gdy NAT64 operuje na warstwie trzeciej, koncentrując się na adresach IP. Próba mapowania adresów prywatnych na publiczne odnosi się bardziej do tradycyjnego NAT, który służy do ukrywania układów adresów prywatnych w Internecie. W przypadku NAT64 dochodzi do translacji między różnymi wersjami protokołów IP, co nie ma na celu zmiany miejsca przechowywania adresu w warstwie sieciowej, lecz umożliwienie komunikacji między sieciami używającymi różnych standardów. Ponadto, mapa z adresów MAC na IPv4 jest zupełnie nieadekwatna, ponieważ MAC to adres sprzętowy, natomiast IPv4 jest adresem sieciowym. Zrozumienie tych różnic oraz prawidłowe postrzeganie sposobu, w jaki NAT64 funkcjonuje, jest kluczowe dla dalszego rozwoju i zastosowania technologii sieciowych, szczególnie w kontekście rosnącego znaczenia IPv6.

Pytanie 5

Na ilustracji pokazano wtyczkę taśmy kabel)

Ilustracja do pytania
A. ATA
B. SATA
C. SAS
D. SCSI
SAS czyli Serial Attached SCSI to standard interfejsu używany w systemach serwerowych i stacjach roboczych. W przeciwieństwie do ATA wykorzystuje on połączenie szeregowe pozwalające na wyższe prędkości transmisji danych i większą niezawodność co czyni go odpowiednim dla zastosowań profesjonalnych i wymagających dużych przepustowości. Złącza SAS są znacznie różne od tradycyjnych złącz ATA co sprawia że pomylenie tych standardów może wynikać z braku znajomości specyfiki zastosowań biznesowych i infrastruktur sieciowych. SCSI to starszy standard interfejsu używany głównie w komputerach klasy serwer i stacjach roboczych. Jego złącza różnią się znacznie od złącz ATA zarówno pod względem wielkości jak i liczby styków. Wybór SCSI zamiast ATA mógłby wynikać z nieświadomości że SCSI to technologia starsza i bardziej skomplikowana a także mniej powszechna w komputerach osobistych co jest kluczowe dla zrozumienia różnic w zastosowaniach. SATA czyli Serial ATA to nowsza wersja standardu ATA która zastąpiła PATA w większości nowych komputerów osobistych. Choć SATA jest zgodna z ATA w kontekście funkcjonalności to używa innych złącz i kabli bazujących na transmisji szeregowej co znacząco różni się od pokazanej na obrazku taśmy ATA. SATA ma wiele zalet w tym większą przepustowość i mniejszy format jednak w kontekście tego pytania wybór SATA zamiast ATA mógłby wynikać z nieznajomości wizualnych różnic między złączami szeregowych i równoległych. Zrozumienie tych różnic jest kluczowe w edukacji technicznej i wyborze odpowiednich komponentów do komputerów osobistych i serwerowych.

Pytanie 6

Jak najlepiej chronić zebrane dane przed dostępem w przypadku kradzieży komputera?

A. ochronić konta za pomocą hasła
B. ustawić atrybut ukryty dla wszystkich istotnych plików
C. przygotować punkt przywracania systemu
D. wdrożyć szyfrowanie partycji
Zastosowanie atrybutu ukrytego dla plików nie zapewnia odpowiedniego poziomu ochrony danych. Chociaż pliki z atrybutem ukrytym są mniej widoczne dla przeciętnego użytkownika, nie są one chronione przed dostępem, a to oznacza, że osoba z odpowiednią wiedzą techniczną może je łatwo odkryć. Z kolei punkt przywracania systemu służy głównie do przywracania stanu systemu operacyjnego w przypadku awarii, co nie ma bezpośredniego wpływu na bezpieczeństwo danych w kontekście ich kradzieży. Zabezpieczenie kont hasłem również nie jest wystarczające, ponieważ w przypadku kradzieży sprzętu, fizyczny dostęp do komputera umożliwia potencjalnemu złodziejowi ominięcie zabezpieczeń systemowych. Oparcie się tylko na hasłach nie chroni przed atakami typu brute force czy phishing, które mogą prowadzić do utraty dostępu do danych. Dlatego ważne jest, aby podejść do ochrony danych w sposób kompleksowy, stosując szyfrowanie, które nie tylko ukrywa dane, ale i skutecznie je zabezpiecza przed nieautoryzowanym dostępem. Współczesne standardy bezpieczeństwa wskazują, że szyfrowanie jest podstawowym elementem każdego systemu ochrony informacji, co czyni je niezastąpionym narzędziem w ochronie danych.

Pytanie 7

Jaki instrument służy do określania długości oraz tłumienności kabli miedzianych?

A. Omomierz
B. Woltomierz
C. Miernik mocy
D. Reflektometr TDR
Reflektometr TDR (Time Domain Reflectometer) jest zaawansowanym przyrządem, który pozwala na precyzyjne pomiary długości oraz tłumienności przewodów miedzianych. Działa na zasadzie wysyłania sygnału elektromagnetycznego wzdłuż przewodu i analizy echa sygnału, które odbija się od różnych punktów wzdłuż linii. Dzięki tej metodzie można nie tylko określić długość przewodu, ale także zdiagnozować problemy, takie jak uszkodzenia czy nieciągłości w instalacji. Reflektometr TDR jest szeroko stosowany w telekomunikacji oraz sieciach komputerowych, gdzie odpowiednie zarządzanie jakością sygnału jest kluczowe dla stabilności i wydajności systemu. Przykładowo, w przypadku kabla Ethernet, TDR może pomóc w identyfikacji miejsc, gdzie może występować spadek jakości sygnału, co jest szczególnie istotne w kontekście utrzymania standardów, takich jak ISO/IEC 11801 dotyczących kabli strukturalnych. Używanie reflektometrów TDR w codziennej praktyce inżynieryjnej nie tylko zwiększa efektywność diagnostyki, ale także przyczynia się do obniżenia kosztów utrzymania infrastruktury sieciowej.

Pytanie 8

Jak brzmi nazwa klucza rejestru w systemie Windows, gdzie zapisane są relacje między typami plików a programami je obsługującymi?

A. HKEY_CURRENT_PROGS
B. HKEY_CLASSES_ROT
C. HKEY_USERS
D. HKEY_LOCAL_MACHINE
HKEY_CURRENT_PROGS nie istnieje w standardowej hierarchii rejestru systemu Windows, co czyni tę odpowiedź niepoprawną. Możliwe, że użytkownik pomylił tę nazwę z innym kluczem, co prowadzi do błędnych wniosków o jego istnieniu. Klucz HKEY_CLASSES_ROOT, na przykład, jest rzeczywiście używany do przechowywania powiązań typów plików, a HKEY_USERS przechowuje ustawienia dla różnych kont użytkowników, jednak HKEY_LOCAL_MACHINE jest bardziej właściwym miejscem dla ogólnych ustawień systemowych, w tym powiązań aplikacji. HKEY_USERS odpowiada za przechowywanie profili użytkowników, co nie ma związku z powiązaniami typów plików. W praktyce, błędne rozumienie tej struktury rejestru może prowadzić do nieefektywnego zarządzania systemem. Administratorzy, którzy nie są świadomi właściwych kluczy, mogą wprowadzać zmiany w niewłaściwych miejscach, co skutkuje niestabilnością systemu lub problemami z dostępem do aplikacji. Wiedza na temat rejestru systemowego jest fundamentalna dla efektywnego rozwiązywania problemów oraz dostosowywania środowiska użytkownika, dlatego tak ważne jest zrozumienie, jakie klucze są kluczowe dla funkcjonowania systemu. Przypisanie odpowiednich aplikacji do typów plików wymaga precyzyjnego zarządzania rejestrem, a wszelkie nieporozumienia mogą prowadzić do poważnych problemów w codziennej pracy użytkowników.

Pytanie 9

W systemie Windows powiązanie rozszerzeń plików z odpowiednimi programami realizuje się za pomocą polecenia

A. assoc
B. path
C. bcdedit
D. label
Przypisanie rozszerzeń plików do aplikacji w systemie Windows nie jest realizowane przez polecenia takie jak 'path', 'bcdedit' czy 'label'. Każde z tych poleceń ma inne, specyficzne zastosowanie, co może prowadzić do nieporozumień. Polecenie 'path' służy do wyświetlania lub ustawiania ścieżek wyszukiwania dla plików wykonywalnych. Umożliwia to systemowi operacyjnemu odnajdywanie programów w różnych lokalizacjach, ale nie wpływa na to, jak pliki są otwierane na podstawie ich rozszerzeń. 'bcdedit' z kolei jest stosowane do modyfikowania danych dotyczących rozruchu systemu i konfiguracji, co jest zupełnie innym kontekstem technicznym i nie ma nic wspólnego z otwieraniem plików. Natomiast 'label' jest używane do zmiany etykiety wolumenu dysku, co dotyczy zarządzania danymi na nośnikach pamięci, ale nie przypisuje aplikacji do rozszerzeń plików. Zrozumienie tych różnic jest kluczowe, ponieważ wykorzystanie niewłaściwych poleceń prowadzi do nieefektywnego zarządzania systemem i potencjalnych problemów z dostępem do plików. Dlatego ważne jest, aby dokładnie zapoznawać się z dokumentacją i praktykami zarządzania systemem, by skutecznie wykorzystać możliwości, jakie oferuje Windows.

Pytanie 10

Jaką funkcję należy wybrać, aby utworzyć kopię zapasową rejestru systemowego w edytorze regedit?

A. Importuj
B. Kopiuj nazwę klucza
C. Eksportuj
D. Załaduj sekcję rejestru
Wybór pozostałych opcji, takich jak 'Załaduj gałąź rejestru', 'Kopiuj nazwę klucza' czy 'Importuj', nie jest odpowiedni w kontekście wykonywania kopii zapasowej rejestru. 'Załaduj gałąź rejestru' służy do dodawania istniejących gałęzi rejestru z pliku, co nie ma związku z wykonywaniem kopii zapasowej. Ta funkcjonalność jest używana, gdy chcemy przywrócić lub dodać zmiany, które już wcześniej zostały zapisane w pliku rejestru, a nie aby zabezpieczyć obecny stan. Z kolei 'Kopiuj nazwę klucza' pozwala jedynie na skopiowanie ścieżki do konkretnego klucza, co może być przydatne do późniejszego odnalezienia go, ale nie chroni przed ewentualnymi zmianami. Ostatecznie, 'Importuj' służy do wczytywania ustawień z pliku rejestru, co również nie odpowiada na potrzeby związane z zabezpieczeniem obecnego stanu rejestru. Typowym błędem myślowym, który prowadzi do nieprawidłowych wyborów, jest mylenie funkcji zarządzania z funkcjami zabezpieczającymi. Użytkownicy, którzy nie znają funkcjonalności edytora rejestru, mogą przypuszczać, że każda z dostępnych opcji służy do ochrony danych, co jest mylnym założeniem. Właściwe zrozumienie tych narzędzi jest kluczowe dla efektywnego zarządzania rejestrem oraz zapewnienia stabilności i bezpieczeństwa systemu operacyjnego.

Pytanie 11

Aby przeprowadzić diagnozę systemu operacyjnego Windows oraz stworzyć plik z listą wszystkich ładujących się sterowników, konieczne jest uruchomienie systemu w trybie

A. debugowania
B. rejestrowania rozruchu
C. przywracania usług katalogowych
D. awaryjnym
Wybór trybu debugowania, przywracania usług katalogowych lub awaryjnego w kontekście diagnozy wczytywanych sterowników w systemie Windows może prowadzić do nieporozumień. Tryb debugowania jest przede wszystkim wykorzystywany do zaawansowanego rozwiązywania problemów programistycznych, gdzie umożliwia inżynierom monitorowanie i śledzenie działania aplikacji w czasie rzeczywistym. Choć może być użyteczny w określonych sytuacjach, nie dostarcza szczegółowych informacji o procesie uruchamiania systemu i wczytywanych komponentach w sposób, w jaki robi to rejestrowanie rozruchu. Z kolei tryb przywracania usług katalogowych skupia się na naprawie problemów związanych z aktywną strukturą usług katalogowych, co nie jest bezpośrednio związane z diagnostyką sterowników. Tryb awaryjny z kolei uruchamia system z minimalną liczbą wczytywanych sterowników i programów, co może być użyteczne do identyfikacji problemów, jednak nie generuje szczegółowego logu dotyczącego procesu rozruchu. Wybór tych opcji często wynika z braku zrozumienia ról poszczególnych trybów rozruchu, co może prowadzić do frustracji i utraty cennego czasu w procesie diagnostyki. Kluczowe jest, aby zrozumieć, że każdy z tych trybów ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może jedynie pogłębić problemy rodzaju technicznego w systemie operacyjnym.

Pytanie 12

Jakie złącze jest potrzebne do podłączenia zasilania do CD-ROM?

A. Mini-Molex
B. Berg
C. 20-pinowe ATX
D. Molex
Złącze Molex jest standardowym typem złącza stosowanym w zasilaniu komponentów komputerowych, w tym napędów optycznych takich jak CD-ROM. Złącze to, najczęściej w formacie 4-pinowym, dostarcza zasilanie 5V oraz 12V, co czyni je idealnym do zasilania różnych urządzeń. W praktyce, wiele zasilaczy PC posiada złącza Molex, co umożliwia łatwe podłączenie CD-ROM-a bez konieczności stosowania dodatkowych adapterów. Złącze Molex jest szeroko stosowane w branży komputerowej, co potwierdzają standardy ATX, które określają, że tego typu złącza powinny znajdować się w każdym zasilaczu PC. Oprócz napędów optycznych, złącza Molex są często używane do zasilania dysków twardych oraz wentylatorów, co czyni je wszechstronnym rozwiązaniem w budowie komputerów. Warto pamiętać, że złącze Molex ma różne wersje, a jego zastosowanie w nowoczesnych konstrukcjach komputerowych może być ograniczone przez rosnącą popularność złączy SATA, jednak dla tradycyjnych napędów optycznych pozostaje standardem.

Pytanie 13

Wykorzystując narzędzie diagnostyczne Tracert, można zidentyfikować trasę do określonego celu. Ile routerów pokonał pakiet wysłany do hosta 172.16.0.99?

C:\>tracert 172.16.0.99 -d
Trasa śledzenia od 172.16.0.99 z maksymalną liczbą przeskoków 30
1      2 ms     3 ms     2 ms    10.0.0.1
2     12 ms     8 ms     8 ms    192.168.0.1
3     10 ms    15 ms    10 ms    172.17.0.2
4     11 ms    11 ms    20 ms    172.17.48.14
5     21 ms    18 ms    24 ms    172.16.0.99
Śledzenie zakończone.

A. 24
B. 5
C. 4
D. 2
Podczas analizy wyników narzędzia Tracert należy zrozumieć, że każda linia w wyniku reprezentuje przeskok przez kolejny router, przez który przechodzi pakiet. Błędne zrozumienie, ile przeskoków zostało wykonanych, często wynika z niewłaściwego odczytania liczby linii wynikowych lub z pomylenia adresu końcowego z jednym z routerów na trasie. Niektórzy mogą błędnie zakładać, że liczba przeskoków jest o jeden mniejsza niż rzeczywista liczba linii, ponieważ sieć końcowa jest dołączana jako ostatnia linia, jednak każda linia odzwierciedla rzeczywisty router na trasie do celu. Częstym błędem jest również pominięcie pierwszego przeskoku, który zwykle jest bramą wyjściową z sieci lokalnej, co jest kluczowe dla zrozumienia pełnej trasy. Kolejnym błędem myślowym jest nieuwzględnienie wszystkich routerów pośrednich, które mogą być błędnie interpretowane jako części sieci wewnętrznej, co prowadzi do niedoszacowania liczby przeskoków. Tracert jest użytecznym narzędziem diagnostycznym, które przez analizę każdego przeskoku pozwala rozpoznać wąskie gardła w sieci lub punkty awarii. Ważne jest, aby rozumieć strukturę adresów IP i interpretować je zgodnie z topologią sieci, aby prawidłowo zidentyfikować każdy przeskok. Zrozumienie tego, jak Tracert działa w kontekście sieci rozległych i lokalnych, jest kluczowe dla dokładnego określenia liczby przeskoków oraz rozwiązywania problemów z opóźnieniami w sieci, co znacząco wspomaga diagnostykę i utrzymanie infrastruktury sieciowej w dobrym stanie.

Pytanie 14

Aby utworzyć kolejną partycję w systemie Windows, można skorzystać z narzędzia

A. diskmgmt.msc
B. dsa.msc
C. devmgmt.msc
D. dfsgui.msc
Odpowiedź 'diskmgmt.msc' jest poprawna, ponieważ jest to narzędzie systemowe w systemie Windows, które umożliwia zarządzanie dyskami i partycjami. Przystawka ta pozwala na tworzenie, usuwanie, formatowanie i zmienianie rozmiaru partycji. Użytkownicy mogą w łatwy sposób podglądać stan dysków, ich partycje oraz dostępne miejsce, co jest kluczowe dla zarządzania przestrzenią dyskową. Na przykład, jeśli chcemy zainstalować nowy system operacyjny obok istniejącego, możemy wykorzystać diskmgmt.msc do utworzenia nowej partycji, co jest zgodne z najlepszymi praktykami w zakresie zarządzania systemami operacyjnymi. Dodatkowo, korzystanie z tej przystawki pozwala na sprawne zarządzanie danymi, co jest niezbędne w środowisku zarówno domowym, jak i biurowym. Użycie tego narzędzia jest zgodne z zasadami efektywnego zarządzania zasobami komputerowymi, co ułatwia użytkownikom maksymalne wykorzystanie dostępnej przestrzeni dyskowej oraz utrzymanie porządku w systemie.

Pytanie 15

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 255
B. 512
C. 254
D. 510
Wybór odpowiedzi 255, 510 lub 512 jest wynikiem nieporozumienia dotyczącego adresacji w sieciach klasy C. Adresy IPv4 w klasie C mają 24 bity przeznaczone na identyfikację sieci oraz 8 bitów na identyfikację hostów, co daje łącznie 256 adresów. Osoby, które wybrały odpowiedź 255, mogą mieć na myśli całkowitą liczbę dostępnych adresów, ale nie uwzględniają faktu, że dwa adresy są zarezerwowane: jeden dla adresu sieci i jeden dla adresu rozgłoszeniowego. W przypadku odpowiedzi 510 i 512, widoczna jest ignorancja podstawowych zasad dotyczących adresacji IP. Oznaczenia te sugerują, że użytkownicy nie rozumieją, że maksymalna liczba adresów IP, które można przydzielić hostom, jest ograniczona przez rezerwacje dla specjalnych adresów. W praktyce, przydzielanie adresów IP musi uwzględniać również dynamikę sieci, w tym zmiany w liczbie urządzeń podłączonych do sieci. Te zagadnienia są kluczowe w projektowaniu i zarządzaniu sieciami lokalnymi, a ich nieprawidłowe rozumienie może prowadzić do problemów z dostępnością usług czy konfliktami adresów. Stąd ważne jest, aby administratorzy sieci dokładnie rozumieli zasady adresacji IP zgodne z normami RFC, co pozwoli efektywnie zarządzać zasobami sieciowymi.

Pytanie 16

W standardzie Ethernet 100BaseTX do przesyłania danych używane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 1, 2, 5, 6
B. 1, 2, 3, 4
C. 4, 5, 6, 7
D. 1, 2, 3, 6
W sieci Ethernet 100BaseTX wykorzystywane są cztery piny w złączu RJ-45 do przesyłania i odbierania danych. Wśród dostępnych odpowiedzi niektóre zawierają błędne kombinacje pinów. Na przykład piny 4, 5, 6 i 7 nie są używane w standardzie Ethernet 100BaseTX do transmisji danych, co może wynikać z mylnego zrozumienia, że wszystkie piny w kablu są aktywne lub że inne standardy mogą używać innych konfiguracji pinów. Piny 1, 2, 5 i 6 również nie są poprawną konfiguracją, ponieważ mimo iż zawierają dwa właściwe piny (1 i 2), to piny 5 i 6 są błędnie zgrupowane. Tego typu błędy są często wynikiem nieznajomości specyfikacji technicznych i standardów sieciowych, takich jak EIA/TIA-568A i 568B, które precyzyjnie określają, które pary przewodów mają być używane do transmisji danych. Ważne jest, aby zawsze odnosić się do oficjalnej dokumentacji, która wskazuje właściwe parowanie przewodów, aby zapewnić prawidłowe działanie sieci i uniknąć zakłóceń sygnału czy problemów z łącznością, które mogą wynikać z nieprawidłowego okablowania. Prawidłowa konfiguracja wpływa na jakość i stabilność połączeń, dlatego też każdy technik sieciowy powinien być świadomy tych standardów i ich praktycznego zastosowania w codziennej pracy z sieciami komputerowymi.

Pytanie 17

Aktywacja opcji Udostępnienie połączenia internetowego w systemie Windows powoduje automatyczne przydzielanie adresów IP dla komputerów (hostów) z niej korzystających. W tym celu używana jest usługa

A. WINS
B. DHCP
C. NFS
D. DNS
Usługa DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem zarządzania siecią komputerową, który automatyzuje proces przypisywania adresów IP urządzeniom podłączonym do sieci. W momencie, gdy włączasz udostępnienie połączenia internetowego w systemie Windows, DHCP uruchamia serwer, który dostarcza dynamiczne adresy IP hostom w sieci lokalnej. Dzięki temu urządzenia nie muszą być konfigurowane ręcznie, co znacznie ułatwia zarządzanie siecią, zwłaszcza w przypadku większych środowisk, takich jak biura czy instytucje. DHCP pozwala również na centralne zarządzanie ustawieniami sieciowymi, takimi jak maska podsieci, brama domyślna, czy serwery DNS, co jest zgodne z dobrymi praktykami branżowymi. Przykładem zastosowania DHCP może być sytuacja, w której w biurze pracuje wielu pracowników, a każdy z nich korzysta z różnych urządzeń (laptopów, tabletów, smartfonów). Usługa DHCP sprawia, że każdy z tych urządzeń otrzymuje unikalny adres IP automatycznie, co minimalizuje ryzyko konfliktów adresów IP i zapewnia płynność działania sieci.

Pytanie 18

Jakie polecenie w systemie Windows powinno zostać użyte, aby uzyskać wynik zbliżony do tego na załączonym obrazku?

TCP    192.168.0.14:57989    185.118.124.154:http   ESTABLISHED
TCP    192.168.0.14:57997    fra15s17-in-f8:http    ESTABLISHED
TCP    192.168.0.14:58010    fra15s11-in-f14:https  TIME_WAIT
TCP    192.168.0.14:58014    wk-in-f156:https       ESTABLISHED
TCP    192.168.0.14:58015    wk-in-f156:https       TIME_WAIT
TCP    192.168.0.14:58016    104.20.87.108:https    ESTABLISHED
TCP    192.168.0.14:58022    ip-2:http              TIME_WAIT

A. netstat
B. ping
C. ipconfig
D. tracert
Polecenie netstat w systemie Windows służy do wyświetlania aktywnych połączeń sieciowych oraz tabel routingu i statystyk interfejsów. Jest niezwykle przydatne dla administratorów sieci oraz osób zajmujących się bezpieczeństwem IT, ponieważ pozwala monitorować aktywność sieciową na poziomie systemu operacyjnego. W wyniku działania netstat można uzyskać szczegółowe informacje na temat połączeń TCP i UDP, takich jak adresy IP lokalnych i zdalnych hostów, używane porty oraz stan połączenia. Na przykład stan ESTABLISHED oznacza, że połączenie jest aktywne, podczas gdy TIME_WAIT wskazuje na zakończenie połączenia TCP, które czeka na upływ określonego czasu przed całkowitym zamknięciem. Netstat jest również użyteczny w identyfikacji nieautoryzowanych połączeń lub usług nasłuchujących na nieznanych portach, co może być pierwszym krokiem w analizie potencjalnego naruszenia bezpieczeństwa. Polecenie to można również rozszerzyć o różne przełączniki, takie jak -a do wyświetlania wszystkich połączeń i portów nasłuchujących, -n do prezentowania adresów w formie numerycznej, co może przyspieszyć analizę, oraz -o do pokazania identyfikatorów procesów, co ułatwia identyfikację aplikacji związanych z danym połączeniem. Zrozumienie i wykorzystanie netstat jest zgodne z najlepszymi praktykami w zarządzaniu siecią, umożliwiając skuteczne monitorowanie i zabezpieczanie infrastruktury IT.

Pytanie 19

Jaki zakres adresów IPv4 jest prawidłowo przypisany do danej klasy?

A. Poz. C
B. Poz. A
C. Poz. D
D. Poz. B
Wybór odpowiedzi A, C lub D odnosi się do nieprawidłowych zakresów adresów IPv4 przypisanych do niewłaściwych klas. Klasa A obejmuje adresy od 1.0.0.0 do 126.255.255.255, co oznacza, że posiada tylko 7 bitów identyfikatora sieci, co pozwala na obsługę bardzo dużych sieci, ale z ograniczoną liczbą dostępnych adresów hostów. Klasa C, z kolei, obejmuje zakres od 192.0.0.0 do 223.255.255.255, oferując 24 bity dla hostów, co jest idealne dla mniejszych sieci, które nie wymagają dużej liczby adresów. Klasa D, z adresami od 224.0.0.0 do 239.255.255.255, jest zarezerwowana dla multicastu, co oznacza, że nie jest używana do przypisywania adresów dla indywidualnych hostów ani dla standardowego routingu. Powszechnym błędem jest mylenie zakresów adresów oraz ich przeznaczenia, co może prowadzić do problemów z konfiguracją sieci i bezpieczeństwem. Właściwe zrozumienie klas adresów IPv4 i ich zastosowania jest niezbędne do efektywnego zarządzania sieciami, a także do unikania kolizji w przydzielaniu adresów IP oraz zapewnienia ich prawidłowego funkcjonowania w różnych kontekstach sieciowych.

Pytanie 20

Ile punktów abonenckich (2 x RJ45) powinno być zainstalowanych w biurze o powierzchni 49 m2, zgodnie z normą PN-EN 50167?

A. 5
B. 9
C. 1
D. 4
Wybór niewłaściwej liczby punktów abonenckich w pomieszczeniu biurowym przeważnie wynika z błędnych założeń dotyczących potrzeb infrastruktury sieciowej. Na przykład, odpowiedź wskazująca na 1 punkt abonencki, może sugerować, że biuro będzie miało minimalne zapotrzebowanie na dostęp do internetu, co jest dalekie od rzeczywistości w nowoczesnym środowisku pracy. W dobie intensywnego korzystania z technologii, gdzie wiele urządzeń wymaga stałego dostępu do sieci, taka liczba punktów abonenckich jest niewystarczająca. Z kolei odpowiedź na 4 punkty zakłada, że każde urządzenie biurowe, jak komputer czy drukarka, będzie miało dedykowane połączenie, jednak nie uwzględnia potencjalnych potrzeb w przyszłości, takich jak dodanie nowych stanowisk pracy lub urządzeń. W przypadku 9 punktów, istnieje ryzyko nadmiaru, co może prowadzić do nieefektywnego wykorzystania zasobów oraz zwiększenia kosztów instalacji. Normy, takie jak PN-EN 50167, pomagają w określeniu standardów dla infrastruktury, jednak kluczowe jest odpowiednie ich zastosowanie w praktyce, co wymaga zrozumienia potrzeb użytkowników oraz specyfiki pracy w danym biurze. Podsumowując, wybór niewłaściwej liczby punktów abonenckich może wynikać z błędnej analizy potrzeb, co skutkuje niewystarczającą lub nadmierną infrastrukturą, nieadekwatną do dynamicznych wymagań współczesnego środowiska biurowego.

Pytanie 21

Licencja CAL (Client Access License) uprawnia użytkownika do

A. modyfikacji kodu aplikacji
B. nielimitowanego użytkowania programu
C. przenoszenia programu na zewnętrzne nośniki
D. korzystania z usług oferowanych przez serwer
Każda z alternatywnych odpowiedzi na pytanie o licencję CAL zawiera nieporozumienia, które mogą prowadzić do niewłaściwego zrozumienia roli tej licencji w kontekście zarządzania oprogramowaniem. Zmiana kodu programu nie jest związana z licencją CAL, ponieważ ten rodzaj licencji jedynie daje prawo do dostępu, a nie do modyfikacji oprogramowania. Modyfikowanie kodu aplikacji wymaga posiadania odpowiednich uprawnień i licencji źródłowych, co jest całkowicie odmiennym procesem. Twierdzenie, że licencja CAL pozwala na używanie programu bezterminowo, również jest nieprawdziwe, ponieważ licencje CAL mogą mieć różne okresy obowiązywania, a ich warunki mogą się różnić w zależności od dostawcy oprogramowania. Co więcej, kopiowanie programu na nośniki zewnętrzne nie jest dozwolone w ramach licencji CAL; większość licencji ogranicza możliwość przenoszenia oprogramowania, aby chronić przed jego nieautoryzowanym używaniem. Typowym błędem jest myślenie o CAL w kontekście pełnych praw do oprogramowania, podczas gdy w rzeczywistości jest to licencja ograniczona do określonych zadań, takich jak dostęp do serwera, co jest kluczowe dla przestrzegania przepisów dotyczących licencjonowania oprogramowania.

Pytanie 22

Na ilustracji widoczny jest komunikat, który pojawia się po wprowadzeniu adresu IP podczas ustawiania połączenia sieciowego na komputerze. Adres IP podany przez administratora to adres IP

Ilustracja do pytania
A. komputera
B. pętli zwrotnej
C. sieci
D. rozgłoszeniowym
Pętla zwrotna to specjalny adres IP z zakresu 127.0.0.0/8 zwykle 127.0.0.1 używany do testowania konfiguracji sieciowej komputera lokalnego bez opuszczania go. Nie może być używany jako adres IP w publicznej sieci komputerowej dlatego odpowiedź ta jest niepoprawna. Adres IP komputera to unikalny numer przypisany do urządzenia w sieci który jest używany do identyfikacji i komunikacji. Adres musi należeć do określonej podsieci i być unikalny w tej sieci co nie dotyczy adresu rozgłoszeniowego który jest używany do komunikacji grupowej. Adres sieci to pierwszy adres w danej podsieci który identyfikuje sieć jako całość a nie pojedyncze urządzenie. Adres ten ma wszystkie bity części hosta ustawione na 0 i służy do identyfikacji poszczególnych segmentów sieci. Łatwo jest pomylić adresy rozgłoszeniowe z adresami sieci lub komputerów jednak zrozumienie ich różnic jest kluczowe dla skutecznego zarządzania sieciami komputerowymi. Adresy te pełnią różne role i są używane w różnych kontekstach co podkreśla znaczenie znajomości ich funkcji i zastosowań. Uwzględnianie tych różnic pozwala na efektywne zarządzanie i rozwiązywanie problemów w konfiguracjach sieciowych co jest kluczowe dla administratorów IT. Każdy typ adresu ma swoje unikalne zastosowanie i znaczenie w architekturze sieci co jest fundamentalne dla utrzymania niezawodności i efektywności sieciowej infrastruktury informatycznej. Zrozumienie tych zasad jest niezbędne dla prawidłowej konfiguracji i administrowania sieci w praktycznych zastosowaniach technologii informacyjnej. Przezwyciężenie błędnych założeń i zrozumienie poprawnych zastosowań przyczynia się do stabilności i bezpieczeństwa sieci.

Pytanie 23

Jaką topologię fizyczną charakteryzuje zapewnienie nadmiarowych połączeń między urządzeniami sieciowymi?

A. Magistralną
B. Gwiazdkową
C. Pierścieniową
D. Siatkową
Każda z pozostałych topologii fizycznych, takich jak pierścień, magistrala i gwiazda, charakteryzuje się odmiennymi właściwościami, które nie zapewniają nadmiarowości połączeń. W przypadku topologii pierścienia, urządzenia są połączone w zamknięty krąg, co oznacza, że każde urządzenie jest połączone tylko z dwoma sąsiadami. Jeśli jedno połączenie zawiedzie, może to spowodować przerwanie komunikacji w całej sieci, co czyni tę topologię mniej niezawodną w porównaniu do siatki. Z kolei w topologii magistrali, wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego. W przypadku awarii tego medium, cała sieć ulega zakłóceniu, co znacznie ogranicza jej użyteczność w krytycznych zastosowaniach. Natomiast topologia gwiazdy, chociaż zapewnia centralne zarządzanie i łatwość w dodawaniu nowych urządzeń, polega na jednym węźle centralnym, którego awaria skutkuje brakiem komunikacji dla wszystkich podłączonych urządzeń. W praktyce, wybierając topologię sieciową, ważne jest zrozumienie, jakie ryzyka niesie każda z opcji, a także jakie są ich ograniczenia. Często błędne wnioski wynikają z niewłaściwego postrzegania nadmiarowości; nie wystarczy mieć wielu urządzeń, jeśli nie są one odpowiednio połączone. Dlatego w kontekście projektowania sieci, zrozumienie tych różnic jest kluczowe dla stworzenia stabilnej i niezawodnej infrastruktury.

Pytanie 24

Na podstawie wskazanego cennika oblicz, jaki będzie łączny koszt brutto jednego podwójnego natynkowego gniazda abonenckiego w wersji dwumodułowej?

Lp.Nazwaj.m.Cena jednostkowa brutto
1.Puszka natynkowa 45x45mm dwumodułowaszt.4,00 zł
2.Ramka + suport 45x45mm dwumodułowaszt.4,00 zł
3.Adapter 22,5x45mm do modułu keystoneszt.3,00 zł
4.Moduł keystone RJ45 kategorii 5eszt.7,00 zł

A. 32,00 zł
B. 18,00 zł
C. 25,00 zł
D. 28,00 zł
Błędy w odpowiedzi często wynikają z tego, że nie do końca rozumiesz, jak to wszystko zsumować. Zwykle coś umykają – może pomijamy jeden z elementów albo źle je łączymy. Kiedy skompletujemy dwumodułowe gniazdo abonenckie, musimy mieć na uwadze, że składa się ono z kilku rzeczy: puszki natynkowej, ramki z supportem, dwóch adapterów i dwóch modułów keystone. Każda część ma swoją cenę, więc brakuje tu zrozumienia, jak to wszystko policzyć. Jeśli pominiesz któryś element albo go źle zinterpretujesz, to możesz dostać błędne kwoty. Z moich doświadczeń wynika, że warto zawsze przyjrzeć się tym elementom, żeby dobrze zsumować koszty. Również ważne jest, by znać kontekst, w jakim te części są używane – chodzi o standardy, które wpływają na to, jak to całe gniazdo zadziała.

Pytanie 25

Według specyfikacji JEDEC standardowe napięcie zasilania modułów RAM DDR3L o niskim napięciu wynosi

A. 1,20 V
B. 1,35 V
C. 1,50 V
D. 1,65 V
Wybór 1,20 V jako napięcia dla modułów DDR3L to nietrafiony pomysł, bo to napięcie w ogóle nie pasuje do żadnej normy pamięci DDR3L. W sumie, 1,20 V to napięcie, które odpowiada DDR4, a te są jeszcze bardziej oszczędne niż DDR3L. Co do 1,50 V, to jest to standard dla DDR3, a nie DDR3L, co pokazuje, że jest między nimi spora różnica. Napięcie 1,65 V to już max dla DDR3, a to w ogóle nie współgra z ideą oszczędzania energii, którą mamy w DDR3L. Osoby, które za bardzo skupiają się na tych napięciach, mogą pomyśleć, że niskonapięciowe moduły zniosą wyższe wartości, a to może prowadzić do złych decyzji przy doborze pamięci. Ważne, żeby wiedzieć, że używanie złego napięcia może prowadzić do niestabilności systemu i czasami nawet uszkodzenia komponentów. Dlatego znajomość tych norm JEDEC i odpowiednich napięć jest mega ważna przy wykorzystywaniu pamięci RAM.

Pytanie 26

Kiedy podczas startu systemu z BIOSu firmy AWARD komputer wyemitował długi dźwięk oraz dwa krótkie, to oznacza, że wystąpił błąd?

A. karty graficznej
B. pamięci FLASH - BIOS
C. płyty głównej
D. kontrolera klawiatury
Odpowiedzi związane z błędami płyty głównej, pamięci FLASH - BIOS oraz kontrolera klawiatury są niepoprawne. Problemy związane z płytą główną mogą objawiać się różnorodnymi sygnałami, ale długi sygnał i dwa krótkie sygnały najczęściej nie są z nimi związane. Odpowiedzi te odzwierciedlają typowe błędy myślowe, takie jak mylenie symptomów. Płyta główna, chociaż kluczowym komponentem, nie sygnalizuje problemów w taki sposób. Co więcej, błędy pamięci FLASH - BIOS nie są sygnalizowane przez długie i krótkie sygnały; te są bardziej związane z uszkodzeniem BIOS-u, które zazwyczaj objawia się innymi sygnałami, takimi jak ciągłe piszczenie. Również kontroler klawiatury, który ma swoje własne sygnały diagnostyczne, nie jest powiązany z długim sygnałem i dwoma krótkimi. Zrozumienie, jak BIOS interpretuje i sygnalizuje problemy, jest kluczowe w diagnostyce komputerowej, co pozwala na skuteczniejsze rozwiązywanie problemów sprzętowych. Warto zatem dokładnie zaznajomić się z dokumentacją dotyczącą sygnalizacji POST oraz standardami diagnostycznymi, aby uniknąć pomyłek w przyszłości.

Pytanie 27

W strukturze sieciowej zaleca się umiejscowienie jednego punktu abonenckiego na powierzchni wynoszącej

A. 30m^2
B. 20m^2
C. 5m^2
D. 10m^2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10m² jest zgodne z zaleceniami dotyczącymi efektywności i wydajności sieci. Takie podejście pozwala na optymalne wykorzystanie infrastruktury, zapewniając jednocześnie odpowiednią jakość usług dla użytkowników końcowych. W praktyce, zagęszczenie punktów abonenckich na mniejszej powierzchni, takiej jak 10m², umożliwia szybszy dostęp do szerokopasmowego internetu i lepszą jakość transmisji danych. Warto zauważyć, że standardy branżowe, takie jak te określone przez ITU (Międzynarodową Unię Telekomunikacyjną) oraz lokalne regulacje, rekomendują podobne wartości w kontekście planowania sieci. Przykładowo, w większych miastach, gdzie gęstość zaludnienia jest wysoka, efektywne rozmieszczenie punktów abonenckich na mniejszych powierzchniach jest kluczem do zaspokojenia rosnącego zapotrzebowania na usługi telekomunikacyjne. Warto również wspomnieć, że zmiany w zachowaniach użytkowników, takie jak większe korzystanie z usług strumieniowych, dodatkowo uzasadniają potrzebę takiego rozmieszczenia, aby zminimalizować opóźnienia i zwiększyć przepustowość sieci.

Pytanie 28

Jakie urządzenie powinno być użyte do segmentacji domeny rozgłoszeniowej?

A. Mostek
B. Hub
C. Ruter
D. Switch
Ruter jest urządzeniem, które odgrywa kluczową rolę w podziale domeny rozgłoszeniowej, co jest istotne w zapewnieniu efektywnego zarządzania ruchem sieciowym. Domena rozgłoszeniowa to segment sieci, w którym urządzenia mogą wysyłać ramki rozgłoszeniowe, a ruter działa na granicy tych segmentów, filtrując i przekierowując ruch. Dzięki temu ruter nie tylko zmniejsza ilość ruchu w domenie rozgłoszeniowej, ale również poprawia bezpieczeństwo i wydajność sieci. W praktyce, zastosowanie routerów w sieciach lokalnych pozwala na segregację różnych segmentów, co jest szczególnie istotne w dużych organizacjach, gdzie różne działy mogą mieć odmienne wymagania dotyczące bezpieczeństwa i wydajności. Standardy takie jak IEEE 802.1Q dotyczące wirtualnych sieci lokalnych (VLAN) pokazują, jak ruter może być użyty do efektywnego zarządzania ruchem w złożonych topologiach sieciowych, a także do zapewnienia izolacji między różnymi grupami użytkowników. Współczesne routery często wspierają także protokoły takie jak OSPF czy BGP, co umożliwia dynamiczne zarządzanie trasami w większych, rozproszonych sieciach.

Pytanie 29

Które z urządzeń sieciowych jest przedstawione na grafice?

Ilustracja do pytania
A. Router
B. Access Point
C. Switch
D. Hub
Symbol graficzny, który widzisz, to router. To bardzo ważne urządzenie w sieciach komputerowych. Router działa jak pośrednik między różnymi częściami sieci i przekazuje dane w taki sposób, żeby było to jak najbardziej efektywne. Korzysta z tablic routingu, które są na bieżąco aktualizowane, więc potrafi kierować pakiety tam, gdzie powinny trafić. Co ciekawe, routery mogą łączyć różne typy sieci, na przykład lokalne sieci LAN z rozległymi WAN, czego inne urządzenia sieciowe nie potrafią. Dzisiaj routery obsługują różne protokoły, jak OSPF, RIPv2 czy BGP, co naprawdę pozwala na lepsze zarządzanie ruchem sieciowym. Mają też różne funkcje zabezpieczeń, na przykład firewalle i VPN, co znacznie poprawia bezpieczeństwo i prywatność użytkowników. W domach często pełnią dodatkowo rolę punktu dostępowego Wi-Fi, co pozwala nam bezprzewodowo połączyć się z siecią. Myślę, że bez routerów dzisiaj nie wyobrazimy sobie nowoczesnych sieci, zarówno w domach, jak i w firmach. Kiedy korzystasz z routerów zgodnie z ich przeznaczeniem, możesz nie tylko lepiej zarządzać ruchem, ale też poprawić bezpieczeństwo oraz stabilność sieci.

Pytanie 30

Aby aktywować funkcję S.M.A.R.T. dysku twardego, która odpowiada za monitorowanie i wczesne ostrzeganie przed awariami, należy skorzystać z

A. BIOS-u płyty głównej
B. rejestru systemowego
C. opcji polecenia chkdsk
D. ustawień panelu sterowania
Odpowiedź 'BIOS płyty głównej' jest poprawna, ponieważ funkcja S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) jest zintegrowanym systemem monitorowania, który pozwala na wczesne wykrywanie problemów z dyskiem twardym. Aktywacja tej funkcji odbywa się na poziomie BIOS-u, ponieważ to tam można skonfigurować ustawienia urządzeń pamięci masowej. W BIOS-ie użytkownicy mogą włączyć lub wyłączyć funkcje monitorowania, co jest kluczowe dla ochrony danych. Przykładem zastosowania może być sytuacja, w której administrator systemu włącza S.M.A.R.T. w BIOS-ie serwera, aby monitorować stan dysków twardych, co pozwala na podjęcie działań zapobiegawczych przed utratą danych. Dobre praktyki wskazują, że regularna kontrola stanu dysków twardych oraz odpowiednia konfiguracja S.M.A.R.T. to podstawowe działania zapewniające niezawodność systemów informatycznych. Oprócz tego, znajomość i umiejętność korzystania z funkcji S.M.A.R.T. mogą pomóc w analizie wyników testów diagnostycznych, co jest istotne dla utrzymania zdrowia sprzętu.

Pytanie 31

Jaki adres IPv6 jest stosowany jako adres link-local w procesie autokonfiguracji urządzeń?

A. de80::/10
B. he88::/10
C. fe88::/10
D. fe80::/10
Inne podane adresy, takie jak de80::/10, fe88::/10 oraz he88::/10, są błędne w kontekście adresów link-local. Adres de80::/10 nie jest standardowo przypisany do żadnego celu w IPv6, co sprawia, że jego użycie jest nieprawidłowe. Adres fe88::/10 również nie należy do klasy adresów link-local – rozważając struktury adresowe IPv6, klasa ta jest zarezerwowana wyłącznie dla adresów zaczynających się od prefiksu fe80::/10. Z kolei he88::/10 nie jest poprawnym adresem IPv6, ponieważ prefiks he80::/10 nie istnieje w standardach IPv6. Użytkownicy często popełniają błąd polegający na myleniu prefiksów adresów, co prowadzi do nieprawidłowego przypisania adresów w lokalnych sieciach. Istotne jest zrozumienie, że adresy link-local nie mogą być używane do komunikacji z urządzeniami poza lokalną siecią, co ogranicza ich zastosowanie. Właściwe przypisanie adresów IPv6 jest kluczowe dla zapewnienia prawidłowego działania sieci i komunikacji między urządzeniami. Wszelkie niepoprawne przypisania mogą prowadzić do problemów z dostępem oraz błędnymi konfiguracjami sieciowymi, co należy unikać w praktyce inżynieryjnej.

Pytanie 32

Na podstawie nazw sygnałów sterujących zidentyfikuj funkcję komponentu komputera oznaczonego na schemacie symbolem X?

Ilustracja do pytania
A. Układ generatorów programowalnych
B. Kontroler przerwań
C. Zegar czasu rzeczywistego
D. Kontroler DMA
Kontroler przerwań jest kluczowym komponentem w architekturze komputera, który umożliwia efektywne zarządzanie przerwami sprzętowymi. Przerwy te są sygnałami pochodzącymi od różnych urządzeń peryferyjnych do procesora, które informują o konieczności obsługi pewnych zdarzeń, takich jak zakończenie operacji wejścia-wyjścia. Kontroler przerwań grupuje te sygnały i przekazuje je do procesora w sposób uporządkowany, wykorzystując priorytetyzację, co zapobiega przeciążeniu procesora i pozwala na szybkie reagowanie na ważne przerwania. Standardowy kontroler przerwań, jak np. 8259A, obsługuje do 8 linii przerwań, co jest widoczne na rysunku jako sygnały IRQ0 do IRQ7. Tego typu kontrolery są zgodne ze standardami zarządzania przerwaniami w architekturze x86 i pozwalają na efektywne wykorzystanie zasobów systemowych, co jest niezbędne w systemach czasu rzeczywistego oraz w aplikacjach wymagających dużej przepustowości danych. Dzięki kontrolerowi przerwań procesor może wykonywać swoje zadania bez konieczności ciągłego sprawdzania stanu urządzeń peryferyjnych, co znacznie zwiększa wydajność całego systemu komputerowego.

Pytanie 33

Jaką rolę pełni usługa NAT działająca na ruterze?

A. Przekształcanie adresów stosowanych w sieci LAN na jeden lub więcej publicznych adresów
B. Synchronizacja czasu z serwerem NTP w internecie
C. Autoryzacja użytkownika z wykorzystaniem protokołu NTLM oraz jego danych logowania
D. Przesył danych korekcyjnych RTCM z wykorzystaniem protokołu NTRIP
Usługa NAT (Network Address Translation) realizuje tłumaczenie adresów IP używanych w sieci lokalnej (LAN) na adresy publiczne, co jest kluczowe w kontekście współczesnych sieci komputerowych. Główną funkcją NAT jest umożliwienie wielu urządzeniom w sieci lokalnej korzystania z jednego lub kilku adresów IP w Internecie. Jest to niezwykle istotne, zwłaszcza w obliczu ograniczonej puli adresów IPv4. NAT pozwala na ukrycie struktury wewnętrznej sieci, co zwiększa bezpieczeństwo, ponieważ zewnętrzni użytkownicy nie mają dostępu do prywatnych adresów IP. Przykładem zastosowania NAT jest sytuacja, gdy domowy router łączy różne urządzenia, takie jak smartfony, laptopy i tablety, z Internetem, używając jednego publicznego adresu IP. Dodatkowo NAT ułatwia zarządzanie ruchami sieciowymi, a także pozwala na łatwiejsze wdrażanie polityk bezpieczeństwa i priorytetów ruchu. Zgodnie z dobrymi praktykami, NAT powinien być skonfigurowany w sposób minimalizujący opóźnienia oraz maksymalizujący przepustowość, co jest kluczowe dla wydajności sieci.

Pytanie 34

W systemie Windows zastosowanie przedstawionego polecenia spowoduje chwilową zmianę koloru

Ilustracja do pytania
A. czcionki wiersza poleceń
B. paska tytułowego okna Windows
C. tła okna wiersza poleceń
D. tła oraz czcionek okna Windows
Wiesz, polecenie color w Windows to naprawdę fajna sprawa, bo pozwala zmieniać kolory tekstu i tła w wierszu poleceń. Jak chcesz tego użyć, to wystarczy, że wpiszesz dwie cyfry szesnastkowe. Pierwsza to tło, a druga to kolor tekstu. Na przykład, jak wpiszesz color 1, to tekst będzie niebieski na czarnym tle, bo 1 to wartość szesnastkowa odpowiadająca tym kolorom. Pamiętaj, że to tylko tymczasowa zmiana – jak zamkniesz okno, to wróci do domyślnych ustawień. Z mojego doświadczenia, to polecenie jest mega przydatne w różnych skryptach, bo pozwala lepiej oznaczyć różne etapy czy poziomy logów. Dzięki kolorom łatwiej się ogarnąć, co skrypt teraz robi. Zresztą, jak użyjesz polecenia color bez żadnych argumentów, to wrócisz do domyślnych kolorów. Naprawdę warto to mieć na uwadze podczas pracy w wierszu poleceń!

Pytanie 35

Urządzenie, które pozwala komputerom na bezprzewodowe łączenie się z siecią komputerową przewodową, to

A. koncentrator
B. modem
C. regenerator
D. punkt dostępowy
Regenerator, koncentrator i modem to urządzenia, które pełnią różne funkcje w sieciach komputerowych, ale nie są odpowiednie do zapewnienia bezprzewodowego dostępu do sieci przewodowej. Regenerator jest używany do wzmacniania sygnału elektrycznego w sieciach kablowych, co może być istotne w przypadku długich odległości, jednak nie ma funkcji bezprzewodowego dostępu. Należy zrozumieć, że jego działanie polega na odbiorze i przesyłaniu sygnału, a nie na tworzeniu połączenia z urządzeniami mobilnymi. Koncentrator (hub), z kolei, to urządzenie, które łączy wiele komputerów w sieci przewodowej, ale działa w sposób pasywny, przesyłając wszystkie dane do wszystkich podłączonych urządzeń, co nie jest efektywne w kontekście nowoczesnych sieci. Modem, czyli urządzenie do modemu/demodulacji, ma na celu łączenie sieci lokalnej z Internetem, ale również nie umożliwia komunikacji bezprzewodowej. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi to mylenie ról tych urządzeń i brak zrozumienia, że punkt dostępowy jest jedynym rozwiązaniem, które umożliwia sprzętom mobilnym dostęp do sieci LAN poprzez komunikację radiową. Współczesne rozwiązania sieciowe wymagają znajomości funkcji i zastosowań różnych urządzeń, aby prawidłowo je integrować i korzystać z ich możliwości.

Pytanie 36

Złącze SC powinno być zainstalowane na kablu

A. koncentrycznym
B. typu skrętka
C. telefonicznym
D. światłowodowym
Złącza koncentryczne, telefoniczne oraz typu skrętka to technologie, które nie mają zastosowania w kontekście złącza SC. Złącza koncentryczne są używane głównie w systemach telewizyjnych oraz w lokalnych sieciach komputerowych, jednak nie są one kompatybilne z technologią światłowodową. W przypadku złączy telefonicznych, które często używają przewodów miedzianych, nie ma mowy o zastosowaniu technologii optycznej. Z kolei złącza typu skrętka, popularne w sieciach Ethernet, również nie znajdują zastosowania w transmisji światłowodowej. Wybór niewłaściwego złącza można wytłumaczyć brakiem zrozumienia różnic między tymi technologiami; wiele osób myśli, że wszystkie złącza do przesyłu danych można stosować zamiennie. W rzeczywistości, różne technologie wymagają specyficznych złączy ze względu na różnice w transmisji sygnału oraz parametrach elektrycznych. Niezrozumienie tych zasad może prowadzić do awarii systemu oraz obniżenia jakości transmisji, co jest nieakceptowalne w dzisiejszych wymagających środowiskach IT. Zastosowanie złączy dostosowanych do konkretnej technologii jest kluczowe dla zapewnienia optymalnej wydajności oraz zgodności z obowiązującymi standardami.

Pytanie 37

Jakie materiały eksploatacyjne wykorzystuje się w rzutniku multimedialnym?

A. lampa projekcyjna
B. fuser
C. bęben światłoczuły
D. filament
Lampa projekcyjna jest kluczowym elementem rzutników multimedialnych, odpowiedzialnym za generowanie obrazu, który następnie jest wyświetlany na ekranie. To właśnie lampa, najczęściej typu DLP lub LCD, emituje światło, które przechodzi przez soczewki i filtry, tworząc wyraźny obraz. W praktyce, lampa projekcyjna umożliwia wyświetlanie prezentacji, filmów i innych treści wizualnych w różnych warunkach oświetleniowych. Standardy branżowe wymagają, aby lampy miały określoną jasność (mierzoną w lumenach) oraz długi czas życia, co sprawia, że ich wybór ma ogromne znaczenie dla jakości projekcji. Przykładowo, w salach konferencyjnych i edukacyjnych stosuje się rzutniki z lampami o wysokiej wydajności, co pozwala na użycie ich w jasnych pomieszczeniach, minimalizując wpływ otoczenia na widoczność wyświetlanego obrazu. Warto również zaznaczyć, że odpowiednia konserwacja i wymiana lampy, zgodnie z zaleceniami producenta, zapewnia optymalną jakość obrazu oraz wydłuża żywotność urządzenia.

Pytanie 38

Symbol okablowania przedstawiony na diagramie odnosi się do kabla

Ilustracja do pytania
A. szeregowego
B. światłowodowego
C. ethernetowego prostego
D. ethernetowego krosowanego
Kabel szeregowy, często wykorzystywany w komunikacji między urządzeniami na małe odległości, jak porty szeregowe COM, nie jest stosowany w standardowych połączeniach sieciowych między urządzeniami takimi jak przełączniki. Jego działanie opiera się na przesyłaniu danych bit po bicie, co jest nieefektywne w przypadku dużych ilości danych, w przeciwieństwie do sieci Ethernet, które mogą transmitować dane równolegle. Z kolei kabel światłowodowy, choć zapewnia wysoką szybkość transmisji i odporność na zakłócenia elektromagnetyczne, charakteryzuje się inną budową fizyczną i działaniem. Wykorzystuje on światło do przesyłu danych i jest używany głównie na duże odległości w sieciach szkieletowych, a nie w typowych połączeniach przełączników w lokalnej sieci komputerowej. Ethernetowy kabel prosty, najbardziej popularny w sieciach lokalnych, służy do łączenia urządzeń o różnych funkcjach, takich jak komputer z przełącznikiem lub routerem. Kabel prosty nie zmienia konfiguracji przewodów, co oznacza, że dane transmitowane w ten sposób muszą trafiać do urządzenia, które automatycznie rozpoznaje, jak odebrać i wysłać sygnał. W sytuacji przedstawionej na schemacie, kabel prosty nie będzie odpowiedni do bezpośredniego połączenia dwóch przełączników bez wsparcia funkcji automatycznego przełączania MDI/MDI-X. Zrozumienie różnic między tymi typami kabli jest kluczowe dla projektowania wydajnych i funkcjonalnych sieci komputerowych, a błędna identyfikacja może prowadzić do problemów z komunikacją sieciową i wydajnością.

Pytanie 39

Jakie urządzenie powinno być zainstalowane w serwerze, aby umożliwić automatyczne archiwizowanie danych na taśmach magnetycznych?

A. Blue Ray
B. Dysk SSD
C. Napęd DVD
D. Streamer
Odpowiedzi takie jak Blue Ray, dysk SSD czy napęd DVD nie są odpowiednie w kontekście archiwizacji danych na taśmach magnetycznych. Blue Ray to format optyczny, który jest zoptymalizowany do przechowywania wideo w wysokiej rozdzielczości oraz danych komputerowych, ale nie jest on przeznaczony do długoterminowego przechowywania dużych ilości danych w sposób, który oferują streamery. Dyski SSD, chociaż charakteryzują się dużą szybkością odczytu i zapisu, to ich koszt na jednostkę pamięci jest znacznie wyższy niż w przypadku taśm magnetycznych, co sprawia, że są mniej opłacalne w kontekście archiwizacji danych. Napęd DVD, podobnie jak Blue Ray, ogranicza się do przechowywania znacznie mniejszych ilości danych w porównaniu do taśm magnetycznych, co czyni go niepraktycznym rozwiązaniem dla organizacji potrzebujących efektownego archiwizowania dużych zbiorów danych. Wybór nieodpowiedniego nośnika do archiwizacji nie tylko zwiększa koszty operacyjne, ale także może prowadzić do ryzyka utraty danych w przypadku awarii nośnika. Dlatego kluczowe jest stosowanie odpowiednich technologii, takich jak streamery, które są zgodne z branżowymi standardami przechowywania i archiwizacji danych.

Pytanie 40

Ile bitów trzeba wydzielić z części hosta, aby z sieci o adresie IPv4 170.16.0.0/16 utworzyć 24 podsieci?

A. 6 bitów
B. 4 bity
C. 3 bity
D. 5 bitów
Aby z sieci o adresie IPv4 170.16.0.0/16 wydzielić 24 podsieci, musimy określić, ile bitów musimy wyodrębnić z części hosta. Adres /16 oznacza, że 16 bitów jest przeznaczonych na identyfikację sieci, a pozostałe 16 bitów mogą być użyte na identyfikację hostów. W celu podziału na 24 podsieci, musimy obliczyć, ile bitów jest potrzebnych do reprezentacji co najmniej 24 podsieci. Możemy wykorzystać wzór 2^n >= liczba podsieci, gdzie n to liczba bitów, które wyodrębniamy. W przypadku 24 podsieci, potrzebujemy n=5, ponieważ 2^5=32, co jest większe niż 24. Dlatego trzeba wyodrębnić 5 bitów, co daje nam 32 możliwe podsieci, z których 24 mogą być wykorzystane. Przykładem zastosowania tej techniki jest podział dużych sieci w przedsiębiorstwach, gdzie wiele działów lub lokalizacji wymaga oddzielnych podsieci do zarządzania ruchem i bezpieczeństwem. W praktyce, taki podział wspomaga efektywną organizację sieciową oraz lepsze zarządzanie adresacją IP.