Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 30 maja 2025 16:03
  • Data zakończenia: 30 maja 2025 16:32

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Ciecz.
B. Sublimat
C. Gaz.
D. Lód.
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 2

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 5±3°C
B. 12±1°C
C. 16±2°C
D. 9±1°C
Wybór temperatury 9±1°C, 16±2°C lub 12±1°C nie uwzględnia kluczowych aspektów dotyczących transportu próbek wody oraz ich właściwości. Każda z tych temperatur jest zbyt wysoka w kontekście zachowania integralności chemicznej i biologicznej próbek. Przykładowo, przy temperaturze 9°C może dojść do minimalnego wzrostu aktywności biologicznej, co może prowadzić do niepożądanych zmian w składzie mikrobiologicznym próbki. W przypadku 16°C oraz 12°C, ryzyko katabolicznych procesów biologicznych zdecydowanie wzrasta, co może skutkować degradacją związków organicznych oraz powstawaniem metabolitów, które nie były obecne w czasie pobierania próbki. Takie zmiany mogą prowadzić do fałszywych wyników w analizach, co jest nie do zaakceptowania, zwłaszcza w kontekście badań wody przeznaczonej do spożycia. Często błędnym myśleniem jest przekonanie, że wyższe temperatury są akceptowalne w przypadku krótkoterminowego transportu; jednak praktyka pokazuje, że nawet niewielkie zmiany temperatury mogą znacząco wpłynąć na skład chemiczny i mikrobiologiczny próbek. W związku z tym, przestrzeganie norm oraz dobrych praktyk z zakresu transportu próbek jest niezbędne dla zapewnienia rzetelności wyników analiz.

Pytanie 3

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl
0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm3 w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.
Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
B. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
C. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
D. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
Wybrana odpowiedź jest prawidłowa, ponieważ do przygotowania wzorcowego roztworu NaCl w kolbie miarowej o pojemności 1 dm³ konieczne jest użycie wagi analitycznej o dokładności 0,0001 g oraz kolby miarowej o pojemności 1000 cm³. Waga analityczna umożliwia precyzyjne ważenie masy NaCl, co jest kluczowe w analizach chemicznych, aby uzyskać roztwór o dokładnej koncentracji. NaCl musi być dokładnie odważony, aby zapewnić, że przygotowany roztwór będzie zgodny z wymaganiami jakościowymi, ponieważ nawet niewielkie odchylenia od właściwej masy mogą prowadzić do błędów w dalszych analizach, takich jak miareczkowanie. Kolba miarowa o pojemności 1000 cm³ jest odpowiednia, ponieważ pozwala na rozpuszczenie całej masy NaCl w określonej objętości wody, co umożliwia uzyskanie jednorodnego roztworu. Tego typu procedury są standardem w laboratoriach chemicznych, co podkreśla znaczenie zachowania dokładności oraz precyzji w analizach chemicznych i bioanalitycznych, a także w pracach badawczych.

Pytanie 4

Podstawowy zestaw do filtracji składa się ze statywu oraz

A. zlejka Büchnera, zlewki i bagietki
B. z dwóch zlewek i bagietki
C. zlejka, zlewki i pipety
D. zlejka, dwóch zlewek i bagietki
Podstawowy zestaw do sączenia rzeczywiście składa się z statywu oraz zlejki, dwóch zlewek i bagietki. Statyw jest kluczowy, ponieważ zapewnia stabilność i bezpieczeństwo podczas procesu sączenia, co jest szczególnie ważne w laboratoriach chemicznych i biologicznych, gdzie manipulacja cieczami może być niebezpieczna. Zlejka służy do przechwytywania cieczy, która jest sączona, natomiast zlewki są wykorzystywane do przechowywania oraz transportowania różnych odczynników i próbek. Bagietka, z kolei, jest narzędziem pomocniczym używanym do kierowania cieczy lub do mieszania składników w zlewkach. Przykładem zastosowania tego zestawu jest filtracja próbki cieczy w celu usunięcia zawiesin, co jest powszechnie stosowane w analizach chemicznych oraz podczas przygotowywania rozwiązań o określonym stężeniu. W laboratoriach stosuje się również standardowe procedury bezpieczeństwa, które obejmują wykorzystanie odpowiednich narzędzi i zachowywanie porządku, aby uniknąć kontaminacji.

Pytanie 5

Do wykrywania pierwiastków w niskich stężeniach w badaniach spektrograficznych należy używać reagentów

A. spektralnie czystych
B. czystych
C. chemicznie czystych
D. czystych do badań
Odpowiedź 'spektralnie czyste' jest prawidłowa, ponieważ oznaczanie pierwiastków śladowych w metodach spektrograficznych wymaga stosowania reagentów o wysokiej czystości, które nie zawierają zanieczyszczeń mogących wpływać na wyniki analizy. Spektralna czystość reagentów odnosi się do minimalizacji obecności innych pierwiastków, które mogłyby wprowadzać błędy w pomiarach, co jest kluczowe w przypadku analiz o niskich granicach detekcji. Standardowe praktyki w laboratoriach chemicznych wskazują na konieczność stosowania reagentów, które były poddawane odpowiednim procesom oczyszczania, takim jak destylacja czy chromatografia, aby uzyskać ich spektralne czystości. Przykładem mogą być reakcje analityczne w spektrometrii mas, gdzie nawet drobne zanieczyszczenia mogą prowadzić do fałszywych identyfikacji i ilościowych pomiarów. W ten sposób, zachowanie standardów spektralnej czystości reagentów w praktyce laboratoryjnej jest niezbędne dla uzyskania wiarygodnych wyników analizy.

Pytanie 6

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. wodnych roztworów kwasów
B. wzorców
C. wskaźników
D. rozpuszczalników do chromatografii
Wodne roztwory kwasów są powszechnie stosowane w laboratoriach chemicznych, jednak nie są klasyfikowane jako odczynniki o specjalnym przeznaczeniu. Odczynniki o specjalnym przeznaczeniu obejmują substancje, które są używane w określonych procesach analitycznych lub badawczych, gdzie ich funkcja jest wysoce wyspecjalizowana. Przykładowo, wzorce są substancjami o znanym składzie, które służą do kalibracji instrumentów pomiarowych oraz weryfikacji wyników analizy. Wskaźniki, z kolei, są używane do wizualizacji zmian pH czy innych parametrów chemicznych w trakcie reakcji. Rozpuszczalniki do chromatografii, takie jak acetonitryl czy etanol, są kluczowe w procesach separacji składników mieszanki. W przeciwieństwie do tych substancji, wodne roztwory kwasów pełnią rolę bardziej ogólną, umożliwiając reakcje chemiczne, ale nie są dedykowane do specyficznych zastosowań analitycznych. Dlatego odpowiedź na pytanie jest poprawna, a zrozumienie różnicy między tymi grupami odczynników jest istotne w kontekście praktyki laboratoryjnej.

Pytanie 7

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
B. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
C. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
D. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 8

W tabeli przestawiono dane dotyczące wybranych roztworów wodnych wodorotlenku sodu.
Oblicz masę wodorotlenku sodu, jaką należy rozpuścić w 200,0 cm3 wody, aby otrzymać roztwór o gęstości 1,0428 g/cm3.

d420 [g/cm3]masa NaOH [g/100 cm3]
1,00951,01
1,02072,04
1,04284,17
1,06486,39
1,08698,70
1,108911,09

A. 8,34 g
B. 4,17 g
C. 4,08 g
D. 8,70 g
Odpowiedź 8,34 g jest prawidłowa, ponieważ aby uzyskać roztwór o gęstości 1,0428 g/cm³ w objętości 200 cm³, musimy wziąć pod uwagę masę wodorotlenku sodu (NaOH) niezbędną do osiągnięcia takiej gęstości. Z danych w tabeli wynika, że dla 100 cm³ roztworu potrzebna jest masa NaOH, która po podwojeniu daje nam 8,34 g dla 200 cm³. To podejście jest zgodne z zasadami obliczeń chemicznych, gdzie gęstość, masa i objętość są ze sobą powiązane. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma ogromne znaczenie dla wyników eksperymentów. Zrozumienie relacji między gęstością a masą przy rozcieńczaniu lub przygotowywaniu roztworów jest istotne nie tylko w chemii, ale również w innych dziedzinach, takich jak farmacja czy biotechnologia, gdzie odpowiednie stężenie substancji czynnej jest kluczowe dla skuteczności terapii.

Pytanie 9

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. potencjometrycznego
B. redoksymetrycznego
C. alkacymetrycznego
D. kompleksometrycznego
Mianowanie roztworu manganianu(VII) potasu (KMnO4) w opisywanej procedurze odbywa się w ramach miareczkowania redoksymetrycznego, które jest techniką analizy chemicznej opartą na reakcji utleniania i redukcji. Manganian(VII) potasu jest silnym utleniaczem, a w reakcjach z substancjami redukującymi, takimi jak szczawian sodu, przeprowadza reakcję redoks, gdzie dochodzi do wymiany elektronów. Szczawian sodu w obecności kwasu siarkowego(VI) (H2SO4) ulega utlenieniu, a KMnO4 redukuje się do manganu(II). Ostatecznym punktem końcowym miareczkowania jest zauważenie trwałego lekkoróżowego zabarwienia roztworu, co wskazuje na niewielką nadmiarowość manganianu i zakończenie reakcji. Miareczkowanie redoksymetryczne znajduje zastosowanie w analizie różnych substancji, takich jak kwasy, alkohol czy węglowodany, stanowiąc istotny element w laboratoriach analitycznych. W praktyce, ważne jest zachowanie odpowiednich warunków, takich jak temperatura, pH i stężenie reagentów, aby zapewnić precyzyjność i powtarzalność wyników.

Pytanie 10

Podczas pipetowania menisk górny określa się dla roztworów

A. I2 i (CH3COO)2Pb
B. I2 i KMnO4
C. (CH3CO) 2Pb i KMnO4
D. K2CrO4 i Pb(NO3)2
Podczas pipetowania menisk górny dla roztworów ustala się w przypadku substancji takich jak I2 i KMnO4, ponieważ obie te substancje są dobrze rozpuszczalne w wodzie i tworzą odpowiednie meniskii, co jest kluczowe dla dokładności pipetowania. Menisk to zakrzywienie powierzchni cieczy, które powstaje w wyniku sił napięcia powierzchniowego oraz adhezji cieczy do ścianek naczynia. W przypadku I2 i KMnO4 menisk górny jest łatwy do odczytania i stabilny, co jest istotne dla precyzyjnych pomiarów objętości. Przykładem zastosowania tej wiedzy może być analizowanie stężenia jodu w roztworze, gdzie dokładne pipetowanie jest niezbędne dla uzyskania wiarygodnych wyników. Praktyki laboratoryjne zalecają także stosowanie pipet o odpowiedniej graduacji oraz technikę odczytu menisku na wysokości oczu, co pozwala na minimalizację błędów systematycznych. Użycie odpowiednich reagentów i technik w laboratoriach chemicznych jest zgodne z normami ISO oraz dobrymi praktykami laboratoryjnymi, co wpływa na rzetelność wyników."

Pytanie 11

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 313 K
B. 20°C
C. 340 K
D. 30°C
Odpowiedź 340 K jest poprawna, ponieważ w tej temperaturze CuSO4 rozpuszcza się efektywnie w wodzie. Rozpuszczalność wielu soli w wodzie zmienia się w zależności od temperatury, a dla siarczanu miedzi (II) jest to szczególnie istotne. W praktyce, aby osiągnąć zalecaną rozpuszczalność 25 g CuSO4 w 50 g wody, trzeba zapewnić odpowiednią energię cieplną, co pozwala cząsteczkom soli na przełamanie wiązań i ich rozpuszczenie. W kontekście laboratoryjnym, odpowiednia temperatura pozwala na uniknięcie nieefektywnego rozpuszczania i oszukiwania czasu pracy w badaniach analitycznych. W zastosowaniach przemysłowych, takich jak produkcja roztworów do procesów galwanicznych, kontrolowanie temperatury jest kluczowe, aby zapewnić jednorodność roztworu. Zgodnie z dobrą praktyką laboratoryjną, zawsze należy monitorować temperaturę, aby uzyskać optymalne wyniki. Ponadto, pamiętajmy, że temperatura ma wpływ na kinetykę reakcji chemicznych oraz na stabilność rozpuszczonych substancji.

Pytanie 12

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. BaCl2 + H2SO4 → BaSO4 + 2HCl
B. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
C. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
D. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
Odpowiedź Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl- jest poprawna, ponieważ odzwierciedla rzeczywisty proces reakcji jonowej w przypadku otrzymywania siarczanu(VI) baru. W tej reakcji jony baru (Ba2+) reagują z jonami siarczanowymi (SO42-) oraz jonami wodorowymi (H+) w obecności chloru (Cl-). Produktami reakcji są osad siarczanu(VI) baru (BaSO4) oraz jony H+ i Cl-, co wskazuje na to, że chlor, mimo że nie jest bezpośrednio zaangażowany w tworzenie osadu, pozostaje w roztworze. Takie podejście jest zgodne z zasadami zapisu reakcji w formie jonowej, gdzie pokazujemy tylko te jony, które biorą udział w tworzeniu produktów, eliminując jony, które pozostają niezmienione w roztworze. W praktycznych zastosowaniach, reakcje takie są ważne w przemyśle chemicznym, zwłaszcza w procesach oczyszczania wody, gdzie siarczan(VI) baru jest wykorzystywany do usuwania zanieczyszczeń. Przykładem może być wykorzystanie BaSO4 jako środek kontrastowy w diagnostyce medycznej, co potwierdza jego znaczenie w zastosowaniach technicznych.

Pytanie 13

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
B. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
C. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
D. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
Wybór niepoprawnej odpowiedzi często wynika z braku zrozumienia specyfikacji narzędzi laboratoryjnych oraz ich zastosowania w konkretnych procedurach analitycznych. Wiele z błędnych odpowiedzi sugeruje użycie cylinderów o pojemności 100 cm3 lub zlewek, co w przypadku analizy kwasowości mleka jest niewłaściwe. Cylinder miarowy o pojemności 100 cm3 jest zbyt duży do precyzyjnego odmierzania niewielkich objętości wody destylowanej, co może prowadzić do błędów w obliczeniach. Zlewa nie jest narzędziem stosowanym do precyzyjnego odmierzania substancji, co czyni ją nieodpowiednią do zastosowań wymagających dokładności. Ponadto, użycie pipet wielomiarowych zamiast jednomiarowych może prowadzić do nieścisłości w pobieraniu prób, gdyż pipety jednomiarowe są zaprojektowane do precyzyjnego odmierzania pojedynczych objętości. W laboratoriach stosuje się standardy, które nakładają wymogi co do dokładności przygotowywanych roztworów, stąd konieczność przestrzegania procedur opartych na uznanych metodach analitycznych. Przygotowanie roztworów powinno odbywać się z użyciem odpowiednich narzędzi, a ich dobór ma kluczowe znaczenie dla jakości wyników, co podkreśla znaczenie znajomości sprzętu laboratoryjnego i jego funkcji.

Pytanie 14

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Odzież ochronną, rękawice i okulary ochronne.
B. Fartuch ochronny, rękawice i maskę tlenową.
C. Odzież ochronną i maskę tlenową.
D. Gumowe rękawice i maskę ochronną.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 15

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. zlewka
B. pipeta Mohra
C. cylinder z podziałką
D. kolba stożkowa
Pipeta Mohra, zlewka i kolbka stożkowa to narzędzia laboratoryjne, ale nie są one odpowiednie do precyzyjnej analizy ilościowej w tym kontekście. Pipeta Mohra, chociaż używana do odmierzania cieczy, ma ograniczoną dokładność i jest przeznaczona głównie do przenoszenia ustalonych objętości cieczy, co różni ją od cylindra z podziałką, który umożliwia dokładną odczyt objętości w większym zakresie. Zlewka, z kolei, jest narzędziem o niskiej precyzji, często stosowanym do mieszania lub przechowywania cieczy, ale nie nadaje się do dokładnych pomiarów objętości, co czyni ją niewłaściwym wyborem w kontekście analizy ilościowej. Kolbka stożkowa, chociaż jest przydatna w reakcjach chemicznych i nauczaniu, również nie zapewnia precyzyjnego pomiaru objętości bez dodatkowych narzędzi. Użycie tych narzędzi w sytuacjach wymagających dokładnych pomiarów może prowadzić do błędów w wynikach badań, ponieważ nie są one standardowo projektowane z myślą o precyzyjnym pomiarze objętości, co jest kluczowe w analizie ilościowej. Prawidłowe zrozumienie zastosowania tych narzędzi jest istotne dla osiągania wiarygodnych wyników w pracy laboratoryjnej.

Pytanie 16

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,6
B. 1,0
C. 0,8
D. 0,4
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 17

Aby przygotować 250 cm3 roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 0,35 g KOH
B. 3,5 g KOH
C. 35,0 g KOH
D. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
Aby przygotować 0,25-molowy roztwór KOH o objętości 250 cm³, trzeba najpierw policzyć, ile tej substancji potrzebujemy. Wodorotlenek potasu ma masę molową 56 g/mol (liczymy K — 39 g/mol, O — 16 g/mol, H — 1 g/mol). Używając równania C = n/V, gdzie C to stężenie molowe, n to liczba moli, a V to objętość w litrach, możemy ustalić, ile moli potrzebujemy: n = C * V = 0,25 mol/dm³ * 0,250 dm³ = 0,0625 mol. Następnie, żeby obliczyć masę KOH, stosujemy wzór: m = n * M, czyli m = 0,0625 mol * 56 g/mol = 3,5 g. Te obliczenia są naprawdę istotne w chemii analitycznej, bo dokładne przygotowanie roztworów jest kluczowe, żeby wyniki były wiarygodne. Z własnego doświadczenia mogę powiedzieć, że umiejętność liczenia molowości i mas molowych jest podstawą w chemicznych reakcjach i analizach, co ma ogromne znaczenie w laboratorium.

Pytanie 18

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol

A. 100%
B. 44,6%
C. 56,0%
D. 4,4%
Wydajność procentowa reakcji chemicznych jest kluczowym wskaźnikiem efektywności procesów chemicznych. W omawianym przypadku, mając 100 g węglanu wapnia (CaCO3), teoretyczna masa tlenku wapnia (CaO), który można uzyskać w wyniku rozkładu, wynosi 56 g. Otrzymana masa 25 g tlenku wapnia pozwala na obliczenie wydajności procentowej, stosując wzór: (rzeczywista masa / teoretyczna masa) * 100%. Obliczenia prowadzą do wartości 44,6%, co wskazuje na to, że tylko część teoretycznej ilości produktu została uzyskana w rzeczywistej reakcji. Taka sytuacja może być efektem różnych czynników, w tym niepełnego rozkładu, strat materiałowych podczas procesu, czy też niewłaściwych warunków reakcji. W praktyce, zrozumienie i obliczanie wydajności reakcji chemicznych jest niezbędne w przemyśle chemicznym i farmaceutycznym, gdzie optymalizacja procesów jest kluczowa dla efektywności kosztowej i jakości produktów. Utrzymywanie wysokiej wydajności jest również zgodne z zasadami zrównoważonego rozwoju, co jest istotne w nowoczesnych procesach produkcyjnych.

Pytanie 19

Stosunek masowy miedzi do siarki w siarczku miedzi(I) wynosi

16S
Siarka
32
29Cu
Miedź
63,55

A. 1:1
B. 2:1
C. 4:1
D. 3:1
Zrozumienie, jak obliczać stosunek masowy miedzi do siarki w Cu2S, jest naprawdę ważne. Często ludzie myślą, że ten stosunek wynosi 1:1 lub 2:1, bo nie rozumieją dobrze, jak to działa. Wybierając odpowiedź 1:1, zakładają, że miedź i siarka są w równych ilościach, co nie jest prawdą. Z kolei 2:1 też jest mylące, bo nie bierze pod uwagę masy molowej miedzi, a tylko liczbę atomów. Myślenie, że ilość atomów równa się masie, to częsty błąd, który prowadzi do nieporozumień. Odpowiedź 3:1 również nie jest poprawna, bo wynika z błędnego przyporządkowania mas do atomów. Ważne, żeby nauczyć się, że stosunek masowy opiera się na masas molowych, a nie tylko na liczbie atomów. To naprawdę kluczowe w nauce chemii, żeby dobrze to rozumieć i zwracać uwagę na szczegóły.

Pytanie 20

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. CaCO3 → CaO + CO2
B. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
C. 2 KMnO4 → K2MnO4 + MnO2 + O2
D. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 21

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. umytych wodorotlenkiem sodu
B. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
C. sterylnych
D. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 22

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.

A. polać skórę środkiem zobojętniającym.
B. przemyć skórę dużą ilością wody.
C. podać do picia dużą ilość schłodzonej wody.
D. zastosować na skórę mydło w płynie.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 23

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. prowadzą do zakwaszenia wód
B. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
C. wykazują toksyczne działanie na organizmy żywe
D. powodują nadmierny wzrost roślinności w zbiornikach wodnych
Wydaje się, że odpowiedzi odnoszące się do nadmiernego zarastania zbiorników wodnych oraz zakwaszenia wody nie uwzględniają bezpośredniego wpływu chromu(VI) na ekosystemy. Nadmierne zarastanie zazwyczaj wynika z eutrofizacji, spowodowanej nadmiarem substancji odżywczych, takich jak azotany i fosforany, a nie ze związku chromu. Z kolei zakwaszenie wody jest zazwyczaj efektem emisji dwutlenku siarki oraz tlenków azotu do atmosfery, co prowadzi do opadów kwasowych, a nie jest bezpośrednio związane z chromem(VI). Ponadto, korozja wodnych urządzeń technicznych, mimo że może być wpływana przez różne substancje chemiczne, nie jest głównym problemem związanym z obecnością chromu(VI). To podejście nie uwzględnia, że głównym zagrożeniem związanym z chromem(VI) są jego właściwości toksyczne, a nie wpływ na właściwości fizyczne wody. W związku z tym, pomijanie kluczowych aspektów toksyczności chromu(VI) w kontekście zagrożeń dla organizmów żywych prowadzi do nieprecyzyjnych wniosków. Właściwe zrozumienie tych procesów jest kluczowe, szczególnie w kontekście ochrony środowiska oraz zdrowia publicznego, ponieważ ignorowanie toksyczności tych substancji może prowadzić do poważnych konsekwencji zdrowotnych oraz ekologicznych.

Pytanie 24

Metodą, która nie służy do utrwalania próbek wody, jest

A. naświetlanie lampą UV
B. zakwaszenie do pH < 2
C. dodanie biocydów
D. schłodzenie do temperatury 2-5°C
Wybór schłodzenia do temperatury 2-5°C jako metody utrwalania próbki wody jest powszechnie stosowany, ponieważ niskie temperatury spowalniają procesy biologiczne oraz chemiczne, co jest kluczowe dla zachowania stabilności próbki. Metoda ta jest zgodna z wytycznymi ISO, które rekomendują utrzymanie próbek w odpowiednich warunkach, aby zminimalizować ryzyko degradacji i utraty właściwości próbki. Dodanie biocydów to kolejna strategia, która ma na celu eliminację mikroorganizmów, co również wpływa na zachowanie integralności próbki. Zakwaszenie próbki do pH < 2 jest stosowane w niektórych analizach, szczególnie w kontekście metalurgii i chemii analitycznej, aby zdenaturować białka i stabilizować niektóre substancje, co jest istotne w przypadku próbek wymagających analizy chemicznej. Błędem jest jednak założenie, że naświetlanie lampą UV może uznać za metodę utrwalania, ponieważ jego celem jest dezynfekcja, a nie długoterminowe zabezpieczenie próbki. Naświetlanie UV może prowadzić do nieodwracalnych zmian chemicznych, a także do zniszczenia niektórych związków w próbce, co osłabia jakość wyników analiz. W kontekście odpowiednich praktyk laboratoryjnych, należy przestrzegać standardów dotyczących przygotowania próbek, aby zapewnić ich wiarygodność i dokładność analiz.

Pytanie 25

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 24,06 g
B. 26,04 g
C. 18,40 g
D. 20,00 g
Aby obliczyć masę chlorku baru potrzebną do przygotowania 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3, należy skorzystać z wzoru na stężenie masowe. Stężenie masowe (C) definiuje się jako masa substancji (m) dzielona przez objętość roztworu (V) pomnożoną przez 100%. W tym przypadku C = 10%, V = 200 cm3. Zatem: m = C * V / 100 = 10 * (200) / 100 = 20 g. Jednakże, aby obliczyć masę rzeczywistą roztworu, musimy uwzględnić jego gęstość. Gęstość (d) roztworu wynosi 1,203 g/cm3, co oznacza, że masa roztworu wyniesie: masa roztworu = objętość * gęstość = 200 cm3 * 1,203 g/cm3 = 240,6 g. Teraz, skoro mamy 20 g chlorku baru, to masa pozostałej części roztworu (czyli wody) wyniesie 240,6 g - 20 g = 220,6 g. W końcu należy złożyć obliczenia: 20 g chlorku baru stanowi 10% całości, co jest zgodne z założeniem stężenia. Ostatecznie, aby uzyskać roztwór o pożądanym stężeniu, konieczne jest rozpuszczenie 24,06 g chlorku baru, co odpowiada odpowiedzi nr 4.

Pytanie 26

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. ekstrakcja roztworem zasady
B. zatężenie i krystalizacja
C. ekstrakcja chloroformem
D. destylacja z parą wodną
Ekstrakcja chloroformem nie jest skuteczna w rozdziale ketonu i kwasu karboksylowego, ponieważ oba te związki są organiczne i mogą się dobrze rozpuszczać w chloroformie. W praktyce, podczas ekstrakcji, nie zachodzi wystarczająca separacja tych substancji, co prowadzi do trudności w ich dalszej analizie i oczyszczaniu. W przypadku destylacji z parą wodną, metoda ta działa najlepiej dla substancji lotnych, a kwasy karboksylowe często są mniej lotne, co ogranicza jej zastosowanie w tym kontekście. Z kolei zatężenie i krystalizacja są bardziej odpowiednie dla czystych substancji, a nie dla mieszanin, których składniki wykazują złożoną interakcję. Często zdarza się, że studenci błędnie zakładają, że wszystkie metody rozdzielania substancji organicznych są uniwersalne, co prowadzi do niewłaściwych wyborów w laboratoriach. Kluczowe jest zrozumienie chemicznych interakcji pomiędzy substancjami, co jest podstawą efektywnego rozdziału i oczyszczania związków organicznych.

Pytanie 27

Z próbek przygotowuje się ogólną próbkę

A. wtórnych
B. pierwotnych
C. analitycznych
D. laboratoryjnych
Przygotowanie próbki ogólnej z próbek pierwotnych jest kluczową procedurą w wielu dziedzinach analityki. Próbki pierwotne to te, które są pozyskiwane bezpośrednio z miejsca danego badania, co zapewnia ich reprezentatywność i integralność. Umożliwia to właściwe odwzorowanie warunków, w jakich dana substancja występuje w naturze. Na przykład w analizach środowiskowych, takich jak badanie jakości wód czy gleby, próbki pierwotne pobierane są bezpośrednio z miejsca, co pozwala na dokładne przeanalizowanie ich właściwości chemicznych i fizycznych. Zgodnie z normami ISO, odpowiednie pobieranie próbek jest istotne dla zachowania właściwych standardów jakości i rzetelności wyników. W praktyce, przygotowanie próbki ogólnej z próbek pierwotnych pozwala na przeprowadzenie dalszych analiz, takich jak spektrometria, chromatografia czy mikroskopia, co daje możliwość uzyskania danych nie tylko o składzie chemicznym, ale także o potencjalnych zanieczyszczeniach i ich źródłach. Zrozumienie tej procedury jest kluczowe dla wszelkich prac badawczych i przemysłowych, dlatego istotne jest, aby praktycy i naukowcy stosowali się do ścisłych wytycznych dotyczących pobierania i przygotowania próbek.

Pytanie 28

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. twardy
B. częściowy
C. średni
D. miękki
Wybór złego sączka do filtracji osadu galaretowatego Fe(OH)3 może naprawdę narobić bałaganu. Sączki średnie czy twarde, chociaż mogą działać, to nie są najlepsze w przypadku galaretowatych osadów. Te średnie mają większe pory, więc małe cząsteczki osadu mogą przez nie przechodzić, co mija się z celem oddzielania. A twarde sączki są za sztywne, żeby dobrze zatrzymać delikatny osad, co kończy się utratą prób. Sączki częściowe, które mają łapać tylko niektóre cząsteczki, mogą być nieadekwatne dla skomplikowanych osadów. W praktyce, niewłaściwy sączek nie tylko psuje jakość końcowego produktu, ale i może zafałszować wyniki, co jest niezgodne z dobrymi praktykami w laboratoriach. Dlatego przed wyborem sączka warto dokładnie sprawdzić właściwości osadu i wymogi filtracji.

Pytanie 29

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. aspirator
B. pojemnik
C. barometr
D. czerpak
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 30

Aby przygotować zestaw do filtracji, należy zebrać

A. bagietkę, zlewkę, łapę metalową, statyw metalowy
B. biuretę, statyw metalowy, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 31

Deminimalizowaną wodę można uzyskać przez

A. destylację próżniową
B. wymianę jonową
C. filtrację
D. destylację prostą
Woda demineralizowana to woda, z której usunięto wszystkie lub prawie wszystkie rozpuszczone sole mineralne. Jednym z najskuteczniejszych sposobów jej pozyskania jest wymiana jonowa. Proces ten polega na użyciu żywic jonowymiennych, które są zdolne do wymiany jonów w roztworze. Kiedy woda przepływa przez kolumnę wypełnioną żywicą, jony niepożądane (takie jak Ca²⁺, Mg²⁺ czy Na⁺) są zastępowane przez jony H⁺ lub OH⁻, co prowadzi do powstania czystej wody. Wymiana jonowa jest szczególnie istotna w przemyśle farmaceutycznym, gdzie woda demineralizowana jest używana jako rozpuszczalnik w procesach produkcyjnych oraz w laboratoriach analitycznych, gdzie czystość wody jest kluczowa dla dokładności wyników. Warto zauważyć, że ta metoda jest często preferowana w porównaniu do innych technik, ponieważ skutecznie eliminuje zarówno aniony, jak i kationy. Dążenie do uzyskania wody o wysokiej czystości chemicznej jest zgodne z normami ISO 3696, które definiują wymagania dla wody do zastosowań laboratoryjnych.

Pytanie 32

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,003 mol/dm3
B. 0,3 mol/dm3
C. 0,0003 mol/dm3
D. 0,03 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 33

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. z polietylenu
B. ze szkła borokrzemowego
C. ze szkła krzemowego
D. ze szkła sodowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 34

W celu przygotowania 100 cm3 roztworu mianowanego, jaką kolbę należy zastosować?

A. miarową o pojemności 0,1 dm3
B. stożkową o pojemności 0,1 dm3
C. miarową o pojemności 10 cm3
D. stożkową o pojemności 100 cm3
Wybór kolby miarowej 0,1 dm³ (czyli 100 cm³) to dobry ruch. Przygotowując roztwór mianowany, ważne jest, żeby robić to w naczyniu, które zapewnia dokładne pomiary objętości. Kolby miarowe są super dokładne i to ma duże znaczenie w chemii. Nawet małe błędy w objętości mogą namieszać wyniki analizy. Na przykład, jeśli przygotowujesz roztwór standardowy do miareczkowania, kolba miarowa będzie niezbędna. Pamiętaj, że każda kolba powinna być używana zgodnie z jej pojemnością, co sprawia, że wyniki są bardziej rzetelne i powtarzalne. W laboratoriach chemicznych dokładność pomiaru to klucz, więc dobrze jest wiedzieć, jaką kolbę wybrać, żeby wszystko wyszło zgodnie z planem.

Pytanie 35

Użycie płuczek jest konieczne w trakcie procesu

A. oczyszczania gazów
B. destylacji
C. krystalizacji
D. flotacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 36

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
B. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
C. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
D. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 37

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 dm3
B. 200 cm3
C. 20 ml
D. 200 dm3
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 38

Który z wskaźników nie jest używany w alkacymetrii?

A. Błękit tymolowy
B. Oranż metylowy
C. Skrobia
D. Fenoloftaleina
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 39

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. powietrznych
B. piaskowych
C. olejowych
D. wodnych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 40

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czystość do analizy
B. Czystość spektralna
C. Czystość chemiczna
D. Czysty
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.