Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 czerwca 2025 18:38
  • Data zakończenia: 7 czerwca 2025 18:41

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby umożliwić niezależny odbiór sygnałów satelitarnych przez dwa odbiorniki satelitarne, używa się konwertera

A. Unicable
B. Monoblock
C. Twin
D. Quad
Odpowiedzi jak Monoblock, Quad i Unicable mają swoje konkretne zastosowania, które są trochę inne niż konwerter Twin. Monoblock na przykład, umożliwia odbiór sygnałów z dwóch satelitów, ale nie może działać dla dwóch odbiorników na raz. To znaczy, że jak jeden odbiornik korzysta z sygnału, to drugi już nie ma dostępu. To może być dość problematyczne, jeśli chcemy oglądać różne programy. Konwerter Quad ma cztery wyjścia, więc można podłączyć cztery odbiorniki, ale i w tym przypadku nie ma możliwości niezależnego korzystania jak w Twin. A system Unicable, chociaż ciekawy, wymaga specjalnych dekoderów, które łączą się z jednym wyjściem konwertera, przez co nie jest tak elastyczny jak Twin. Wiele osób myśli, że wszystkie konwertery są takie same i można je zamieniać, ale to nie tak. Fajnie jest zrozumieć, co każdy z tych konwerterów potrafi, żeby uniknąć nieprzyjemnych niespodzianek i cieszyć się wygodnym dostępem do telewizji satelitarnej.

Pytanie 2

Skrót ADSL odnosi się do technologii, która pozwala na

A. transmisję informacji cyfrowych za pośrednictwem fal radiowych
B. odbieranie cyfrowej telewizji naziemnej
C. kompresję materiałów audio i wideo
D. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
Skrót ADSL jednoznacznie odnosi się do technologii szerokopasmowego dostępu do internetu, co czyni niektóre odpowiedzi nieprawidłowymi. Przesyłanie informacji cyfrowej poprzez fale radiowe odnosi się do technologii takich jak Wi-Fi czy LTE, które nie wymagają fizycznego połączenia kablowego, co jest przeciwstawne do sposobu działania ADSL, który bazuje na istniejących liniach telefonicznych. Odbiór naziemnej telewizji cyfrowej również jest procesem niezwiązanym z ADSL, ponieważ polega na odbieraniu sygnałów telewizyjnych za pomocą anteny, a nie transmisji danych przez linię telefoniczną. Kompresja audio i wideo to proces technologiczny służący do zmniejszenia rozmiaru plików multimedialnych, który nie ma bezpośredniego związku z ADSL i jego funkcjonalnością. Typowym błędem myślowym w tym przypadku jest mylenie różnych technologii transmisji danych i ich zastosowań. ADSL jest specyficzną technologią, która została zaprojektowana do efektywnego dostarczania usług szerokopasmowych, a nie do transmisji radiowej, telewizyjnej czy kompresji danych. Właściwe zrozumienie ADSL i jego charakterystyki jest kluczowe dla efektywnego korzystania z zasobów internetowych, zwłaszcza w kontekście wzrastających potrzeb użytkowników.

Pytanie 3

Stacja bazowa jest częścią systemu

A. nawigacyjnego
B. telewizji kablowej
C. alarmowego
D. sterowania mikroprocesorowego
Wybór odpowiedzi dotyczącej alarmowego systemu jest nieprawidłowy, ponieważ stacja czołowa nie ma związku z systemami alarmowymi. Systemy alarmowe koncentrują się na detekcji zagrożeń, takich jak włamania czy pożary, oraz na monitorowaniu i reagowaniu na te sytuacje. W kontekście telekomunikacji, stacja czołowa nie jest elementem, który odpowiada za alarmowanie, lecz za przetwarzanie sygnałów telewizyjnych. Podobnie, wybór opcji dotyczącej nawigacji jest błędny, ponieważ systemy nawigacyjne, takie jak GPS, skupiają się na lokalizacji i kierowaniu, a nie na przekazywaniu sygnału telewizyjnego. Stacja czołowa nie uczestniczy w procesie nawigacyjnym, lecz skupia się na dystrybucji treści multimedialnych. Napotkanie na odpowiedź wskazującą na sterowanie mikroprocesorowe może wynikać z mylnego przekonania o uniwersalności mikroprocesorów w różnych zastosowaniach. Choć mikroprocesory są kluczowe w systemach elektronicznych, ich rola w stacji czołowej telewizji kablowej jest ograniczona do przetwarzania sygnałów, a nie zarządzania funkcjami systemów sterowania. Często spotykanym błędem myślowym w takich przypadkach jest uogólnienie funkcji technologii bez zrozumienia ich kontekstu i specyfiki działania w danym systemie.

Pytanie 4

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. JACK
B. S-VHS
C. DIN 5
D. EUROSCART
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 5

Skrótem A/52 określa się system

A. przesyłania dźwięku stereo w radiofonii FM
B. przesyłania dźwięku w radiofonii AM
C. kodowania dźwięku w telewizji cyfrowej DVB
D. kodowania dźwięku w telewizji analogowej
W przypadku pozostałych odpowiedzi, można zauważyć szereg nieścisłości związanych z tematyką kodowania dźwięku i jego zastosowaniem w różnych systemach. Pierwsza z nich, dotycząca przesyłania dźwięku stereo w radiofonii FM, jest nieprecyzyjna, ponieważ radiofonia FM nie wykorzystuje standardu A/52, a dźwięk stereofoniczny w tym kontekście opiera się na analogowym przesyłaniu sygnału. Radiofonia FM, choć może oferować wysoką jakość dźwięku, nie współczesnych standardów cyfrowych, w tym A/52, który jest związany z telewizją cyfrową. Druga odpowiedź, dotycząca kodowania dźwięku w telewizji analogowej, również jest błędna, ponieważ telewizja analogowa nie stosuje kompresji dźwięku w taki sam sposób jak telewizja cyfrowa. W telewizji analogowej dźwięk był przesyłany w formie mikrofonowego sygnału analogowego, co ograniczało jakość i efektywność przesyłu. Przesyłanie dźwięku w radiofonii AM, z kolei, opiera się na innej technologii modulacji, która nie jest związana z cyfrowymi standardami kodowania dźwięku. Zrozumienie tych różnic jest kluczowe dla poprawnej interpretacji zastosowania różnych standardów w przesyłaniu dźwięku. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, obejmują zbyt ogólne rozumienie pojęcia kodowania dźwięku oraz mylenie analogowych i cyfrowych technologii w kontekście telekomunikacyjnym.

Pytanie 6

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. odłączenia układu od zasilania
B. zwarcia wejścia układu
C. usunęcia kondensatora filtrującego
D. podłączenia obciążenia sztucznego
Wymontowanie kondensatora filtrującego przed wymianą tranzystora może wydawać się logiczne, jednak jest to podejście niezgodne z najlepszymi praktykami w dziedzinie elektroniki. Kondensatory filtrujące mają za zadanie stabilizować napięcie i eliminować zakłócenia w obwodach. W przypadku ich demontażu, układ może nie działać poprawnie lub może wystąpić niepożądane zjawisko oscylacji, co może prowadzić do dalszych uszkodzeń. Podłączenie sztucznego obciążenia jako sposób na wymianę tranzystora również jest niewłaściwe, gdyż wprowadza dodatkowe ryzyko uszkodzenia innych komponentów. Sztuczne obciążenie nie ma zastosowania w kontekście wymiany uszkodzonego tranzystora, a jego użycie może prowadzić do nieodpowiednich warunków pracy, które mogą wprowadzić dodatkowe problemy. Natomiast zwarcie wejścia układu jest skrajnym i niebezpiecznym zachowaniem, które może prowadzić do uszkodzeń zarówno tranzystora, jak i samej przetwornicy. Takie działanie nie tylko naraża komponenty na uszkodzenia, ale także stwarza potencjalne zagrożenie dla użytkownika. W elektronice kluczowe jest przestrzeganie zasad bezpieczeństwa oraz procedur, co oznacza, że przed wymianą jakichkolwiek komponentów konieczne jest zapewnienie, że układ jest całkowicie odłączony od zasilania.

Pytanie 7

Czujnik akustyczny połączony z systemem alarmowym do wykrywania włamań i napadów służy do identyfikacji

A. modulacji dźwięku
B. otwarcia okna
C. dźwięku ulatniającego się gazu
D. stłuczenia szyby
Odpowiedzi sugerujące inne możliwości, takie jak otwarcie okna, dźwięk ulatniającego się gazu, czy modulację dźwięku, wskazują na nieporozumienie dotyczące funkcji czujek akustycznych. Czujki są zaprojektowane do rozpoznawania specyficznych, głośnych dźwięków, takich jak stłuczenie szyby, które wskazuje na potencjalne włamanie. Otwarcie okna generuje dźwięk, ale nie jest on na ogół na tyle wyraźny ani charakterystyczny, aby czujka akustyczna mogła go skutecznie zidentyfikować. W rzeczywistości systemy bezpieczeństwa często stosują różne rodzaje czujek, aby wykrywać różne formy intruzji, gdzie czujki kontaktowe są bardziej odpowiednie do monitorowania otwarcia okien czy drzwi. Natomiast dźwięk ulatniającego się gazu jest detekowany poprzez czujniki gazu, które działają na zupełnie innej zasadzie; ich celem jest wykrycie obecności niebezpiecznych substancji chemicznych w powietrzu. Wreszcie, modulacja dźwięku odnosi się do zmiany parametrów dźwięku, a nie do jego detekcji. Takie niejasności mogą prowadzić do niewłaściwej interpretacji funkcji urządzeń zabezpieczających. Zrozumienie specyfiki działania czujek akustycznych i ich zastosowania jest kluczowe, aby skutecznie zabezpieczyć obiekt przed zagrożeniem.

Pytanie 8

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. spliter
B. modulator
C. dekoder
D. generator
Jeśli wybrałeś inne odpowiedzi, jak dekoder, generator czy modulator, to może być trochę nieporozumienie z tym, jak te urządzenia działają w kontekście instalacji antenowych. Dekoder to sprzęt, który przetwarza zakodowane sygnały, żebyśmy mogli je oglądać na telewizorze. On nie dzieli sygnału, a tylko go dekoduje, co jest zupełnie inną sprawą niż splitter. Generator robi coś innego, bo wytwarza sygnały, ale nie rozdziela ich. Można go używać przy produkcji sygnałów testowych, ale w instalacjach antenowych się nie sprawdzi. Modulator z kolei zamienia sygnał audio-wideo na coś, co można przesyłać przez różne media, co też nie pasuje do rozdzielania sygnałów. Fajnie jest znać te różnice, bo to pomoże lepiej konfigurować systemy antenowe i uniknąć problemów z jakością sygnału. Czasami ludzie mylą te funkcje, co może prowadzić do złych wyborów w budowaniu i utrzymywaniu instalacji.

Pytanie 9

Do realizacji instalacji odbiorczej paneli fotowoltaicznych należy użyć kabla rodzaju

A. RG58
B. UTP
C. YTKSY
D. YDY
Kable UTP, RG58 oraz YTKSY nie są odpowiednie do realizacji instalacji odbiorczej ogniw fotowoltaicznych, ponieważ ich zastosowanie i właściwości różnią się od wymagań stawianych przez systemy fotowoltaiczne. Kabel UTP (Unshielded Twisted Pair) jest typowo stosowany w sieciach komputerowych do przesyłania danych, a jego konstrukcja nie jest przystosowana do zasilania urządzeń elektrycznych, co sprawia, że nie można go używać w obwodach niskonapięciowych do paneli słonecznych. Z kolei RG58 jest kablem koncentrycznym, który jest używany głównie w systemach komunikacyjnych, takich jak anteny radiowe czy telewizyjne, a jego zastosowanie w instalacjach elektrycznych nie spełnia norm dotyczących bezpieczeństwa i wydajności. Natomiast kabel YTKSY, znany z zastosowania w telekomunikacji, również nie jest odpowiedni do użycia w systemach fotowoltaicznych, ponieważ jego konstrukcja nie zapewnia wymaganej elastyczności i odporności na czynniki zewnętrzne, co jest kluczowe w kontekście instalacji na otwartym terenie. Użycie niewłaściwego rodzaju kabla w instalacji fotowoltaicznej może prowadzić do awarii systemu, zwiększenia ryzyka uszkodzeń oraz nieefektywnego działania, dlatego ważne jest, aby dobierać materiały zgodnie z ich przeznaczeniem i wymaganiami technicznymi.

Pytanie 10

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. gaśnicy proszkowej
B. hydronetki wodnej
C. gaśnicy pianowej
D. koca azbestowego
Koc azbestowy nie jest odpowiednim środkiem do gaszenia pożarów w pomieszczeniach z urządzeniami elektrycznymi. Oprócz tego, że azbest jest materiałem niebezpiecznym dla zdrowia i zakazanym w wielu krajach, jego zastosowanie w gaśnictwie jest ograniczone. Koc azbestowy może być użyty do tłumienia płomieni w przypadku niewielkich pożarów, jednak nie zapewnia on bezpieczeństwa w sytuacjach, gdzie obecne są urządzenia pod napięciem, ponieważ nie jest skuteczny w gaszeniu pożarów elektrycznych. Hydronetka wodna, z drugiej strony, również nie jest zalecana do gaszenia pożarów w obszarach z urządzeniami elektrycznymi, ponieważ woda może przewodzić prąd i prowadzić do porażenia. Zastosowanie wody w takich okolicznościach jest niebezpieczne i może pogorszyć sytuację. Gaśnica pianowa jest odpowiednia do walki z pożarami cieczy łatwopalnych, jednak jej stosowanie w pomieszczeniach z urządzeniami elektrycznymi nie jest zalecane, ponieważ może nie zapewniać odpowiedniej ochrony przed porażeniem prądem. Wybór odpowiednich środków gaśniczych powinien być oparty na przepisach i standardach, jak PN-EN 2 oraz na charakterystyce zagrożenia. Właściwa identyfikacja ryzyka oraz zastosowanie odpowiednich środków gaśniczych są kluczowe w zapewnieniu bezpieczeństwa w miejscach pracy.

Pytanie 11

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. C.
B. D.
C. B.
D. A.
W przypadku rozważania innych opcji, kluczowe jest zrozumienie, dlaczego ich wybór może być błędny. Opcje A, B i D prawdopodobnie nie spełniają wymagań dotyczących pojemności lub są nieoptymalne pod względem kosztów. Na przykład, wybór akumulatorów o zbyt małej pojemności nie zapewni wymaganych 50 Ah. Jeśli akumulatory oferowane w tych opcjach mają mniejszą pojemność, użytkownik naraża się na ryzyko niedoboru energii, co może prowadzić do przerwy w zasilaniu kamer. Kolejnym typowym błędem jest skupienie się wyłącznie na kosztach, a nie na całkowitym koszcie użytkowania. Wybór najtańszych akumulatorów może prowadzić do zwiększonej częstotliwości wymiany, co w końcu podnosi koszty eksploatacji. W praktyce lepiej jest inwestować w akumulatory o wyższej pojemności, które zapewnią stabilność systemu, a także zmniejszą ryzyko awarii. Zgodnie z tymi zasadami, analiza kosztów i korzyści powinna być kluczowym elementem decyzji o wyborze akumulatorów w systemach monitoringu.

Pytanie 12

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. bezpośredniego wpływu promieni słonecznych
C. niesprawnego układu odświeżającego
D. obniżenia napięcia zasilającego poniżej 2,5 V
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 13

Urządzenie pozwalające na podłączenie większej ilości czujników do systemu alarmowego nosi nazwę

A. modułu ETHM
B. modułu GSM
C. ekspandera wejść
D. ekspandera wyjść
Moduł ETHM, ekspander wyjść oraz moduł GSM to urządzenia, które pełnią różne funkcje w systemach alarmowych, ale nie są przeznaczone do rozszerzania liczby czujników. Moduł ETHM służy do komunikacji z siecią Ethernet, co pozwala na zdalne zarządzanie systemem alarmowym za pomocą aplikacji lub przeglądarki internetowej. Jego głównym zastosowaniem jest umożliwienie dostępu do danych alarmowych i zarządzanie nimi zdalnie, co jest niezwykle istotne w nowoczesnych systemach zabezpieczeń. Ekspander wyjść, z drugiej strony, jest urządzeniem, które zwiększa liczbę wyjść w centrali, co może być przydatne do podłączenia dodatkowych sygnalizatorów alarmowych lub innych urządzeń, ale nie dodaje nowych czujników. Moduł GSM natomiast zapewnia komunikację systemu alarmowego z siecią GSM, co umożliwia powiadamianie użytkowników o alarmach poprzez SMS lub połączenia telefoniczne. Istnieje często mylne przekonanie, że te urządzenia mogą pełnić tę samą funkcję, co ekspander wejść, co prowadzi do błędnych wniosków przy projektowaniu systemów alarmowych. Kluczowym błędem jest brak zrozumienia, że każde z tych urządzeń ma swoją specyfikę i zastosowanie, które powinny być dostosowane do konkretnych potrzeb danego systemu zabezpieczeń.

Pytanie 14

Jakie urządzenia należy wykorzystać w systemie monitoringu, aby zwiększyć dystans między kamerą a rejestratorem, jeśli połączenie jest zrealizowane za pomocą kabla UTP?

A. Zwrotnice
B. Filtry wideo
C. Symetryzatory
D. Transformatory wideo
Wybór symetryzatorów może prowadzić do zamieszania, jeśli chodzi o zwiększanie odległości między kamerą a rejestratorem w systemach wideo. Tak naprawdę, symetryzatory mają na celu poprawę jakości sygnału w audio i wideo, ale głównie to chodzi o eliminację zakłóceń i wzmocnienie sygnału. Nie są one zbyt odpowiednie do przesyłania sygnału na długie odległości. Często w monitoringu wideo się ich nie stosuje, bo nie są projektowane pod kątem sygnału wideo, który potrzebuje specyficznych parametrów, jak impedancja czy pasmo przenoszenia. Filtry wideo, które usuwają niepożądane częstotliwości, też nie są idealnym rozwiązaniem, jeśli chodzi o zwiększanie odległości – raczej poprawiają jakość sygnału przy określonej długości kabla. A zwrotnice to inna sprawa, używane są w telekomunikacji do kierowania sygnałami, ale w kontekście monitoringu nie pomagają zwiększyć odległości. Często myśli się, że każde urządzenie, które poprawia sygnał, będzie też dobre do przesyłania na dużą odległość, ale to wcale nie jest takie proste. Wymagania dotyczące przesyłu sygnału wideo są dość szczegółowe i trzeba używać odpowiednich rozwiązań, jak właśnie transformatory wideo, które zapewniają lepszą jakość na długich dystansach.

Pytanie 15

Aby zmierzyć współczynnik zawartości harmonicznych na wyjściu wzmacniacza audio, co należy wykorzystać?

A. wobuloskop
B. miernik zniekształceń nieliniowych
C. rejestrator przebiegów elektrycznych
D. oscyloskop
Wobuloskop, oscyloskop oraz rejestrator przebiegów elektrycznych to urządzenia, które mają swoje specyficzne zastosowania w pomiarach elektrycznych, jednak nie są one najlepszymi narzędziami do analizy zniekształceń nieliniowych w sygnałach audio. W przypadku wobuloskopu, jego główną funkcją jest analiza widmowa, co oznacza, że skupia się na częstotliwościach, a nie na szczegółowym pomiarze zniekształceń harmonicznych. Oscyloskop, mimo że potrafi wizualizować przebieg sygnału, nie jest w stanie dostarczyć precyzyjnych danych na temat zniekształceń, ponieważ jego zastosowanie koncentruje się na obserwacji czasu i amplitudy sygnału. Rejestrator przebiegów elektrycznych jest bardziej użyteczny w kontekście długoterminowego monitorowania sygnałów, ale brakuje mu funkcji analitycznych koniecznych do pomiaru zniekształceń. Często pojawia się mylna koncepcja, że ogólne pomiary sygnału wystarczą do oceny jakości audio, co prowadzi do nieprawidłowych wniosków. W rzeczywistości, aby dokładnie zmierzyć współczynnik zniekształceń w dźwięku, konieczne jest zastosowanie narzędzi, które zostały specjalnie zaprojektowane do tego celu, jak miernik zniekształceń nieliniowych, który oferuje szczegółową analizę i precyzyjny wgląd w jakość dźwięku.

Pytanie 16

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. przetwornik
B. kontroler
C. zawór elektromagnetyczny
D. zawór regulacyjny
Przetwornik jest kluczowym elementem w systemach automatyki przemysłowej, odpowiedzialnym za konwersję sygnałów fizycznych na sygnały elektroniczne, które mogą być przetwarzane przez systemy sterowania. Działa on na zasadzie pomiaru różnych parametrów, takich jak temperatura, ciśnienie czy poziom cieczy, a następnie przekształca te dane na formę, która jest zrozumiała dla systemów sterujących. Przykładem zastosowania przetwornika może być czujnik temperatury, który przekształca temperaturę w sygnał analogowy lub cyfrowy, umożliwiając sterownikowi podjęcie odpowiednich działań, takich jak włączenie lub wyłączenie grzejnika. Zgodnie z normami ISA (International Society for Automation) oraz IEC (International Electrotechnical Commission), stosowanie odpowiednich przetworników jest kluczowe dla zapewnienia dokładności i niezawodności procesów przemysłowych. Przetworniki są również istotne dla monitorowania stanu produkcji i diagnostyki, co wpływa na efektywność i bezpieczeństwo pracy systemów automatyki.

Pytanie 17

Jaką rolę w systemie monitoringu pełni UPS?

A. Rejestruje obraz
B. Zarządza pracą
C. Gwarantuje zasilanie
D. Nadzoruje działanie
Wybierając odpowiedzi, które sugerują, że UPS rejestruje obraz, kontroluje działanie lub steruje pracą, należy zrozumieć, jaką rolę pełni ten system w infrastrukturze monitoringu. Rejestracja obrazu to zadanie przypisane rejestratorom wideo (NVR lub DVR), które są odpowiedzialne za przechwytywanie i przechowywanie materiału wideo z kamer. Kontrolowanie działania to raczej funkcja systemów zarządzania, które monitorują i zarządzają operacjami w sieci, podczas gdy sterowanie pracą odnosi się do systemów automatyzacji, które mogą zarządzać funkcjami innych urządzeń. Zrozumienie różnicy pomiędzy tymi funkcjami jest kluczowe dla efektywnego projektowania systemów monitoringu. Typowym błędem jest mylenie zadań różnych komponentów systemu; każdy element pełni określoną rolę, która nie powinna być mylona z innymi funkcjami. UPS jest narzędziem zabezpieczającym, które zapewnia zasilanie, a nie aktywnie uczestniczy w rejestracji czy zarządzaniu pracą systemu, co może prowadzić do nieporozumień w kontekście jego zastosowania w systemach zabezpieczeń.

Pytanie 18

W systemach zabezpieczeń najbardziej podatna na przeciągi w strzeżonym pomieszczeniu jest

A. czujka wibracyjna
B. pasywna czujka podczerwieni
C. czujka magnetyczna
D. akustyczna czujka stłuczenia szyby
Czujka wibracyjna, czujka magnetyczna oraz akustyczna czujka stłuczenia szyby to technologie, które działają w zupełnie inny sposób niż pasywna czujka podczerwieni. Czujka wibracyjna jest zaprojektowana do wykrywania wibracji, najczęściej związanych z próbą włamania przez usunięcie lub uszkodzenie obiektu, co czyni ją mniej wrażliwą na zmiany w przepływie powietrza. Jej detekcja opiera się na wykrywaniu drgań, a nie na temperaturze, przez co jest mniej podatna na zakłócenia związane z przeciągami. Czujka magnetyczna działa na zasadzie detekcji otwarcia drzwi lub okien, z wykorzystaniem magnesów. Jej skuteczność nie jest w żaden sposób uzależniona od warunków atmosferycznych, jak przeciągi, ponieważ reaguje tylko na fizyczne przemieszczanie się elementów. Akustyczna czujka stłuczenia szyby detekuje dźwięki związane z rozbiciem szkła, co również czyni ją niezależną od warunków w pomieszczeniu. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków mogą obejmować mylenie funkcji i zastosowań różnych czujek, a także brak zrozumienia mechanizmów ich działania. W kontekście bezpieczeństwa, kluczowe jest odpowiednie dobranie technologii detekcji do specyfikacji chronionego obszaru oraz potencjalnych zagrożeń, co powinno być wykonane zgodnie z procedurami oceny ryzyka oraz standardami branżowymi.

Pytanie 19

Jakie cechy ma przewód U/UTP 4×2×0,5?

A. nieekranowany czterożyłowy o przekroju 0,5 mm2
B. nieekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
C. ekranowany czterożyłowy o przekroju 0,5 mm2
D. ekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
W odpowiedziach, które nie są poprawne, można dostrzec pewne nieporozumienia dotyczące klasyfikacji przewodów. Odpowiedzi sugerujące, że przewód jest ekranowany, są błędne, ponieważ oznaczenie U/UTP samo w sobie oznacza, że przewód jest nieekranowany. Ekranowane przewody, takie jak F/UTP czy S/UTP, różnią się konstrukcją, mają dodatkowe warstwy ochronne, które chronią przed zakłóceniami elektromagnetycznymi, co nie jest przypadkiem przewodów U/UTP. Kolejnym błędem jest mylenie pojęć dotyczących liczby żył i ich przekroju. Odpowiedzi podające, że przewód miałby długość 0,5 m, wprowadzają w błąd, ponieważ oznaczenie 0,5 odnosi się do przekroju żyły, a nie długości przewodu. W praktyce, w instalacjach telekomunikacyjnych, ważne jest, aby prawidłowo rozumieć specyfikacje przewodów, gdyż błędna interpretacja może prowadzić do problemów z jakością sygnału i efektywnością sieci. Mylne koncepcje dotyczące ekranowania i przekroju żył mogą skutkować niewłaściwym doborem kabli do konkretnego zastosowania, co w dłuższej perspektywie wpływa na niezawodność i wydajność całego systemu. Dlatego kluczowe jest, aby dokładnie zapoznać się ze standardami oraz specyfikacjami technicznymi produktów, aby podejmować świadome decyzje w procesie projektowania i instalowania systemów telekomunikacyjnych.

Pytanie 20

Który z parametrów nie dotyczy monitorów LCD?

A. Czas reakcji piksela
B. Kąt widzenia
C. Luminancja
D. Napięcie katody kineskopu
Napięcie katody kineskopu jest parametrem związanym z technologią CRT (Cathode Ray Tube), a nie z monitorami LCD (Liquid Crystal Display). Monitory LCD operują na zupełnie innej zasadzie działania, która nie wymaga katody ani kineskopu. W technologii LCD światło generowane jest przez diody LED lub świetlówki, które podświetlają ciekłe kryształy. Czas reakcji piksela, kąt widzenia oraz luminancja to kluczowe parametry dla monitorów LCD, które wpływają na jakość obrazu. Czas reakcji piksela określa, jak szybko piksel może zmieniać swoją barwę, co jest istotne w kontekście dynamicznych obrazów, np. w grach komputerowych. Kąt widzenia odnosi się do maksymalnego kąta, pod jakim obraz zachowuje swoją jakość, a luminancja mierzy jasność wyświetlanego obrazu. Zrozumienie tych parametrów jest kluczowe dla wyboru odpowiedniego monitora do konkretnego zastosowania, czy to do pracy biurowej, gier, czy obróbki grafiki.

Pytanie 21

Stabilność systemu automatycznej regulacji to umiejętność systemu do

A. minimalizowania zakłóceń wpływających na obiekt regulacji
B. działania w skrajnie niskich lub skrajnie wysokich temperaturach
C. utrzymywania stabilnych parametrów obiektu po ustaniu sygnału zakłócającego
D. działania pod dużymi obciążeniami
Mówiąc o automatycznej regulacji, kluczowym punktem jest chyba to, że układ musi utrzymywać parametry obiektu po zaniku zakłócenia, dlatego inne odpowiedzi mogą być mylące. Jasne, praca przy dużych obciążeniach ma znaczenie dla wydajności, ale niekoniecznie dla stabilności układu. Chociaż system pod dużym obciążeniem może działać mniej efektywnie, to jednak stabilność może być zachowana, jeśli jest odpowiednio zaprojektowany. Ekstremalne temperatury też nie mają bezpośredniego wpływu na stabilność, bardziej chodzi o to, jak system radzi sobie z trudnymi warunkami. Wiadomo, że systemy, które mają problemy w takich warunkach, są uznawane za mniej niezawodne, ale ich stabilność może być w porządku w normalnych warunkach. Zmniejszanie zakłóceń to ważna kwestia w projektowaniu, ale to nie jest dokładnie to samo co utrzymanie stabilności. Chodzi o to, żeby system nie tylko tłumił zakłócenia, ale także wracał do normy po ich ustąpieniu. Źle zrozumiane kwestie mogą prowadzić do projektów, które może i są odporne na zakłócenia, ale nie potrafią dobrze reagować, gdy te zakłócenia ustępują, co obniża ich długoterminową efektywność.

Pytanie 22

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji siedzącej z podparciem głowy
B. Na plecach z uniesionymi nogami
C. Na brzuchu z głową odchyloną na bok
D. W pozycji bocznej ustalonej
Wybór nieprawidłowej pozycji dla poszkodowanego może prowadzić do poważnych konsekwencji zdrowotnych. Ułożenie w pozycji siedzącej i podtrzymywanie głowy nie jest optymalne, ponieważ może utrudnić swobodny przepływ powietrza oraz zwiększa ryzyko asfiksji, szczególnie jeśli osoba zacznie wymiotować. Natomiast ułożenie na brzuchu z głową odchyloną na bok jest niewłaściwe, gdyż może prowadzić do ucisku na klatkę piersiową i ograniczać ruchy oddechowe, co w przypadku nieprzytomności stwarza dodatkowe zagrożenie. Podobnie, umieszczenie poszkodowanego na plecach z uniesionymi nogami może być szkodliwe, ponieważ w takiej pozycji osoba może bez trudu wpaść w stan duszności, a w razie wymiotów grozi jej zachłyśnięcie. Kluczowym błędem myślowym jest niedocenienie znaczenia drożności dróg oddechowych oraz stabilności ciała. Utrzymując poszkodowanego w odpowiedniej, ale niewłaściwej pozycji, możemy narażać go na dodatkowe urazy i komplikacje zdrowotne. Dlatego w przypadku nieprzytomności, ale zachowanej świadomości oddechowej, najbezpieczniejszym rozwiązaniem jest zawsze pozycja boczna ustalona, która jest zgodna z wytycznymi i najlepszymi praktykami w zakresie pierwszej pomocy.

Pytanie 23

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. uziemienia ochronnego
B. zerowania ochronnego
C. wyłączników różnicowoprądowych
D. klimatyzacji
W kontekście naprawy i konserwacji urządzeń elektronicznych, kwestie bezpieczeństwa i ochrony są kluczowe. Wyłączniki różnicowoprądowe oraz uziemienie ochronne są elementami zabezpieczającymi, które mają na celu ochronę przed porażeniem prądem elektrycznym oraz minimalizację ryzyka powstania pożaru. Wyłącznik różnicowoprądowy wykrywa różnice w prądzie między przewodem fazowym a neutralnym, co pozwala na szybkie odłączenie zasilania w przypadku wykrycia nieszczelności, co jest szczególnie ważne w środowiskach, gdzie urządzenia mogą być narażone na wilgoć. Zerowanie ochronne jest kolejnym istotnym elementem, który zabezpiecza użytkowników przed niebezpiecznymi sytuacjami, zapewniając, że w przypadku wystąpienia defektu urządzenia prąd nie przepływa przez ciało ludzkie. Zastosowanie tych elementów zabezpieczających jest zgodne z normami branżowymi, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące ochrony osób i mienia. Wiele osób może błędnie sądzić, że na stanowiskach serwisowych wystarczająca jest jedna forma zabezpieczenia, zapominając o konieczności stosowania zarówno uziemienia, jak i wyłącznika różnicowoprądowego. Ignorowanie tych aspektów może prowadzić do poważnych konsekwencji, takich jak wypadki związane z porażeniem prądem, a także zniszczenie sprzętu elektronicznego spowodowane brakiem odpowiedniej ochrony.

Pytanie 24

Skrętka bez ekranowania folią jest oznaczana jako

A. F/UTP
B. U/FTP
C. U/UTP
D. F/FTP
Wybór odpowiedzi jak F/UTP, U/FTP czy F/FTP może wynikać z pewnych nieporozumień odnośnie kabli sieciowych. F/UTP, czyli "Foiled Unshielded Twisted Pair", to kabel, który ma folię jako dodatkowe ekranowanie, ale nie jest on całkowicie osłonięty. To znaczy, że nie daje takiej ochrony przed zakłóceniami jak pełne ekranowanie. Spoko, może się przydać tam, gdzie jest dużo zakłóceń elektromagnetycznych, ale to nie jest klasyka dla U/UTP. Z drugiej strony, U/FTP, czyli "Unshielded Foiled Twisted Pair", to kabel, w którym każda para przewodów jest ekranowana, ale cały kabel nie ma ogólnego ekranu. To może prowadzić do sytuacji z zakłóceniami pomiędzy parami, co wpływa na jakość sygnału. A F/FTP, czyli "Foiled Foiled Twisted Pair", to już całkiem inna bajka, bo ma ekran dla każdej pary i ogólny ekran dla całego kabla. To daje super ochronę przed zakłóceniami, a to już nie pasuje do definicji skrętki nieekranowanej. Dlatego wybierając te opcje, może być problem z rozumieniem zasad klasyfikacji kabli i ich zastosowaniem. Najważniejsze jest, żeby przy wyborze odpowiedniego kabla brać pod uwagę, w jakim środowisku będzie używany, oraz normy branżowe, żeby uniknąć problemów z jakością transmisji danych.

Pytanie 25

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. symetryzatorami
B. dyrektorami
C. fiderami
D. dipolami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 26

Koszt robocizny przy wymianie modułu wynosi 44 zł. Nowy moduł elektroniczny kosztuje 120 zł, a moduł regenerowany jest tańszy o 20%. Jaka będzie całkowita cena wymiany, jeśli zdecydujemy się na moduł regenerowany?

A. 188 zł
B. 140 zł
C. 164 zł
D. 132 zł
Wybierając niepoprawne odpowiedzi, można było popełnić kilka typowych błędów rachunkowych lub logicznych. Na przykład, niektórzy mogą uwzględniać cenę nowego modułu bez uwzględnienia korzystniejszej opcji regenerowanej, co prowadzi do znacznego zawyżenia całkowitego kosztu. Podczas obliczania kosztu regenerowanego modułu, istotne jest właściwe obliczenie 20% z ceny nowego modułu, co również może być pominięte. Inni mogą mylnie dodać koszt robocizny do pełnej ceny nowego modułu, co jest błędnym podejściem, ponieważ pytanie dotyczy modułu regenerowanego, a nie nowego. Kluczowe jest zrozumienie, że regenerowane części są tańszą alternatywą, a ich użycie wiąże się z odpowiednim obliczeniem kosztów, które jest istotnym aspektem w branży napraw. Błędne myślenie o kosztach może prowadzić do nieefektywnego zarządzania budżetem w projektach serwisowych. Zrozumienie zasadności wyboru pomiędzy nowymi a regenerowanymi częściami jest kluczowe dla efektywności finansowej przedsiębiorstw zajmujących się serwisem elektroniki.

Pytanie 27

Aby wykonać otwór na kołek rozporowy w betonie, należy użyć

A. młota pneumatycznego
B. młotka
C. wiertarki udarowej
D. wkrętarki
Zastosowanie wkrętarki do wykonywania otworów w betonie jest nieodpowiednie z kilku powodów. Wkrętarki są narzędziami przeznaczonymi głównie do wkręcania śrub i wkrętów w materiały o niższej twardości, takich jak drewno czy płyty gipsowe. Ich konstrukcja nie przewiduje mechanizmu udarowego, co czyni je nieskutecznymi w pracy z twardymi materiałami, takimi jak beton, gdzie wymagana jest znaczna siła udaru do efektywnego przebicia się przez gęste struktury. Młot pneumatyczny, mimo że jest narzędziem o dużej mocy, jest zazwyczaj używany do bardziej ekstremalnych prac, takich jak kucie betonu, a nie do precyzyjnego wiercenia otworów. Użycie młota pneumatycznego do wykonania otworów pod kołki rozporowe mogłoby prowadzić do uszkodzenia otoczenia, ponieważ to narzędzie generuje znaczne drgania i może powodować niewłaściwe umiejscowienie otworów. Młotek, chociaż przydatny w wielu pracach, także nie jest odpowiednim narzędziem do wiercenia w betonie, ponieważ nie ma zdolności do wytwarzania wymaganej siły udaru ani precyzyjnego prowadzenia wierteł. Przy wyborze narzędzi do prac budowlanych i remontowych kluczowe jest zrozumienie specyfiki każdego materiału oraz dopasowanie odpowiednich narzędzi i technik do ich obróbki, co pozwala uniknąć niepotrzebnych błędów i zapewnia bezpieczeństwo oraz efektywność pracy.

Pytanie 28

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
B. oczyścić oraz pomalować antenę, a następnie ją ustawić
C. określić rezystancję falową kabla i w razie potrzeby ją skorygować
D. zmierzyć impedancję falową kabla koncentrycznego
Pomiar impedancji falowej kabla koncentrycznego, chociaż istotny w kontekście projektowania systemów telewizyjnych, nie jest krokiem, który należy wykonać podczas okresowego przeglądu instalacji telewizyjnej. Podczas przeglądu głównym celem jest zapewnienie, że sygnał dociera do odbiorcy w odpowiedniej jakości. Rezystancja falowa kabla nie jest parametrem, który użytkownicy odbiorników telewizyjnych bezpośrednio kontrolują ani nie ma bezpośredniego wpływu na jakość obrazu. Podobnie, wyznaczanie rezystancji falowej i jej korekcja są bardziej zaawansowanymi zagadnieniami inżynieryjnymi, które mają zastosowanie w projektowaniu i optymalizacji systemów, ale nie są one rutynowymi czynnościami w trakcie regularnego przeglądu. W kontekście mycia i malowania anteny, choć może to być korzystne w przypadku, gdy antena jest zanieczyszczona lub uszkodzona, to nie jest to standardowa praktyka ani nie wpływa na jakość sygnału. Często pojawiające się błędne przekonania dotyczące konieczności estetycznej konserwacji sprzętu mogą prowadzić do zaniedbania ważniejszych aspektów technicznych, takich jak pomiar sygnału i kontrola jakości połączeń. Właściwe podejście do przeglądów instalacji powinno skupiać się na rzeczywistych parametrach sygnału i ich jakości, co jest kluczowe dla efektywnego funkcjonowania systemu telewizyjnego.

Pytanie 29

Obudowa wzmacniacza dystrybucyjnego z oznaczeniem IP64 gwarantuje

A. całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron
B. pełną ochronę przed wnikaniem pyłu oraz zabezpieczenie przed strumieniem wody z każdego kierunku
C. ochronę przed wnikaniem pyłu w ilościach wpływających na pracę urządzenia oraz ochronę przed strumieniem wody z każdego kierunku
D. ochronę przed wnikaniem pyłu w ilościach, które mogą zakłócać funkcjonowanie urządzenia oraz ochronę przed kroplami opadającymi pod dowolnym kątem, ze wszystkich stron
Obudowa wzmacniacza dystrybucyjnego oznaczona kodem IP64 zapewnia całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron. Kod IP (Ingress Protection) jest standardem określającym stopień ochrony urządzeń elektronicznych przed wnikaniem ciał stałych oraz cieczy. W przypadku IP64, pierwsza cyfra '6' oznacza całkowitą ochronę przed pyłem, co oznacza, że żadne cząstki pyłu nie mogą przeniknąć do wnętrza obudowy, co chroni sprzęt przed uszkodzeniem oraz zapewnia jego prawidłowe działanie. Druga cyfra '4' wskazuje, że obudowa jest odporna na krople wody padające pod różnymi kątami, co oznacza, że nie ma ryzyka uszkodzenia, gdy woda pada na nią z góry. Takie właściwości są szczególnie ważne w aplikacjach, gdzie urządzenia są narażone na trudne warunki atmosferyczne, na przykład w przemysłowych instalacjach, które mogą być narażone na pył, wilgoć oraz różne zanieczyszczenia. Przykładowe zastosowania to obudowy wzmacniaczy w systemach audio, które mogą być używane zarówno na zewnątrz, jak i wewnątrz, a ich niezawodność jest kluczowa dla jakości dźwięku.

Pytanie 30

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. zimnych lub przegrzanych lutach.
B. braku kontaktu w złączach typu wysuwanego.
C. pęknięciu ścieżek łączących.
D. utracie z pamięci danych.
Wybór odpowiedzi dotyczącej pęknięcia ścieżek połączeniowych wskazuje na błędne zrozumienie przyczyn problemów z regulacją geometrii oraz balansu bieli. Pęknięcia w ścieżkach mogą prowadzić do całkowitego braku sygnału, ale niekoniecznie powodują utratę funkcji w menu, jak w przypadku opisanego problemu. Zimne lub przegrzane luty są inną powszechną przyczyną awarii, jednak objawy, które opisano w pytaniu, są bardziej zgodne z uszkodzeniem pamięci niż z problemem lutowniczym. Zimne luty mogą powodować niestabilność w działaniu, ale nie prowadzą do całkowitej utraty danych z pamięci. Brak kontaktu w złączach typu wysuwanego może wprawdzie wpływać na odbiór sygnału, ale również nie powinien wpływać na funkcje w menu. Wybierając błędne odpowiedzi, można wpaść w pułapkę myślenia przyczynowo-skutkowego, gdzie błędnie interpretowane objawy prowadzą do niewłaściwych diagnoz. Kluczowe jest zrozumienie, że problemy z pamięcią mogą być wywołane przez kilka różnych czynników, a ich efekty będą się różnić od symptomów wskazujących na uszkodzenia fizyczne połączeń. Umiejętność poprawnego identyfikowania tych symptomów jest niezbędna w diagnostyce sprzętu RTV.

Pytanie 31

W trakcie diagnozowania awarii sprzętu RTV zasilanego prądem, należy korzystać z narzędzi

A. charakteryzujących się wysoką odpornością na uszkodzenia mechaniczne
B. wykazujących odporność na wysokie temperatury
C. posiadających adekwatną izolację dla napięcia
D. stworzonych z materiałów ze stali chromoniklowej
Używanie narzędzi o dużej wytrzymałości mechanicznej, odpornych na temperaturę lub wykonanych ze stali chromoniklowej podczas pracy z urządzeniami RTV pod napięciem jest niewłaściwe i może prowadzić do poważnych zagrożeń. Narzędzia o dużej wytrzymałości mechanicznej mogą rzeczywiście być użyteczne w wielu zastosowaniach, jednak nie chronią one technika przed porażeniem prądem. Ich wytrzymałość odnosi się głównie do odporności na uszkodzenia mechaniczne, a nie na izolację elektryczną. Odpornych na temperaturę narzędzi również nie można używać jako zamienników dla narzędzi izolowanych; ich funkcja polega na zapewnieniu bezpieczeństwa przed wysokimi temperaturami, co nie jest problemem w kontekście pracy pod napięciem. Stal chromoniklowa, pomimo swoich zalet w zakresie wytrzymałości i odporności na korozję, nie ma właściwości izolacyjnych, co czyni ją nieodpowiednią do pracy w warunkach elektrycznych. Używanie niewłaściwych narzędzi może prowadzić do porażenia prądem, a nawet do śmierci. Dlatego kluczowe jest, aby zrozumieć, że podczas pracy z urządzeniami elektrycznymi należy zawsze stosować narzędzia spełniające odpowiednie normy bezpieczeństwa, co pozwala na minimalizację ryzyka oraz ochronę zdrowia i życia technika.

Pytanie 32

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. DRAM
B. EEPROM
C. SDRAM
D. EPROM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 33

Podstawowym zadaniem czaszy w antenie satelitarnej jest

A. umożliwienie odbioru określonych częstotliwości sygnału
B. umożliwienie zamontowania konwertera pod odpowiednim kątem
C. ukierunkowanie konwertera na wybrany satelita
D. odbicie fal i skierowanie ich ku konwerterowi
Odpowiedzi sugerujące, że czasza w antenie satelitarnej pełni inne funkcje niż odbicie fal do konwertera są mylne. Skierowanie konwertera na wybranego satelitę to zadanie związane z montażem, a nie funkcją czaszy. Odpowiedź ta nie uwzględnia, że czasza sama nie dokonuje wyboru satelity, a to konwerter, który jest umieszczony w ognisku czaszy, odbiera fale radiowe i przetwarza je na sygnał elektroniczny. Umożliwienie montażu konwertera pod odpowiednim kątem również nie jest podstawowym zadaniem czaszy. Czasza, jako element pasywny, ma na celu jedynie skupienie fal, a same kąty montażowe są kwestią ustawienia systemu podczas instalacji, mającego na celu uzyskanie optymalnego kierunku do danego satelity. Natomiast umożliwienie odbioru określonych częstotliwości sygnału odnosi się do konwertera, który dostosowuje się do różnych pasm częstotliwości, a nie do samej czaszy. Takie nieporozumienia mogą wynikać z braku konsekwentnego rozróżniania pomiędzy rolą poszczególnych komponentów w systemie satelitarnym. W praktyce, efektywność całego systemu satelitarnego zależy od precyzyjnego działania wszystkich jego elementów, a czasza, jako kluczowy element, ma przede wszystkim za zadanie skupiać i kierować fale do konwertera, co jest absolutnie fundamentalne w procesie odbioru sygnału.

Pytanie 34

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. czasowych
B. pamięci statycznych
C. programowalnych
D. pamięci dynamicznych
Wybór odpowiedzi dotyczącej pamięci, niezależnie czy to dynamiczne, statyczne, czy jakieś czasowe, to błąd. Te układy mają zupełnie inną funkcję niż programowalne układy logiczne. Pamięci dynamiczne (czyli DRAM) i statyczne (SRAM) to układy, które służą do przechowywania danych, a nie do wykonywania operacji logicznych. Zwykle używamy ich w komputerach i innych urządzeniach elektronicznych. Z kolei układy czasowe, jak te nasze zegarowe, zajmują się synchronizowaniem operacji w systemach digitalnych, ale nie mają tej fajnej możliwości programowania logiki jak PLD. Często mylimy te wszystkie funkcje i skupiamy się na tym, co już znamy, nie myśląc o ich rzeczywistym zastosowaniu. W praktyce rozróżnienie tych układów jest niezwykle ważne dla skutecznego projektowania systemów elektronicznych. Programowalne układy logiczne dają nam swobodę w projektowaniu, podczas gdy pamięci mają już ustaloną funkcję i nie możemy ich zmieniać po wyprodukowaniu.

Pytanie 35

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. w płaszczu PCV
B. z linką nośną
C. z oplotem miedzianym
D. w płaszczu polietylenowym (PE)
Wybór odpowiedzi niezwiązanych z płaszczem polietylenowym może prowadzić do poważnych problemów w kontekście instalacji antenowych. Odpowiedź "z oplotem miedzianym" sugeruje, że miedź zapewnia ochronę przed wilgocią i zmiennymi temperaturami, co jest mylnym założeniem. Miedź, choć doskonała w przewodnictwie elektrycznym, jest podatna na korozję w warunkach wilgotnych, co może prowadzić do degradacji przewodów i utraty jakości sygnału. Odpowiedź "z linką nośną" odnosi się do aspektu konstrukcyjnego, ale nie dotyczy materiału izolacyjnego, co w kontekście ochrony przed wilgocią oraz temperaturą jest kluczowe. Linka nośna może pomóc w utrzymaniu przewodu w odpowiedniej pozycji, ale nie zapewnia odpowiedniej ochrony przed czynnikami zewnętrznymi. Z kolei opcja "w płaszczu PCV" jest nieodpowiednia, ponieważ chociaż PCV jest materiałem odpornym na starzenie, może nie wytrzymać ekstremalnych warunków temperaturowych i wysokiej wilgotności, co prowadzi do pęknięć i utraty elastyczności. Wybierając przewody do systemów antenowych, kluczowe jest kierowanie się nie tylko ich właściwościami elektrycznymi, ale również odpornością na warunki środowiskowe, co jest istotnym błędem, który należy unikać.

Pytanie 36

Skracający się czas działania urządzenia zasilanego przez UPS wskazuje na

A. konieczność wymiany akumulatora w zasilaczu awaryjnym UPS
B. awarię zabezpieczenia przeciążeniowego zasilacza awaryjnego UPS
C. nieprawidłowe podłączenie zasilacza awaryjnego UPS do urządzenia
D. utracenie pojemności kondensatorów w zasilaczu awaryjnym UPS
Przyczyny zmniejszającego się czasu działania urządzenia pod zasilaniem UPS są często mylnie interpretowane. Utrata pojemności kondensatorów w zasilaczu nie jest typowym zjawiskiem, które bezpośrednio wpływa na czas podtrzymania. Kondensatory w UPS mają za zadanie wspierać stabilność napięcia i nie są głównym źródłem energii w przypadku awarii zasilania. Ich degradacja może wpływać na jakość dostarczanej energii, ale nie na czas działania urządzenia. Kolejny błąd to teza o błędnym podłączeniu UPS. Prawidłowo podłączony zasilacz awaryjny działa zgodnie z założeniami, a problemy z czasem podtrzymania są ściśle związane z akumulatorami. Uszkodzenie zabezpieczenia przeciążeniowego także nie ma bezpośredniego wpływu na czas działania, a raczej na bezpieczeństwo samego urządzenia. Zrozumienie, że podstawowym elementem odpowiedzialnym za czas działania jest akumulator, a nie inne komponenty, jest kluczowe dla prawidłowej diagnostyki. Właściwe zarządzanie i konserwacja akumulatorów w UPS to fundamentalne aspekty zapewnienia stabilności zasilania i unikania nieprzewidzianych przestojów w działaniu sprzętu. Regularne inspekcje systemów zasilania awaryjnego zgodnie z zaleceniami producentów są niezbędne, aby prawidłowo ocenić stan akumulatorów oraz ich wpływ na funkcjonalność całego systemu.

Pytanie 37

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. SINGLE
B. X - Y
C. DUAL
D. ADD
Wybór trybów ADD, SINGLE oraz DUAL do analizy sygnałów w oscyloskopie dwukanałowym nie jest odpowiedni w kontekście określania częstotliwości sygnału badanego za pomocą krzywych Lissajous. Tryb ADD sumuje sygnały z obu kanałów, co uniemożliwia bezpośrednie porównanie ich relacji w czasie. Taki sposób prezentacji może być przydatny do analizy amplitudowej, ale nie dostarcza informacji o różnicach w częstotliwościach i fazach sygnałów. Z kolei tryb SINGLE pozwala na przechwycenie jednego sygnału na raz, co również ogranicza możliwości analizy porównawczej, istotnej dla krzywych Lissajous. Tryb DUAL, choć umożliwia jednoczesne wyświetlanie sygnałów z obu kanałów, nie dostarcza informacji o ich relacji w kontekście rysowania krzywych Lissajous, które wymagają specyficznego odchylania X-Y. Typowe błędy myślowe prowadzące do wyboru błędnych trybów obejmują niepełne zrozumienie funkcji poszczególnych trybów w oscyloskopie oraz ich zastosowań w analizie sygnałów. Aby skutecznie korzystać z oscyloskopu do analizy sygnałów, ważne jest zrozumienie, że różne tryby odchylania mają różne zastosowania, a ich wybór powinien być uzależniony od konkretnego celu analizy.

Pytanie 38

Czym jest multiplekser w kontekście układów kombinacyjnych?

A. konwersja kodu pierścieniowego "1 z n" na sygnał wyjściowy
B. liczenie oraz przechowywanie impulsów
C. sterowanie wskaźnikiem 7-segmentowym
D. przekazywanie sygnału cyfrowego "1 z n" wybranego adresem na wyjście
Często jak nie wybierasz dobrej odpowiedzi, to może być przez to, że nie do końca rozumiesz, co robią układy kombinacyjne w systemach cyfrowych. Odpowiedź związana z konwersją kodu pierścieniowego na kod wyjściowy nie dotyczy multipleksera, bo to jest bardziej skomplikowane i zazwyczaj wymaga dekoderów lub konwerterów, które zmieniają dane z jednego formatu na inny. W przypadku liczenia impulsów mówimy o licznikach, a nie multiplekserach, które tylko wybierają sygnał do wysłania. A jeśli chodzi o wskaźniki 7-segmentowe, to potrzebujesz odpowiednich sterowników, które potrafią zinterpretować dane i pokazać je na wyświetlaczu. Takie podejście prowadzi do błędów w rozumieniu architektury systemów cyfrowych. Żeby dobrze korzystać z multiplekserów, trzeba zrozumieć, jak działają sygnały sterujące i logika wybierania sygnałów. Kluczowe jest tutaj umiejętne projektowanie i wdrażanie układów, co przychodzi z wiedzą na temat zasad projektowania oraz standardów, jak te od IEEE dla VHDL i Verilog, które są ważne w inżynierii cyfrowej.

Pytanie 39

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
B. wpływu pola magnetycznego na organizm ludzki
C. porażenia prądem elektrycznym
D. wyładowania elektrostatycznego groźnego dla układów typu MOS
Pojawiające się mylne przekonania dotyczące potencjalnych konsekwencji braku uziemionej opaski na przegubie pracownika serwisu wynika z niepełnego zrozumienia zagadnień związanych z elektrycznością i wpływem pola magnetycznego na człowieka. Pierwsza z odpowiedzi sugeruje, że brak uziemienia może prowadzić do powstawania prądów wirowych wywoływanych przez zmienne pole magnetyczne. W rzeczywistości prądy wirowe są zjawiskami związanymi z przewodnikami umieszczonymi w zmiennym polu magnetycznym, co jest bardziej związane z indukcją elektromagnetyczną niż z uziemieniem. Oddziaływanie pola magnetycznego na organizm człowieka nie jest bezpośrednio związane z brakiem uziemienia, a raczej z długotrwałym narażeniem na silne pola magnetyczne, co jest zupełnie innym zagadnieniem. Porażenie prądem elektrycznym nie jest głównym zagrożeniem związanym z elektrostatyką, gdyż wyładowania elektrostatyczne mają znacznie niższe napięcie, jednak mogą być szkodliwe dla delikatnych układów elektronicznych. Kluczowe jest zrozumienie, że wyładowania elektrostatyczne, a nie prąd elektryczny w tradycyjnym rozumieniu, są realnym zagrożeniem dla komponentów takich jak układy MOS. Zastosowanie technologii ESD (Electrostatic Discharge) w praktyce, w tym uziemienie oraz stosowanie mat antystatycznych, jest niezbędne do ochrony sprzętu i zapewnienia jego długotrwałej niezawodności.

Pytanie 40

Montaż wtyku F na kablu koncentrycznym polega na

A. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
D. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
W analizowanych odpowiedziach pojawiają się różne błędne koncepcje dotyczące montażu wtyku F na przewodzie koncentrycznym. Nacięcie powłoki zewnętrznej, jak sugerują niektóre z odpowiedzi, nie jest odpowiednią metodą, ponieważ może prowadzić do uszkodzenia struktury przewodu i obniżenia jakości sygnału. Usunięcie folii, które jest wspomniane w odpowiedziach, powinno dotyczyć tylko izolacji, a nie materiału ochronnego, który jest istotny dla właściwego przewodzenia sygnału. Użycie terminu 'nacięcie' sugeruje również, że można usunąć warstwę izolacyjną w sposób, który nie jest zgodny z dobrymi praktykami. Oplot pełni kluczową funkcję w ochronie przed zakłóceniami i powinien być właściwie przygotowany do montażu. Z kolei pominięcie etapu ułożenia oplotu wzdłuż przewodu prowadzi do nieprawidłowego połączenia wtyku, co może skutkować złym jakościowo sygnałem. Przykłady błędów myślowych mogą wynikać z braku zrozumienia roli poszczególnych elementów kabla koncentrycznego oraz procesu montażu. Ważne jest, aby podczas pracy z instalacjami koncentrycznymi stosować właściwe narzędzia oraz przestrzegać standardów branżowych, co pozwoli na uzyskanie trwałych i niezawodnych połączeń.