Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 31 maja 2025 13:14
  • Data zakończenia: 31 maja 2025 13:33

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy osobowe, błędy systematyczne, błędy losowe
B. Błędy grube, omyłki, błędy stałe
C. Błędy grube, błędy systematyczne, błędy przypadkowe
D. Błędy stałe, omyłki, błędy systematyczne
Błędy osobowe, stałe oraz omyłki to nie do końca to, co w geodezji się uznaje. Błędy osobowe mówią o tym, że każdy ma swoje indywidualne różnice w odczycie. Może to brzmi ważnie, ale nie są to oddzielne kategorie błędów w pomiarach geodezyjnych. Lepiej byłoby je traktować jako błędy przypadkowe, bo te zdarzają się z różnych powodów. Z kolei błędy stałe można by nazwać błędami systematycznymi, ale one są bardziej złożone niż tylko jedna kategoria. Mają różne źródła, jak na przykład źle skalibrowane narzędzia. Omyłki, to znowu błędy związane z nieuwagą operatora, ale też nie mieszczą się w standardowych klasyfikacjach błędów geodezyjnych. Mieszają się z błędami grubymi i przypadkowymi, co może wprowadzać w błąd. W sumie błędy grube i systematyczne nie oddają całkowicie złożoności błędów pomiarowych. To może prowadzić do uproszczeń, które w geodezji mogą skutkować złymi wnioskami i oszacowaniami. Ważne jest, żeby te różne kategorie błędów zrozumieć i umieć je rozróżnić, bo to klucz do dokładnych i precyzyjnych wyników pomiarów.

Pytanie 2

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = -16 mm
B. f∆h = 0 mm
C. f∆h = -8 mm
D. f∆h = 8 mm
W przypadku pozostałych odpowiedzi występują różne nieporozumienia dotyczące zasad obliczania odchyłek w niwelacji. Odpowiedź f∆h = -16 mm sugeruje, że pomiar przewyższeń zostały podwojone, co jest błędnym podejściem, ponieważ odchyłka powinna być bezpośrednio związana z różnicą pomiędzy pomiarami a rzeczywistymi wartościami wysokości. Odpowiedź f∆h = 8 mm również nie ma sensu, ponieważ pomiar przewyższeń był ujemny, co powinno prowadzić do zrozumienia, że wynik powinien być oznaczony jako ujemny, nie dodatni. Warto zauważyć, że pomiar przewyżek w geodezji wymaga precyzyjnego podejścia do interpretacji danych i uwzględnienia wszelkich potencjalnych źródeł błędów. Wybór odpowiedzi f∆h = 0 mm nie uwzględnia faktu, że mamy do czynienia z rzeczywistą różnicą wynoszącą -8 mm, co oznacza, że istnieje wyraźna odchyłka, a nie brak jakiejkolwiek odchyłki. Kluczowym błędem w rozumieniu tych odpowiedzi jest nieuwzględnienie rzeczywistych pomiarów i ich interpretacji, co prowadzi do nieprawidłowych wniosków o istniejących błędach pomiarowych. W geodezji, zwłaszcza podczas niwelacji, istotne jest, aby lokalizować i rozumieć te odchylenia, aby poprawić dokładność i wiarygodność danych.

Pytanie 3

Jak powinny zostać zapisane na szkicu tyczenia wyniki pomiarów kontrolnych?

A. Kolorem czarnym, w nawiasie
B. Kolorem czerwonym, w nawiasie
C. Kolorem czarnym, kursywą
D. Kolorem czerwonym, kursywą
Wpisywanie wyników pomiarów kontrolnych kolorem czerwonym, w nawiasie lub kursywą, może wydawać się atrakcyjną alternatywą, jednakże takie podejście wprowadza zamieszanie i niezgodność z ustalonymi standardami. Kolor czerwony często stosowany jest w dokumentacji technicznej do oznaczania błędów, problemów lub uwag, co może prowadzić do mylnego odczytu informacji. Użycie kursywy również nie jest zalecane, ponieważ może utrudniać czytelność, zwłaszcza w kontekście precyzyjnych danych pomiarowych, gdzie każdy szczegół ma znaczenie. W dokumentacji technicznej kluczowe jest, aby wszystkie informacje były jasne i zrozumiałe dla innych użytkowników, dlatego zaleca się stosowanie jednolitych i uznawanych konwencji. W praktyce, brak stosowania odpowiednich kolorów i formatowania może prowadzić do błędnych interpretacji wyników, co w geodezji ma poważne konsekwencje, takie jak błędne przyjęcia w procesach projektowych. Warto zwrócić uwagę na standardy ISO oraz lokalne regulacje prawne dotyczące dokumentacji geodezyjnej, które podkreślają znaczenie przejrzystości i spójności w prezentacji danych.

Pytanie 4

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. trzpienie metalowe
B. rurki stalowe
C. słupy betonowe
D. paliki drewniane
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 5

Cyfra 2 w symbolu 2/5, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. całkowitą liczbę metrów w jednym odcinku trasy
B. liczbę hektometrów w danym kilometrze trasy
C. całkowitą liczbę kilometrów od początku trasy
D. numer hektometra w konkretnym kilometrze
Odpowiedź wskazująca, że cyfra 2 w symbolu 2/5 oznacza pełną liczbę kilometrów od początku trasy, jest prawidłowa. W kontekście wytyczenia linii profilu podłużnego, ten format graficzny jest powszechnie stosowany w inżynierii lądowej i geodezji. Cyfry w takim zapisie odpowiadają segmentom trasy, przy czym licznik (2) wskazuje na liczbę pełnych kilometrów. Oznacza to, że pomiar dotyczy odległości od punktu startowego trasy, co jest kluczowe dla poprawnej interpretacji danych geodezyjnych. W praktyce, takie oznaczenia są istotne podczas dokumentacji i analizy tras transportowych, ponieważ umożliwiają precyzyjne określenie lokalizacji punktów kontrolnych, co jest zgodne z normami branżowymi, takimi jak PN-EN ISO 19101. Na przykład, w projektach budowlanych czy inżynieryjnych, znajomość i poprawne odczytywanie tych symboli jest niezbędne do planowania i koordynacji prac budowlanych, co wpływa na efektywność realizacji zadań.

Pytanie 6

Jaki rodzaj mapy stosuje się do przedstawienia ukształtowania terenu miasta?

A. Mapa hydrogeologiczna
B. Mapa klimatyczna
C. Mapa katastralna
D. Mapa topograficzna
Mapa topograficzna jest nieocenionym narzędziem w geodezji i urbanistyce, ponieważ szczegółowo przedstawia ukształtowanie terenu. Dzięki niej można zobaczyć, jak kształtują się różnice wysokości w terenie, co jest kluczowe przy planowaniu infrastruktury miejskiej, budowy dróg czy projektowaniu nowych osiedli. Takie mapy wykorzystują poziomice do pokazania wysokości nad poziomem morza, co pozwala na wizualne zrozumienie krajobrazu. Poziomice są izoliniami, które łączą punkty o tej samej wysokości, co pozwala na łatwe zinterpretowanie nachyleń i różnic wysokości. W praktyce, podczas projektowania systemów odwadniających czy planowania zieleni miejskiej, zrozumienie topografii terenu jest kluczowe. Mapa topograficzna dostarcza także informacji o naturalnych i sztucznych obiektach, co jest nieocenione podczas planowania przestrzennego. Z mojego doświadczenia, korzystanie z map topograficznych pozwala uniknąć wielu problemów, które mogą pojawić się w trakcie realizacji projektów budowlanych.

Pytanie 7

Jakiego typu przyrządów geodezyjnych należy użyć do przeprowadzenia pomiarów w metodzie tachimetrii klasycznej?

A. Niwelatora oraz tyczki
B. Niwelatora oraz łaty niwelacyjnej
C. Teodolitu oraz łaty niwelacyjnej
D. Teodolitu oraz tyczki
Odpowiedź 'Teodolitu i łaty niwelacyjnej' jest poprawna, ponieważ tachimetria to metoda pomiarów geodezyjnych, która łączy w sobie funkcje teodolitu oraz niwelacji. Teodolit umożliwia dokładne pomiary kątów poziomych i pionowych, co jest kluczowe w ustalaniu położenia punktów w terenie. Łata niwelacyjna z kolei pozwala na pomiar różnic wysokości, co jest niezbędne dla uzyskania precyzyjnych wyników. W praktycznym zastosowaniu, pomiar odbywa się poprzez ustawienie teodolitu na statywie w punkcie kontrolnym, a następnie skierowanie go na łaty niwelacyjne umieszczone w różnych lokalizacjach. Dzięki tej metodzie można szybko i efektywnie zrealizować pomiary, co jest szczególnie istotne w kontekście dużych projektów budowlanych oraz inżynieryjnych, gdzie czas i dokładność są kluczowe. Warto również zauważyć, że stosowanie teodolitu i łaty niwelacyjnej jest zgodne z normami geodezyjnymi oraz najlepszymi praktykami w branży, co zapewnia wysoką jakość i wiarygodność uzyskanych wyników.

Pytanie 8

Przyjmując pomiarową osnowę sytuacyjną, należy zrealizować pomiary liniowe z przeciętnym błędem pomiaru odległości

A. md ≤ 0,05 m + 70 mm/km
B. md ≤ 0,07 m + 50 mm/km
C. md ≤ 0,01 m + 0,01 m/km
D. md ≤ 0,01 m + 0,02 m/km
Odpowiedzi takie jak md ≤ 0,05 m + 70 mm/km, md ≤ 0,01 m + 0,02 m/km oraz md ≤ 0,07 m + 50 mm/km nie spełniają wymogów dla precyzyjnych pomiarów liniowych w geodezji. W pierwszej z tych odpowiedzi, błąd systematyczny wynoszący 5 cm jest zbyt wysoki, szczególnie w kontekście projektów wymagających wysokiej dokładności, jak np. budowa infrastruktury. Z kolei błąd na jednostkę długości wynoszący 70 mm/km wskazuje na znaczną deprecjację jakości pomiarów w dłuższych odległościach, co może prowadzić do poważnych nieścisłości w danych pomiarowych. W odpowiedzi md ≤ 0,01 m + 0,02 m/km, chociaż błąd początkowy jest niski, to dodatkowy błąd na kilometr przekracza akceptowane wartości dla wielu zastosowań, co obniża ogólną precyzję pomiarów. W przypadku ostatniej odpowiedzi, md ≤ 0,07 m + 50 mm/km, gdzie błąd systematyczny sięga 7 cm, również nie jest dopuszczalne w kontekście standardów branżowych. W geodezji kluczowe jest, aby zapewnić odpowiednią jakość pomiarów, a nieprzestrzeganie tych zasad może prowadzić do błędnych wyników, które wpływają na dalsze etapy projektów budowlanych. W praktyce, zbyt duże błędy pomiarowe mogą skutkować koniecznością ponownego wykonania prac geodezyjnych, co wiąże się z niepotrzebnymi kosztami i opóźnieniami.

Pytanie 9

Na mapie w skali 1:2000 zmierzono odcinek o długości 145,4 mm. Jakiemu odcinkowi w rzeczywistości odpowiada ta długość?

A. 29,08 m
B. 14,54 m
C. 290,80 m
D. 145,40 m
Błędne odpowiedzi wynikają z nieprawidłowego zrozumienia przeliczenia skali mapy. Często spotykanym błędem jest mylenie jednostek miary lub nieprawidłowe mnożenie przez współczynnik skali. Na przykład odpowiedź 145,40 m sugeruje, że użytkownik pomnożył długość odcinka na mapie przez 1, co jest całkowicie błędne. Ponadto, gdy ktoś odpowiada 29,08 m, może to sugerować, że podzielił długość odcinka przez 10, co również nie ma sensu w kontekście skali. Odpowiedź 14,54 m może wynikać ze zrozumienia, że najpierw przeliczono jednostki na centymetry, a następnie podzielono przez 100, co jest nieprawidłowym podejściem. Typowe błędy myślowe w takich przypadkach wynikają z nieznajomości zasad przeliczania jednostek czy też błędnego założenia o proporcjach. Aby uniknąć tych pułapek, ważne jest, aby zawsze pamiętać o zasadzie, że w przypadku skali, wartości są mnożone, a nie dzielone. Zrozumienie tych zasad jest kluczowe nie tylko w kontekście nauki o geodezji, ale również w wielu innych dziedzinach, jak architektura czy inżynieria lądowa.

Pytanie 10

W jaki sposób oraz gdzie są przedstawiane rezultaty wywiadu terenowego?

A. Na kopii mapy ewidencyjnej lub zasadniczej, kolorem czerwonym
B. Na szkicach polowych, kolorem czarnym i czerwonym
C. Na szkicach polowych, ołówkiem
D. Na kopii mapy zasadniczej, kolorem zielonym
Uwidacznianie wyników wywiadu terenowego z wykorzystaniem kolorów i różnych typów map jest kluczowe dla właściwej interpretacji danych geodezyjnych. Kolory używane w dokumentacji mają swoje konkretne znaczenie, a ich niewłaściwy dobór może prowadzić do dezorientacji. W przypadku błędnych odpowiedzi, jak użycie koloru zielonego albo czarnego i czerwonego na szkicach polowych, pojawia się ryzyko, że wyniki badań nie zostaną odpowiednio zinterpretowane. Przykładowo, kolor zielony często jest stosowany w mapach do oznaczania terenów zielonych, co wprowadza dodatkowy zamęt w kontekście wyników wywiadu. Użycie czarnego i czerwonego na szkicach polowych również jest mylące, ponieważ szkice polowe zazwyczaj służą do roboczych notatek, a nie do końcowej dokumentacji wyników. Takie podejście może prowadzić do błędów w komunikacji i interpretacji danych, co jest szczególnie niebezpieczne w kontekście projektów budowlanych czy planowania przestrzennego. Typowym błędem myślowym jest mylenie różnych typów dokumentów i ich zastosowań; na przykład, szkice polowe są narzędziem pomocniczym, a nie dokumentem finalnym. Zrozumienie, że kolor czerwony na mapie ewidencyjnej jest standardem dla wyników wywiadów, jest kluczowe, aby uniknąć nieporozumień i błędów w dalszym etapie prac geodezyjnych.

Pytanie 11

Jaką precyzję terenową ma punkt sytuacyjny na mapie o skali 1:5000, jeżeli precyzja graficzna jego umiejscowienia wynosi 0,1 mm?

A. ±0,50 m
B. ±5,00 m
C. ±50,00 m
D. ±0,05 m
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia przeliczeń związanych z różnymi skalami map. Odpowiedzi ±5,00 m oraz ±50,00 m są znacznie przeszacowane w kontekście skali 1:5000, co wskazuje na fundamentalny błąd w przeliczeniach. Przykładowo, ±5,00 m oznaczałoby, że punkt mógłby znajdować się w odległości 5 metrów od rzeczywistej lokalizacji, co jest nieakceptowalne w kontekście precyzyjnych pomiarów terenowych. Z kolei odpowiedź ±0,05 m mogłaby sugerować nadmierną dokładność, która jest niemożliwa do osiągnięcia przy podanej dokładności graficznej. Błąd ten wynika często z nieznajomości zasad przeliczeń w różnych skalach oraz z niedostatecznej wiedzy na temat wpływu skali na dokładność pomiarów. Kluczowe jest więc, aby uwzględniać zarówno skalę mapy, jak i metodykę pomiaru, aby poprawnie zinterpretować dane sytuacyjne. Prawidłowe zrozumienie tych zależności jest niezbędne dla każdego specjalisty w dziedzinach związanych z geodezją, kartografią czy inżynierią lądową.

Pytanie 12

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 27g12c35cc
B. 527g12c35cc
C. 127g12c35cc
D. 227g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 13

Jaką metodą powinno się wykonać pomiar kątów w celu określenia współrzędnych punktu, który jest niedostępny, stosując metodę wcięcia kątowego w przód?

A. Pojedynczego kąta
B. Wypełnienia horyzontu
C. Kierunkową
D. Sektorową
Metoda pojedynczego kąta jest preferowaną techniką przy wyznaczaniu współrzędnych punktu niedostępnego, szczególnie w kontekście wcięcia kątowego w przód. Głównym atutem tej metody jest jej prostota oraz precyzja, co czyni ją idealnym narzędziem w geodezji i inżynierii lądowej. W praktyce, polega ona na pomiarze jednego kąta między punktami referencyjnymi, co pozwala na dokładne określenie lokalizacji niedostępnego punktu. Dobrą praktyką jest wykonanie pomiarów w różnych warunkach atmosferycznych oraz przy użyciu odpowiednich instrumentów, by zminimalizować błędy pomiarowe. Standardy geodezyjne, takie jak PN-EN ISO 17123, określają wymagania dotyczące precyzji pomiarów kątów, co jest kluczowe dla uzyskania wiarygodnych wyników. Przykładowo, w przypadku pomiaru w terenie górzystym, wykorzystanie metody pojedynczego kąta może znacząco ułatwić zlokalizowanie punktów, które w normalnych warunkach byłyby trudne do zmierzenia.

Pytanie 14

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Współrzędnika
B. Koordynatografu
C. Nanośnika biegunowego
D. Nanośnika prostokątnego
Koordynatograf to kluczowe narzędzie wykorzystywane w procesie opracowywania map analogowych, które pozwala na precyzyjne nanoszenie ramki sekcyjnej oraz siatki kwadratów. Jego konstrukcja umożliwia bardzo dokładne określenie współrzędnych punktów na mapie, co jest niezbędne w geodezji oraz kartografii. Koordynatograf działa poprzez system krzyżujących się linii, które są dostosowywane do odpowiednich jednostek miar. Dzięki temu użytkownik może precyzyjnie umiejscawiać elementy mapy w odpowiednich miejscach, co wpływa na dokładność i jakość końcowego produktu. Przykładem zastosowania koordynatografu może być opracowywanie planów zagospodarowania przestrzennego, gdzie każdy detal musi być dokładnie odwzorowany. W praktyce, wykorzystując koordynatograf, można zapewnić zgodność z międzynarodowymi standardami kartograficznymi, co jest niezwykle istotne w profesjonalnych pracach związanych z tworzeniem map.

Pytanie 15

Na mapie zasadniczej sieci oznaczane są kolorem brązowym?

A. kanalizacyjne
B. ciepłownicze
C. elektroenergetyczne
D. gazowe
Brązowy kolor na mapach zasadniczych jest standardowym oznaczeniem dla sieci kanalizacyjnych. Oznacza to, że wszelkie elementy związane z systemami odprowadzania ścieków oraz ich infrastrukturą są reprezentowane tą barwą. W praktyce, oznaczenie to jest istotne dla planowania przestrzennego oraz realizacji projektów budowlanych, ponieważ umożliwia inżynierom i projektantom łatwe zidentyfikowanie istniejących sieci kanalizacyjnych, co jest kluczowe przy wykopach i innych pracach ziemnych. Ponadto, zgodnie z normą PN-ISO 19115, stosowanie kolorów na mapach powinno być spójne i odzwierciedlać powszechnie przyjęte praktyki, co pozwala uniknąć nieporozumień w interpretacji danych przestrzennych. Zrozumienie systemów kanalizacyjnych jest niezbędne w kontekście zarządzania wodami oraz ochrony środowiska, co podkreśla ich znaczenie w infrastrukturze miejskiej.

Pytanie 16

Która z podanych wartości powinna zostać uwzględniona na wykresie pionowości krawędzi obiektu budowlanego?

A. Różnica wysokości
B. Przemieszczenie w kierunku pionowym
C. Odchylenie od pionu
D. Deformacja
Odchylenie od pionu to kluczowa wielkość, która mierzy, jak dalece krawędź budynku odbiega od idealnej linii pionowej. Jako wskaźnik stabilności konstrukcji, odchylenie od pionu jest istotnym parametrem w budownictwie, szczególnie podczas inspekcji dużych obiektów, takich jak wieżowce czy mosty. W praktyce, pomiar odchylenia od pionu przeprowadza się za pomocą teodolitów lub niwelatorów, które pozwalają na precyzyjne określenie kąta odchylenia w stosunku do pionu. Wartości te są krytyczne w kontekście zachowania się budynku pod wpływem obciążeń statycznych i dynamicznych. Zgodnie z normami budowlanymi, maksymalne dopuszczalne odchylenie dla budynków mieszkalnych wynosi zazwyczaj 1/200 wysokości budynku, co zapewnia bezpieczeństwo użytkowników oraz trwałość konstrukcji. Regularne monitorowanie odchylenia od pionu może zapobiegać poważnym problemom, takim jak pękanie ścian czy osiadanie fundamentów, a tym samym znacząco wpływa na bezpieczeństwo użytkowania obiektów.

Pytanie 17

Jaka jest odległość od początku drogi do punktu, który na tej trasie ma oznaczenie 0/3+57,00 m?

A. 357,00 m
B. 3057,00 m
C. 3557,00 m
D. 557,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 18

W przypadku wykonania pomiaru niwelacyjnego, jeżeli wartość odczytu z łaty niwelacyjnej kreską górną wynosi g = 2000 mm, a kreską dolną d = 1500 mm, to odczyt z łaty kreską środkową powinien być równy

A. s = 1500 mm
B. s = 2000 mm
C. s = 1250 mm
D. s = 1750 mm
Aby obliczyć wartość odczytu z łaty niwelacyjnej kreską środkową, należy skorzystać z zasady, że odczyt kreską środkową jest średnią arytmetyczną odczytów kreską górną i dolną. W tym przypadku mamy odczyt górny g = 2000 mm oraz odczyt dolny d = 1500 mm. Możemy zatem obliczyć s jako: s = (g + d) / 2 = (2000 mm + 1500 mm) / 2 = 1750 mm. Taki sposób obliczania odczytów jest standardową praktyką w pomiarach niwelacyjnych, ponieważ pozwala na uzyskanie precyzyjnych wyników poprzez eliminację błędów związanych z odczytem z jednego punktu. W praktyce stosowane są różne metody niwelacji, a dobrym przykładem są pomiary geodezyjne, w których precyzja i dokładność są kluczowe. Dzięki temu można zapewnić rzetelność danych, co jest istotne w inżynierii budowlanej czy topografii. Poprawne interpretowanie odczytów z łaty jest więc nie tylko zadaniem teoretycznym, ale także praktycznym, wymagającym znajomości zasad niwelacji i umiejętności ich zastosowania w rzeczywistych pomiarach.

Pytanie 19

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. alidadą
B. celownikiem
C. limbusem
D. spodarką
Często dochodzi do mylenia pojęć związanych z teodolitami oraz ich elementami. Celownik w teodolicie to nie podziałka kątowa, lecz urządzenie optyczne, które pozwala na precyzyjne celowanie w określony punkt. W związku z tym, funkcja celownika różni się od limbusa, który, jak wcześniej wspomniano, jest odpowiedzialny za pomiar kątów. Spodarka, z kolei, to element teodolitu służący do przechylania instrumentu w płaszczyźnie poziomej, co również nie ma związku z podziałką kątową. Alida to zespół elementów umożliwiających ustawienie i stabilizację teodolitu, ale nie jest bezpośrednio związana z mierzeniem kątów. Mylenie tych terminów może prowadzić do błędów w pomiarach i interpretacji wyników, co podkreśla znaczenie dokładnego zrozumienia funkcji poszczególnych elementów teodolitu. Wiedza na temat limbusa oraz jego zastosowania jest kluczowa dla geodetów, którzy muszą być świadomi, że nie tylko sama pomiarowa technika, ale również znajomość wszystkich komponentów i ich właściwości wpływa na jakość dokonywanych pomiarów.

Pytanie 20

Jak wielki jest maksymalny dopuszczalny średni błąd lokalizacji punktu w pomiarowej osnowie wysokościowej w odniesieniu do najbliższych punktów wysokościowej osnowy geodezyjnej?

A. 0,03 m
B. 0,01 m
C. 0,05 m
D. 0,07 m
Największy dopuszczalny średni błąd położenia punktu pomiarowej osnowy wysokościowej względem najbliższych punktów wysokościowej osnowy geodezyjnej wynosi 0,05 m. To wartość, która została ustalona na podstawie norm i standardów stosowanych w geodezji, których celem jest zapewnienie wysokiej dokładności pomiarów. W praktyce oznacza to, że każdy punkt pomiarowy musi być zlokalizowany z odpowiednią precyzją, aby gwarantować wiarygodność danych wysokościowych. Na przykład, przy pomiarach związanych z budową infrastruktury, takich jak drogi czy mosty, zachowanie tej tolerancji jest kluczowe dla prawidłowego projektowania i wykonawstwa. Wysokiej jakości osnowa wysokościowa umożliwia również prowadzenie dalszych pomiarów, takich jak monitoring osuwisk czy deformacji terenu. Zastosowanie się do tych standardów nie tylko wspiera poprawność wyników, ale także podnosi ogólną jakość prac geodezyjnych i zaufanie do wyników pomiarowych.

Pytanie 21

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. stałej prostej
B. trygonometrycznej
C. wcięć kątowych
D. fotogrametrycznej
Metody wcięć kątowych, trygonometrycznej oraz fotogrametrycznej są powszechnie stosowane w analizie pionowości kominów przemysłowych, jednak każda z nich ma swoje ograniczenia, które mogą prowadzić do błędnych wniosków, jeśli nie są zastosowane w odpowiedni sposób. Metoda wcięć kątowych polega na pomiarze kątów między różnymi punktami na obwodzie komina, co może być problematyczne, gdy komin nie jest idealnie cylindryczny lub gdy występują zakłócenia wizualne. Ponadto, ta technika często wymaga skomplikowanych obliczeń, które mogą być podatne na błędy ludzkie. Z kolei metoda trygonometryczna, opierająca się na pomiarach kątów i odległości, może również być obarczona błędami, gdy nie uwzględnia się wpływu warunków atmosferycznych na pomiary. Zmienne takie jak refrakcja atmosferyczna mogą znacznie wpłynąć na dokładność wyników. Metoda fotogrametryczna, chociaż nowoczesna i skuteczna, wymaga zaawansowanego sprzętu oraz odpowiednich umiejętności analitycznych do przetwarzania danych, co może być problematyczne w praktyce. W związku z tym, każdy z tych błędnych wyborów opiera się na założeniu, że są one w pełni niezawodne, podczas gdy w rzeczywistości wymagają one starannego planowania, wykonania oraz weryfikacji. Dlatego kluczowe jest, aby wybierać techniki pomiarowe, które są zgodne z aktualnymi standardami branżowymi, takimi jak normy ISO czy wytyczne stowarzyszeń inżynieryjnych.

Pytanie 22

Który z wymienionych dokumentów nie należy do operatu technicznego przekazywanego do Państwowego Zasobu Geodezyjnego i Kartograficznego?

A. Dziennik pomiarowy
B. Certyfikat rektyfikacji sprzętu geodezyjnego
C. Opis topograficzny punktu osnowy pomiarowej
D. Sprawozdanie techniczne
Wszystkie inne wymienione dokumenty są kluczowymi składnikami operatu technicznego, a ich znaczenie w geodezji jest nie do przecenienia. Dziennik pomiarowy stanowi podstawowy rejestr wszystkich czynności pomiarowych, które zostały wykonane podczas prac. Zawiera szczegóły dotyczące użytego sprzętu, warunków atmosferycznych oraz dokładności pomiarów. Jego rzetelność jest niezbędna do potwierdzenia wiarygodności wyników, co jest szczególnie ważne w kontekście późniejszej analizy danych. Sprawozdanie techniczne, z kolei, stanowi syntetyczne podsumowanie przeprowadzonych prac, w tym analizy wyników pomiarów oraz ewentualnych problemów napotkanych w trakcie realizacji. Opis topograficzny punktu osnowy pomiarowej dostarcza dodatkowych informacji o lokalizacji oraz charakterystyce punktów, które są kluczowe dla późniejszych prac geodezyjnych. Pominięcie tych dokumentów w operacie technicznym mogłoby prowadzić do luk w dokumentacji, co jest niezgodne z wymaganiami prawnymi oraz standardami branżowymi. W praktyce, brak tych dokumentów może skutkować problemami prawno-technicznymi, w tym odpowiedzialnością za błędne pomiary czy nieprawidłowe dane w systemach ewidencyjnych. Właściwe zrozumienie i stosowanie wszystkich elementów operatu technicznego jest zatem kluczowe dla efektywności pracy w geodezji.

Pytanie 23

Korzystając z danych zamieszczonych w tabeli, oblicz kąt skręcenia pomiędzy układami współrzędnych wtórnym i pierwotnym.

Numer punktuUkład pierwotnyUkład wtórny
XpYpXwYw
1100,00100,00400,00400,00
2123,00134,00377,00366,00
3145,00162,00355,00338,00
4200,00200,00300,00300,00

A. 50g
B. 200g
C. 300g
D. 250g
Wybierając inne odpowiedzi, mogłeś napotkać na specyficzne błędy w rozumieniu tematu obliczania kąta skręcenia. Często błędne odpowiedzi, takie jak 50g, 300g czy 250g, wynikają z niepoprawnego przeliczenia lub interpretacji danych z tabeli. W przypadku pierwszej z tych wartości, mogłeś zlekceważyć wpływ pełnego zakresu obrotu, który powinien być brany pod uwagę przy takich obliczeniach. Z kolei odpowiedzi 300g i 250g mogą być wynikiem mylenia jednostek lub próbowania dodawania kąta do dowolnej liczby, co nie jest poprawne. Kluczowym błędem jest zapominanie o zasadach geometrii i trigonometrii, które powinny być stosowane w takich przypadkach. Kąt skręcenia można także zrozumieć w kontekście transformacji współrzędnych, gdzie musimy podejść do obliczeń z perspektywy, jak różne układy wpływają na siebie wzajemnie. Zrozumienie tego tematu jest istotne w zastosowaniach inżynieryjnych, gdzie niewłaściwe obliczenia mogą prowadzić do poważnych błędów w projektowaniu i realizacji. Wiedza na temat standardów obliczeń kątów jest niezbędna, aby unikać takich nieporozumień w przyszłości.

Pytanie 24

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. słup betonowy
B. słup granitowy
C. bolec żelazny
D. palik drewniany
Bolec żelazny jest właściwym rozwiązaniem do oznakowania położenia punktów sytuacyjnej osnowy pomiarowej na utwardzonych nawierzchniach jezdni i chodników z kilku istotnych powodów. Przede wszystkim, jego solidna konstrukcja zapewnia trwałość oraz stabilność, co jest kluczowe w kontekście długotrwałych pomiarów geodezyjnych. Dzięki swojej metalowej formie, bolec żelazny jest odporny na warunki atmosferyczne oraz uszkodzenia mechaniczne, co czyni go idealnym narzędziem w terenie. Przykładowo, w praktyce geodezyjnej, bolece żelazne są często stosowane do wyznaczania punktów kontrolnych, które są niezbędne podczas budowy dróg oraz innych obiektów infrastrukturalnych. Zgodnie z zasadami dobrych praktyk, zaleca się, aby punkty te były dobrze widoczne i łatwo dostępne, co w przypadku bolców żelaznych jest zapewnione poprzez ich odpowiednią wysokość i umiejscowienie. Dodatkowo, ich instalacja nie wymaga skomplikowanych procedur, co przyspiesza proces oznakowania i umożliwia szybkie przystąpienie do dalszych prac pomiarowych.

Pytanie 25

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Kiedy nie były używane przez pięć lat
B. Po upływie dwóch lat od dodania do zasobu
C. Kiedy zostaną zniszczone
D. Kiedy stracą wartość użytkową
Wyłączenie materiałów z państwowego zasobu geodezyjnego i kartograficznego nie jest związane z czasem ich nieużywania, ani z ich fizycznym zniszczeniem. Twierdzenie, że materiały mogą zostać wyłączone z zasobu, gdy nie były wykorzystywane przez pięć lat, opiera się na błędnym założeniu, że brak użycia oznacza brak wartości. W rzeczywistości materiały mogą pozostawać w zasobie, nawet jeśli nie były aktywnie wykorzystywane, gdyż mogą wciąż mieć potencjalną wartość dla przyszłych projektów, badań czy planowania. Zniszczenie materiałów, choć może prowadzić do potrzeby ich wyłączenia, nie jest kluczowe w kontekście zarządzania zasobami geodezyjnymi. Istotniejsze jest, aby ocenić ich aktualność i przydatność użytkową. W momencie, gdy materiały przestają spełniać wymagania użytkowników, niezależnie od ich stanu fizycznego, powinny być wyłączone. Warto także zauważyć, że zasady dotyczące wyłączenia materiałów nie opierają się na określonym czasie, takim jak dwa lata od ich włączenia do zasobu. To podejście ignoruje dynamiczny charakter użytkowania danych geodezyjnych, które mogą być wielokrotnie aktualizowane w miarę zmieniających się potrzeb użytkowników oraz rozwoju technologii. Dlatego tak ważne jest, aby zarządzanie zasobami geodezyjnymi opierało się na regularnych ocenach ich wartości i przydatności, a nie na sztywnych ramach czasowych.

Pytanie 26

Który ze sporządzanych w terenie dokumentów geodezyjnych jest wykorzystywany m.in. do zlokalizowania trwale ustalonego punktu osnowy?

A. Plan osnowy
B. Szkic budowlany
C. Opis topograficzny
D. Szkic polowy
Analizując inne dokumenty geodezyjne, łatwo można zauważyć ich różnorodność oraz specyfikę, która nie zawsze jest zrozumiała dla osób nieobeznanych z tematem. Projekt osnowy to dokument, który ma na celu zaplanowanie rozmieszczenia punktów osnowy, jednak nie jest to dokument powstający w terenie, lecz raczej przedprojektowy. Ponadto, jego zawartość nie umożliwia odnalezienia konkretnego, zastabilizowanego punktu osnowy, ponieważ projekt ma charakter koncepcyjny, a nie operacyjny. Szkic tyczenia, z drugiej strony, jest dokumentem używanym w trakcie prac geodezyjnych do zaznaczania lokalizacji budynków czy innych obiektów, ale także nie służy bezpośrednio do identyfikacji punktów osnowy. Warto zauważyć, że szkic polowy to dokument, który jest bardziej roboczy i obejmuje zapisy dotyczące pomiarów wykonanych na ziemi, ale również nie dostarcza pełnej informacji o stałych punktach osnowy. Zrozumienie różnicy między tymi dokumentami i ich zastosowaniami jest kluczowe dla każdego geodety, a błędne przypisanie ich funkcji może prowadzić do nieporozumień oraz błędów w wykonaniu prac geodezyjnych. W branży geodezyjnej ważne jest, aby każdy dokument był wykorzystywany zgodnie z jego przeznaczeniem, co wpływa na efektywność i dokładność prowadzonych pomiarów oraz projektów.

Pytanie 27

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. bezpośrednie pomiary geodezyjne
B. zdigitalizowane mapy
C. zdjęcia fotogrametryczne
D. wywiady branżowe
Inne odpowiedzi, które podałeś, dotyczą metod zbierania danych, które są bardzo ważne przy tworzeniu map numerycznych. Zdjęcia fotogrametryczne używają technologii obrazowania, żeby zebrać informacje o terenie i tworzyć szczegółowe modele. Często się je stosuje w geodezji, bo można szybko zyskać dużo danych. Digitalizowanie map jest równie istotne, bo zmienia stare mapy papierowe na cyfrowe i umożliwia ich lepszą analizę. Pomiary geodezyjne dają najbardziej dokładne dane lokalizacyjne, które są kluczowe do tworzenia dokładnej mapy. Używa się do tego sprzęt geodezyjny, jak teodolity czy tachimetry. Często ludzie myślą, że wywiady branżowe mogą zastąpić te metody, ale to nie jest prawda. Wywiady są bardziej pomocne w zbieraniu danych jakościowych, a nie liczbowych. Ważne jest, żeby rozumieć różnicę między rodzajami danych, żeby dobrze korzystać z różnych źródeł informacji w geodezji i kartografii.

Pytanie 28

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/4000
B. 1/5000
C. 1/1000
D. 1/2000
Aby zrozumieć, dlaczego inne odpowiedzi są nieprawidłowe, warto przyjrzeć się, jak oblicza się błąd względny i jakie są typowe błędy w jego interpretacji. Niektórzy mogą mylnie uznawać, że błąd względny można obliczyć w inny sposób, na przykład poprzez dodanie lub pomnożenie błędu do wartości pomiarowej, co prowadzi do błędnych wyników. Inna powszechna mylna koncepcja dotyczy pomijania przeliczeń jednostek. Przykładowo, odpowiedzi, które sugerują błędne wartości, mogą wynikać z nieprawidłowego przeliczenia błędu z centymetrów na metry lub z błędnych założeń dotyczących wartości bazowej. Podczas obliczania błędu względnego kluczowe jest, aby błąd zawsze odnosił się do wartości, która jest analizowana, w tym przypadku 120 m. Każdy błąd w tym podejściu prowadzi do niepoprawnych wyników, co może mieć istotne konsekwencje w praktyce inżynieryjnej, gdzie precyzja jest kluczowa. Przykładowo, w budownictwie lub geodezji, nieprawidłowe obliczenia mogą skutkować błędnymi pomiarami, co z kolei może prowadzić do poważnych problemów w realizacji projektów.

Pytanie 29

Dysponując informacjami: wysokość miejsca pomiarowego Hst = 200,66 m, wysokość urządzenia i = 1,55 m, odczyt kreski centralnej na łacie s = 1150, oblicz wysokość punktu HP.

A. HP = 201,06 m
B. HP = 203,36 m
C. HP = 200,26 m
D. HP = 197,96 m
Wszystkie niepoprawne odpowiedzi wynikają z błędów w interpretacji przepisów dotyczących obliczania wysokości punktu pomiarowego. Często spotykanym błędem jest pomijanie konwersji jednostek lub nieprawidłowe uwzględnianie wartości w wzorze. Na przykład, niektóre osoby mogą zignorować fakt, że odczyt kreski środkowej na łacie s powinien być przeliczony na metry, co prowadzi do błędnych obliczeń. W przypadku takiego pytania, kluczowe jest, aby pamiętać, że odczyt na łacie jest wartością, którą należy odjąć od sumy wysokości instrumentu i wysokości stanowiska. Ponadto, wiele osób myli wysokość instrumentu z wysokością punktu pomiarowego, co prowadzi do obliczeń, które nie mają sensu w kontekście geodezji. Często, w procesie nauczania, pojawiają się upraszczające założenia, które mogą wprowadzać w błąd. W rzeczywistości, każdy z tych elementów jest istotny dla uzyskania dokładności pomiarów, co jest kluczowe w zastosowaniach geodezyjnych, takich jak skanowanie terenu czy projektowanie infrastruktury. Dlatego, aby skutecznie przeprowadzić obliczenia, należy przestrzegać standardów metodycznych oraz praktyk obowiązujących w branży, co pozwala na uniknięcie typowych pułapek podczas realizacji pomiarów.

Pytanie 30

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. kompletną liczbę kilometrów od startu trasy
B. numer hektometra w konkretnej sekcji kilometra
C. całkowitą liczbę metrów w jednym odcinku trasy
D. liczbę hektometrów w danym kilometrze trasy
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego systemu oznaczania. Na przykład, odpowiedź wskazująca na numer hektometra w danym kilometrze sugeruje, że cyfra 2 odnosi się do odcinka hektometrowego, co jest mylące. W rzeczywistości nie stosuje się takiego zapisu w kontekście punktów pomiarowych. Koncepcja ta może prowadzić do błędnych założeń, ponieważ punkt 2 w schemacie 2/5 nie odnosi się do jednostek hektometrycznych, które są używane na bardziej lokalnym poziomie. Z kolei odniesienie do pełnej liczby metrów w jednym odcinku trasy pomija kluczowy aspekt systemu, który wyraźnie definiuje pełne kilometry. Może to być mylące, zwłaszcza gdy rozważamy różnice w jednostkach pomiarowych. Trzeba również brać pod uwagę, że standardy branżowe, które regulują oznaczanie tras, jasno określają, jak powinny być przedstawiane odległości, co jeszcze bardziej podkreśla, że numeracja kilometrów jest fundamentalna dla właściwego zrozumienia struktury tras. Często popełnianym błędem jest niezweryfikowanie kontekstu, w jakim są używane konkretne oznaczenia, co skutkuje wyborem odpowiedzi, które wydają się mieć sens, ale w rzeczywistości są sprzeczne z ustalonymi normami. Ważne jest, aby zawsze odnosić się do najnowszych standardów i praktyk w branży, aby unikać nieporozumień.

Pytanie 31

Która z poniższych aktywności nie wchodzi w zakres działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Przyjmowanie oraz rejestrowanie zgłoszeń prac geodezyjnych i kartograficznych
B. Wydawanie instrukcji do przeprowadzenia zgłoszonych prac
C. Realizacja pomiarów w celu ustalenia współrzędnych oraz wysokości punktów osnowy
D. Rejestrowanie dokumentów przyjętych do zasobu geodezyjnego
Wykonywanie pomiarów w celu określenia współrzędnych i wysokości punktów osnowy jest zadaniem, które nie należy do kompetencji Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (PODGiK). Główne zadania tego ośrodka koncentrują się na ewidencjonowaniu, zarządzaniu oraz udostępnianiu danych geodezyjnych i kartograficznych, a nie na samodzielnym przeprowadzaniu pomiarów. Punkty osnowy geodezyjnej są zazwyczaj określane przez wyspecjalizowane jednostki, takie jak przedsiębiorstwa geodezyjne, które realizują pomiary zgodnie z obowiązującymi normami, na przykład PN-EN ISO 19111 dotyczących systemów odniesienia i pomiarów. Ośrodki te koncentrują się na tworzeniu i utrzymywaniu zasobów geodezyjnych, co jest kluczowe dla prawidłowego funkcjonowania planowania przestrzennego oraz wielu innych dziedzin, takich jak budownictwo, infrastruktura czy ochrona środowiska. Przykładem praktycznego zastosowania wiedzy w tym zakresie może być współpraca PODGiK z lokalnymi samorządami, które polegają na dostępie do dokładnych i aktualnych map oraz danych geodezyjnych do celów planistycznych.

Pytanie 32

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 3 mm
B. p = 10 mm
C. p = 9 mm
D. p = 5 mm
Wszystkie odpowiedzi inne niż p = 9 mm wynikają najczęściej z błędnego zrozumienia metody obliczania przemieszczenia liniowego. Istotne jest, aby w procesie obliczeń poprawnie zidentyfikować współrzędne punktu przed i po pomiarach. Wiele osób może pomylić się w obliczeniach, myląc różnice z wartościami absolutnymi współrzędnych, co prowadzi do błędnych wyników. Odpowiedzi takie jak p = 5 mm, p = 10 mm, czy p = 3 mm mogą sugerować niepełne zrozumienie zastosowania twierdzenia Pitagorasa, które jest fundamentalne w obliczeniach przestrzennych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych konkluzji, to pomijanie elementów wzoru lub fałszywe założenia dotyczące proporcji pomiędzy współrzędnymi. Każde nieprecyzyjne przeliczenie może skutkować dużymi błędami w końcowych wynikach, co w kontekście geodezji i pomiarów przestrzennych ma poważne konsekwencje. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń zawsze zweryfikować dane wejściowe oraz zastosować odpowiednie techniki analizy, co zapewnia wysoką jakość i dokładność uzyskanych wyników.

Pytanie 33

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 200÷300g
B. 0÷100g
C. 300÷400g
D. 100÷200g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 34

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n−2)∙200g
B. [β] = Ap − Ak + n∙200g
C. [β] = Ak − Ap + n∙200g
D. [β] = (n+2)∙200g
Poprawna odpowiedź to wzór [β] = (n−2)∙200g, który służy do obliczania sumy kątów wewnętrznych w poligonie zamkniętym. Wzór ten opiera się na podstawowej zasadzie geometrii, zgodnie z którą suma kątów wewnętrznych w n-kącie (poligonie o n bokach) wynosi (n−2) razy 180 stopni. W praktyce, aby dostosować jednostki do typowego zapisu w geodezji, wprowadza się przelicznik 200g, co odpowiada 180 stopniom (200g = 180°). W związku z tym, dla trójkąta (n=3) suma kątów wynosi (3−2)∙200g = 200g, co jest zgodne z klasycznym wynikiem 180°. Dla czworokąta (n=4) mamy (4−2)∙200g = 400g, co odpowiada 360°. Taki sposób obliczeń jest powszechnie stosowany w inżynierii i architekturze, gdzie precyzyjne określenie kątów jest kluczowe do prawidłowego projektowania i realizacji budowli. Wiedza ta jest także istotna w kontekście standardów geodezyjnych oraz przy tworzeniu map i projektów przestrzennych.

Pytanie 35

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Wcięć kątowych
B. Domiarów prostokątnych
C. Biegunowa
D. Ortogonalna
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 36

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. szacunkowego
B. pomiarowego
C. technicznego
D. katastralnego
Wybór odpowiedzi związanych z operatami katastralnymi, pomiarowymi czy szacunkowymi jest błędny, ponieważ nie odzwierciedla istoty dokumentacji geodezyjnej przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego. Operat katastralny dotyczy głównie ewidencji gruntów i budynków, a jego zadaniem jest zapewnienie danych o stanie prawnym i własnościowym nieruchomości, co odstaje od kontekstu pomiarów geodezyjnych. Z kolei operat pomiarowy zazwyczaj odnosi się do dokumentacji samych pomiarów, nie zaś do ich kompleksowego opracowania, co jest niezbędne do pełnego zrozumienia i interpretacji danych. Operat szacunkowy, natomiast, dotyczy wyceny nieruchomości i jest stosowany w kontekście oceny wartości majątkowej, co również nie ma bezpośredniego związku z geodezyjnymi pomiarami terenowymi i ich analizą. Typowym błędem myślowym jest mylenie różnych rodzajów dokumentacji geodezyjnej, co może prowadzić do nieporozumień w rozumieniu ich funkcji i zastosowania. Dlatego kluczowe jest zrozumienie, że operat techniczny jest jedynym odpowiednim dokumentem, który w pełni odzwierciedla rezultaty pomiarów oraz ich analizę, stanowiąc tym samym fundament dla dalszych działań w obszarze geodezji.

Pytanie 37

Geodezyjne pomiary sytuacyjne w terenie nie mogą być realizowane za pomocą metod

A. ortogonalną (domiarów prostokątnych).
B. biegunowej.
C. skaningu laserowego.
D. wcięć kątowych, liniowych i kątowo-liniowych.
Metody wykorzystywane w geodezyjnych pomiarach terenowych są naprawdę różne, a każda z nich ma swoje miejsce. Na przykład biegunowa metoda pomiarowa, którą stosuje się do mierzenia kątów i odległości, to jedna z najstarszych technik. Nadal jest przydatna, szczególnie gdy trzeba dokładnie określić punkty na ziemi. Fajnie się sprawdza na otwartym terenie, gdzie łatwo ustalić linie obserwacyjne. Ortogonalne pomiary, te oparte na domiarach prostokątnych, też mają swoje zastosowanie, zwłaszcza przy tworzeniu map czy w inżynierii lądowej, gdzie liczy się prostokątność i precyzja współrzędnych. Z kolei technika wcięć kątowych jest przydatna do określania współrzędnych punktów w terenie. Wiele z tych metod opiera się na standardach branżowych, które pomagają zapewnić ich dokładność. Dlatego twierdzenie, że geodezyjne pomiary terenowe nie mogą być robione tradycyjnymi metodami, jest mylące; w rzeczywistości są one kluczowe w wielu projektach geodezyjnych i inżynieryjnych. Rozumienie różnic między tymi metodami a nowoczesnym skanowaniem laserowym jest naprawdę ważne dla efektywności naszych prac.

Pytanie 38

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. ortogonalnej
B. tachimetrycznej
C. biegunowej
D. przedłużeń
Odpowiedź "biegunową" jest prawidłowa, ponieważ metoda biegunowa w niwelacji polega na określaniu położenia punktów na podstawie kątów i odległości od punktu odniesienia. W tym procesie wykorzystuje się teodolity lub tachimetry, które umożliwiają pomiar zarówno kątów poziomych, jak i pionowych. Metoda ta jest szczególnie efektywna w sytuacjach, gdy punkty do niwelacji są rozproszone w terenie, a ich jednoczesne mierzenie z jednego miejsca byłoby utrudnione. Przykład zastosowania to budowa infrastruktury, gdzie konieczne jest precyzyjne ustalenie poziomów różnych punktów, takich jak krawędzie dróg czy fundamenty budynków. Stosując metodę biegunową, inżynierowie mogą uzyskać dokładne dane, które są niezbędne do dalszych prac projektowych. W praktyce ważne jest, aby stosować odpowiednie instrumenty oraz przestrzegać standardów pomiarowych, co zapewnia wiarygodność i dokładność uzyskanych wyników.

Pytanie 39

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:2000
B. 1:250
C. 1:1000
D. 1:500
Wybór innych odpowiedzi, takich jak 1:500, 1:250 i 1:1000, wynika z błędnego zrozumienia podstawowych zasad dotyczących skalowania w kontekście map. Skala 1:500 sugerowałaby, że 1 mm na mapie odpowiada 500 mm (0,5 m) w terenie, co jest znacznie mniejszym odwzorowaniem rzeczywistości i nie odpowiada podanym wymiarom. Analogicznie, skala 1:250 i 1:1000 implikuje jeszcze mniejsze lub większe wartości w stosunku do faktycznych pomiarów, prowadząc do nieprawidłowych konkluzji. Typowym błędem myślowym jest pomijanie przeliczenia jednostek oraz nieprawidłowe porównanie długości, co skutkuje mylnymi wnioskami. Kluczowe jest zrozumienie, że skala mapy określa dokładność odwzorowania i wpływa na interpretację danych przestrzennych. Dlatego właściwe przeliczenie długości oraz umiejętność ich analizy w kontekście skali są istotne w geodezji i kartografii. W praktyce pomyłki te mogą prowadzić do poważnych konsekwencji w procesach planowania przestrzennego, co podkreśla znaczenie dokładności w pomiarach oraz interpretacji danych.

Pytanie 40

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = -5cc
B. Vkt = +5cc
C. Vkt = +6cc
D. Vkt = -6cc
Odpowiedź Vkt = -6cc jest poprawna, ponieważ poprawka kątowa do jednego kąta w ciągu poligonowym zamkniętym oblicza się, biorąc pod uwagę całkowitą odchyłkę kątową oraz liczbę kątów. W przypadku ciągu zamkniętego, suma wszystkich kątów powinna wynosić 360 stopni. W tym przypadku mamy 5 kątów i odchyłkę kątową fα równą +30cc. Wartość poprawki kątowej Vkt obliczamy według wzoru Vkt = fα / n, gdzie n to liczba kątów. Stąd Vkt = +30cc / 5 = +6cc. Jednakże, aby zamknąć poligon, musimy uwzględnić, że na skutek pomyłek i niewłaściwych pomiarów dochodzi do ujemnych poprawek kątowych w przypadku odchyłek dodatnich, co w końcowym rozrachunku prowadzi do ujemnej wartości poprawki. Tak więc, w tej sytuacji poprawka kątowa wynosi Vkt = -6cc. Zastosowanie tej koncepcji jest kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne zamykanie ciągów poligonowych ma istotne znaczenie dla dokładności pomiarów i skuteczności planowania.