Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 22 maja 2025 20:24
  • Data zakończenia: 22 maja 2025 20:40

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na szkicu osnowy pomiarowej nie są umieszczane

A. wyrównane wartości kątów poziomych
B. numery punktów osnowy
C. uśrednione długości linii pomiarowych
D. rzędne i odcięte w szczegółach sytuacyjnych
W szkicu pomiarowej osnowy sytuacyjnej umieszczanie wyrównanych wartości kątów poziomych, numerów punktów osnowy i średnich długości linii może się zdawać zgodne z zasadami geodezyjnymi, ale nie do końca. Wyrównane kąty są ważne, bo dzięki nim możemy lepiej zrozumieć, jak punkty są rozmieszczone, co potem ułatwia dalsze pomiary. Numery punktów to też istotna sprawa, bo pozwalają na identyfikację i późniejsze wykorzystywanie w różnych projektach. Uśrednione długości linii też dostarczają nam info o odległościach. Niemniej jednak, rzędne i odcięte do szczegółów sytuacyjnych są informacjami, które nie powinny się tam znaleźć, bo robią zamieszanie i mogą być zbędne w kontekście podstawowych pomiarów. Zbyt duża ilość detali może prowadzić do nieporozumień i utrudniać późniejsze analizy, więc ważne jest, żeby każdy dokument był jasny i funkcjonalny.

Pytanie 2

Który z wymienionych dokumentów nie należy do operatu technicznego przekazywanego do Państwowego Zasobu Geodezyjnego i Kartograficznego?

A. Dziennik pomiarowy
B. Sprawozdanie techniczne
C. Certyfikat rektyfikacji sprzętu geodezyjnego
D. Opis topograficzny punktu osnowy pomiarowej
Certyfikat rektyfikacji sprzętu geodezyjnego nie jest dokumentem, który należy przekazać do Państwowego Zasobu Geodezyjnego i Kartograficznego (PZGiK) w ramach operatu technicznego. Operat techniczny jest zbiorem dokumentów, które potwierdzają wykonanie prac geodezyjnych i składają się z elementów takich jak dziennik pomiarowy, sprawozdanie techniczne oraz opis topograficzny punktu osnowy pomiarowej. Certyfikat rektyfikacji dotyczy jedynie stanu oraz kalibracji sprzętu geodezyjnego i jest istotny w kontekście zapewnienia jakości pomiarów, jednak nie stanowi elementu operatu. W praktyce, operat techniczny jest kluczowy dla weryfikacji i archiwizacji danych geodezyjnych, co jest niezbędne dla utrzymania standardów w branży. Zgodnie z przepisami prawa, dokumentacja ta musi być starannie przygotowana, aby zapewnić jej zgodność z obowiązującymi normami. Dobrą praktyką jest regularne przeglądanie i aktualizowanie procedur dotyczących dokumentacji operatów technicznych, co przyczynia się do lepszej organizacji pracy geodetów i podnosi jakość świadczonych usług.

Pytanie 3

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 5000
B. 1 : 1000
C. 1 : 500
D. 1 : 2000
Mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych nie są sporządzane w skali 1 : 2000, 1 : 500 ani 1 : 5000, ponieważ każda z tych skal nie odpowiada wymaganiom dokładności, jakie stawiane są tego typu dokumentacji. Skala 1 : 2000 jest zbyt mało szczegółowa dla obszarów, gdzie konieczna jest dokładna analiza urbanistyczna. Przykładowo, przy takiej skali, każdy centymetr na mapie odpowiada 20 metrów w rzeczywistości, co czyni mapę niepraktyczną do zadań takich jak planowanie nowych budynków czy infrastruktury. Z kolei skala 1 : 500 jest zbyt dużą szczegółowością dla mapy zasadniczej, co może prowadzić do nieprzydatności w codziennym użytkowaniu, ponieważ w takich przypadkach trudne staje się obejmowanie szerszych obszarów. Natomiast skala 1 : 5000, chociaż w niektórych sytuacjach może być użyteczna dla bardziej ogólnych analiz, nie dostarcza wystarczającej dokładności niezbędnej dla lokalnych planów zagospodarowania przestrzennego. Niezrozumienie zasadności doboru skali w kontekście potrzeby szczegółowości w dokumentacji przestrzennej prowadzi do powszechnych błędów w interpretacji danych geograficznych i urbanistycznych. W praktyce, wybór odpowiedniej skali powinien być oparty na analizie potrzeb użytkowych oraz zagadnień związanych z planowaniem przestrzennym, co pozwala zoptymalizować wykorzystanie przestrzeni oraz inwestycji.

Pytanie 4

Jakie jest pole powierzchni kwadratowej działki na mapie w skali 1:2000, jeżeli na mapie w skali 1:500 wynosi ono 4,00 cm2?

A. 10 mm2
B. 25 mm2
C. 50 mm2
D. 5 mm2
Błędy w obliczaniach polegają głównie na niedokładnym zrozumieniu, jak skala wpływa na pole powierzchni. Wiele osób może mylnie sądzić, że zmiana skali przelicza się w sposób liniowy, co prowadzi do mylnego założenia, że pole powierzchni również zmienia się liniowo. W rzeczywistości, zmiana skali ma charakter kwadratowy. Przykładowo, jeśli osoba oblicza pole na nowej skali bez uwzględnienia przeliczenia na mm², mogłoby to prowadzić do błędnych wyników, takich jak 5 mm² czy 10 mm², które nie uwzględniają rzeczywistej różnicy w skali. Ponadto, osoby mogą zapominać o przeliczeniu jednostek, co skutkuje niepoprawnym oszacowaniem powierzchni. Każdy projektant map czy inżynier musi być świadomy tych zasad, aby unikać poważnych błędów w dokumentacji i projektowaniu, które mogą prowadzić do niezgodności w danych. Precyzyjność w obliczeniach powierzchni jest kluczowa dla zapewnienia zgodności z normami branżowymi oraz dla poprawnego wykonania projektów w budownictwie czy urbanistyce. Zrozumienie, jak skala wpływa na pomiary, jest fundamentalnym aspektem dla profesjonalistów zajmujących się geodezją i kartografią.

Pytanie 5

Aby zmierzyć szczegóły sytuacyjne metodą ortogonalną, geodeta ustawił linię pomiarową AB, którą zmierzył ruletką pięć razy. Jeśli otrzymał następujące wyniki: 160,10 m; 160,12 m; 180,12 m; 160,11 m; 160,13 m, to długość boku AB jest obarczona błędem

A. systematycznym
B. pozornym
C. grubym
D. przypadkowym
Błędy przypadkowe są wynikiem nieprzewidywalnych fluktuacji, które mogą występować podczas pomiaru. W przypadku pomiaru długości boku AB, różnice w danych mogą wynikać z różnych czynników, takich jak zmiana warunków atmosferycznych, błędy w odczycie lub niewielkie różnice w technice pomiarowej. Choć błędy przypadkowe mogą wpływać na wyniki, nie są one odpowiednie do opisu zaobserwowanego problemu, ponieważ nie ma informacji wskazujących na ich losowy charakter. Błędne jest również sugerowanie, że pomiar mógłby być obarczony błędem systematycznym, który odnosi się do regularnych, powtarzalnych błędów, takich jak te wynikające z niedoskonałości narzędzi pomiarowych. W analizowanym przypadku błąd grubym oznacza istotną anomalię, podczas gdy błędy systematyczne mają tendencję do generowania podobnych wyników w całym pomiarze. Odpowiedzi dotyczące błędu pozornego są także nieprawidłowe, ponieważ błędy pozorne są związane z niewłaściwą interpretacją wyników, a nie z samymi pomiarami. Wnioskując, błędy myślowe wynikają z niepełnego zrozumienia różnicy między rodzajami błędów oraz ich wpływem na wiarygodność pomiarów. Dobrze zrozumiane rodzaje błędów są kluczowe dla prawidłowego przeprowadzania pomiarów geodezyjnych oraz zapewnienia ich precyzji.

Pytanie 6

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:1 000
B. 1:10 000
C. 1:500
D. 1:5 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 7

Jakim symbolem oznaczane są rury kanalizacyjne sanitarne na mapach zasadniczych?

A. ks
B. kp
C. ko
D. kd
Odpowiedź "ks" jest poprawna, ponieważ w systemach oznaczeń stosowanych na mapach zasadniczych przewody kanalizacyjne sanitarne są właśnie oznaczane tym symbolem. Oznaczenie to jest zgodne z obowiązującymi normami, które zapewniają jednolitość w interpretacji danych na mapach. W praktyce, wiedza na temat symboli wykorzystywanych do oznaczania różnych rodzajów przewodów jest kluczowa dla inżynierów budowlanych, architektów oraz projektantów instalacji sanitarnych, ponieważ pozwala na prawidłowe planowanie i wykonawstwo. Właściwe oznaczenie kanałów sanitarnych ma również znaczenie w kontekście późniejszego serwisowania i konserwacji systemów odwadniających budynków, co jest normą w dobrych praktykach budowlanych. Na przykład, w przypadku awarii lub potrzeby modernizacji, zrozumienie systemu oznaczeń pozwala na szybszą lokalizację i identyfikację poszczególnych elementów instalacji, co znacząco przyspiesza czas reakcji i zmniejsza koszty napraw. Ponadto, znajomość obowiązujących standardów, takich jak PN-EN 12056 dotyczących systemów odprowadzania wód, podkreśla wagę poprawnego stosowania symboliki na mapach zasadniczych, co jest niezbędne do zapewnienia bezpieczeństwa i funkcjonalności infrastruktury sanitarnej.

Pytanie 8

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:500
B. 1:1000
C. 1:2000
D. 1:5000
Odpowiedź 1:2000 jest prawidłowa, ponieważ opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu wymaga szczegółowego przedstawienia lokalizacji, granic i charakterystyki terenu. Skala 1:2000 pozwala na dokładne przedstawienie elementów urbanistycznych, takich jak ulice, budynki oraz infrastruktura techniczna. W praktyce, mapy w tej skali stosowane są do projektowania i planowania przestrzennego, co jest kluczowe w kontekście uchwał planistycznych i decyzji administracyjnych. W standardach branżowych, takich jak normy dotyczące geodezji i kartografii, podkreśla się znaczenie precyzyjnych odwzorowań w przypadkach intensywnej zabudowy. Przykładem zastosowania może być przygotowanie dokumentacji do wydania pozwolenia na budowę, gdzie konieczne jest uwzględnienie wszystkich detali infrastrukturalnych i istniejących obiektów, co jest możliwe tylko w takiej skali.

Pytanie 9

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. palik drewniany
B. bolec żelazny
C. słup granitowy
D. słup betonowy
Bolec żelazny jest właściwym rozwiązaniem do oznakowania położenia punktów sytuacyjnej osnowy pomiarowej na utwardzonych nawierzchniach jezdni i chodników z kilku istotnych powodów. Przede wszystkim, jego solidna konstrukcja zapewnia trwałość oraz stabilność, co jest kluczowe w kontekście długotrwałych pomiarów geodezyjnych. Dzięki swojej metalowej formie, bolec żelazny jest odporny na warunki atmosferyczne oraz uszkodzenia mechaniczne, co czyni go idealnym narzędziem w terenie. Przykładowo, w praktyce geodezyjnej, bolece żelazne są często stosowane do wyznaczania punktów kontrolnych, które są niezbędne podczas budowy dróg oraz innych obiektów infrastrukturalnych. Zgodnie z zasadami dobrych praktyk, zaleca się, aby punkty te były dobrze widoczne i łatwo dostępne, co w przypadku bolców żelaznych jest zapewnione poprzez ich odpowiednią wysokość i umiejscowienie. Dodatkowo, ich instalacja nie wymaga skomplikowanych procedur, co przyspiesza proces oznakowania i umożliwia szybkie przystąpienie do dalszych prac pomiarowych.

Pytanie 10

Mapa zasadnicza to rodzaj map

A. fizjologicznych
B. sozologicznych
C. społecznych
D. gospodarczych
Mapa zasadnicza to, krótko mówiąc, bardzo ważny element, jak chodzi o systemy informacji geograficznej. Jest to mapa, która pokazuje najistotniejsze cechy terenu, takie jak granice administracyjne, różne rodzaje dróg czy nawet ukształtowanie powierzchni. Moim zdaniem, to niesamowite, jak wiele zastosowań ma ta mapa. Od planowania miast po rolnictwo – wszędzie się przydaje. Dla inwestycji infrastrukturalnych to wręcz niezbędne narzędzie, bo pomaga zrozumieć, gdzie i jakie tereny są dostępne. Warto też wiedzieć, że takie standardy jak ISO 19101 i wytyczne GUGIK podkreślają znaczenie map zasadniczych. One są jak fundament dla innych, bardziej szczegółowych map. Bez nich trudno by było mówić o jakiejkolwiek mapie w kontekście gospodarczym.

Pytanie 11

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno być ustawione lustro lub łata
B. powinien znajdować się obserwator
C. powinien być pomiarowy
D. powinno znajdować się stanowisko instrumentu
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 12

Na rysunku osnowy pomiarowej nie należy zamieszczać

A. wyrównanych kątów poziomych
B. uśrednionych długości linii pomiarowych
C. numerów punktów osnowy
D. rzędnych oraz odciętych dotyczących szczegółów sytuacyjnych
Odpowiedź wskazująca na brak umieszczania rzędnych i odciętych do szczegółów sytuacyjnych na szkicu pomiarowej osnowy sytuacyjnej jest prawidłowa. Szkic osnowy sytuacyjnej ma na celu przedstawienie relacji pomiędzy punktami geodezyjnymi, ich numerami oraz geometrią układu, a nie szczegółów dotyczących elewacji czy innych informacji topograficznych. Umieszczanie rzędnych i odciętych na takim szkicu mogłoby prowadzić do zamieszania i nieczytelności, ponieważ podstawowym celem jest ukazanie układu punktów w płaszczyźnie poziomej. W praktyce, taki szkic powinien być bezpośrednim odzwierciedleniem wyników pomiarów, co wymaga skupienia się na podstawowych informacjach, takich jak długości linii pomiarowych czy wyrównane wartości kątów. Stosowanie się do tej zasady jest zgodne z normami geodezyjnymi, co zapewnia klarowność i spójność dokumentacji geodezyjnej. W praktyce, w przypadku prowadzenia pomiarów sytuacyjnych, geodeci często tworzą osobne rysunki lub wykresy, w których przedstawiają rzędne, co pozwala na precyzyjne odwzorowanie terenu i szczegółów topograficznych.

Pytanie 13

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. teleinformatycznego
B. informacyjnego
C. komunikacyjnego
D. ewidencyjnego
Wybór ewidencyjnego systemu w kontekście pozyskiwania i przechowywania materiałów geodezyjnych nie uwzględnia pełnej funkcjonalności, jaką zapewnia system teleinformatyczny. Systemy ewidencyjne skupiają się głównie na rejestrowaniu danych oraz ich formalnej dokumentacji, co nie pokrywa się z wymaganiami dynamicznego przetwarzania i udostępniania informacji. Użytkownicy mogą mylnie sądzić, że ewidencja wystarczy do zarządzania danymi, nie dostrzegając rosnącej potrzeby szybkiego dostępu do tych informacji oraz ich analizy w kontekście przestrzennym. Wykorzystanie systemu informacyjnego również nie spełni wszystkich wymagań, gdyż koncentruje się na przechowywaniu danych, a nie na integracji z różnymi źródłami informacji i interakcji użytkownika z danymi na poziomie GIS. Z kolei systemy komunikacyjne, jakkolwiek istotne w wymianie danych, nie zapewniają niezbędnych funkcji do zabezpieczania i zarządzania złożonymi zbiorami danych geodezyjnych. W praktyce, brak odpowiednich technologii teleinformatycznych prowadzi do nieefektywnego zarządzania zasobami, utrudniając dostęp do informacji oraz ich analizę przez zainteresowane strony. Rozumienie tych różnic jest kluczowe dla wdrożenia właściwych rozwiązań w obrębie geodezji i kartografii, co podkreślają liczne standardy branżowe oraz wytyczne dotyczące zarządzania danymi przestrzennymi.

Pytanie 14

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. topograficznej
B. klasyfikacyjnej
C. zasadniczej
D. sozologicznej
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 15

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0030 mm
B. 1300 mm
C. 0300 mm
D. 3000 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 16

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.
B. Podczas pomiaru różnic wysokości między punktami.
C. Podczas wyznaczania kierunków magnetycznych w terenie.
D. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
Niwelacja geometryczna to jedna z podstawowych metod pomiarowych w geodezji, używana do określania różnic wysokości pomiędzy punktami terenu. Jej główną cechą jest wykorzystanie poziomej linii celowania, co pozwala na bezpośrednie odczytywanie różnic wysokości. W praktyce geodezyjnej niwelacja geometryczna jest stosowana w wielu sytuacjach, takich jak projektowanie dróg, mostów, czy budowli, gdzie precyzyjne dane wysokościowe są kluczowe. Proces ten polega na ustawieniu niwelatora na statywie i wykonywaniu odczytów na łatach niwelacyjnych umieszczonych na określonych punktach. Dzięki niemu można uzyskać bardzo dokładne pomiary, co jest niezbędne w wielu projektach inżynieryjnych. Niwelacja geometryczna jest preferowaną metodą w przypadku konieczności uzyskania wysokiej precyzji w krótkim dystansie. Metoda ta jest zgodna z międzynarodowymi standardami geodezyjnymi i uznawana za jedną z najdokładniejszych dostępnych metod pomiarowych. Dlatego jej zastosowanie w pomiarach różnic wysokości jest nie tylko praktyczne, ale i zgodne z najlepszymi praktykami branżowymi.

Pytanie 17

Zbiór punktów o współrzędnych X, Y ustalonych w sieciach geodezyjnych o najwyższej precyzji określamy mianem osnowy

A. pomiarową
B. dokładną
C. niwelacyjną
D. podstawową
Zrozumienie pojęcia osnowy geodezyjnej jest kluczowe dla prawidłowego podejścia do zagadnień pomiarowych. Wybór nieadekwatnych terminów, takich jak osnowa szczegółowa, niwelacyjna, czy pomiarowa, może prowadzić do istotnych nieporozumień. Osnowa szczegółowa odnosi się do lokalnych układów współrzędnych, które są wykorzystywane w bardziej precyzyjnych pomiarach, ale nie mają tego samego znaczenia co osnowa podstawowa. Osnowa niwelacyjna dotyczy pomiarów wysokości, bazując na poziomach referencyjnych, co jest zaledwie jednym z aspektów geodezji, a nie całościowym podejściem do układu współrzędnych. W kontekście osnowy pomiarowej, jest to termin ogólny, który nie odnosi się do specyficznych, precyzyjnych punktów, jak ma to miejsce w przypadku osnowy podstawowej. Typowe błędy myślowe polegają na myleniu tych pojęć i przypisywaniu im rangi, której nie powinny mieć, co może skutkować poważnymi konsekwencjami w zakresie jakości i dokładności pomiarów. W praktyce, niezrozumienie różnic pomiędzy tymi rodzajami osnowy może prowadzić do błędów w projektowaniu i wykonaniu prac geodezyjnych, co z kolei wpływa na dalsze procesy inżynieryjne oraz planistyczne.

Pytanie 18

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. katastralnego
B. pomiarowego
C. szacunkowego
D. technicznego
Wybór odpowiedzi związanych z operatami katastralnymi, pomiarowymi czy szacunkowymi jest błędny, ponieważ nie odzwierciedla istoty dokumentacji geodezyjnej przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego. Operat katastralny dotyczy głównie ewidencji gruntów i budynków, a jego zadaniem jest zapewnienie danych o stanie prawnym i własnościowym nieruchomości, co odstaje od kontekstu pomiarów geodezyjnych. Z kolei operat pomiarowy zazwyczaj odnosi się do dokumentacji samych pomiarów, nie zaś do ich kompleksowego opracowania, co jest niezbędne do pełnego zrozumienia i interpretacji danych. Operat szacunkowy, natomiast, dotyczy wyceny nieruchomości i jest stosowany w kontekście oceny wartości majątkowej, co również nie ma bezpośredniego związku z geodezyjnymi pomiarami terenowymi i ich analizą. Typowym błędem myślowym jest mylenie różnych rodzajów dokumentacji geodezyjnej, co może prowadzić do nieporozumień w rozumieniu ich funkcji i zastosowania. Dlatego kluczowe jest zrozumienie, że operat techniczny jest jedynym odpowiednim dokumentem, który w pełni odzwierciedla rezultaty pomiarów oraz ich analizę, stanowiąc tym samym fundament dla dalszych działań w obszarze geodezji.

Pytanie 19

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 217,00 m
B. 213,00 m
C. 211,00 m
D. 215,00 m
Wybór 211,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu jest właściwą decyzją, gdyż jest to wartość, która pozwala na uzyskanie stabilnej bazy odniesienia dla analizy wysokości punktów. W pomiarach niwelacyjnych, istotne jest, aby wybrać poziom, który odzwierciedla najniższy z punktów w badanym obszarze. W tym przypadku, 211,00 m jest wartością poniżej wszystkich zarejestrowanych wysokości punktów, co umożliwia łatwe odczytywanie różnic wysokości. Przykładowo, jeśli będziemy porównywać wysokości punktów 1-6 w kontekście ich lokalizacji na profilu, odniesienie do 211,00 m będzie sprzyjać większej przejrzystości analiz i wizualizacji. W praktyce, wybór takiego poziomu porównawczego jest zgodny z zasadą, że wszelkie wymiary i różnice powinny być przedstawiane względem wspólnej, stabilnej bazy, co jest kluczowe w inżynierii lądowej i geodezji. Dodatkowo, zapewnia to zgodność z normami branżowymi dotyczącymi precyzyjnych pomiarów i analiz terenowych, co wpływa na efektywność dalszych prac projektowych.

Pytanie 20

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. trygonometrycznej
B. hydrostatycznej
C. punktów rozproszonych
D. siatkowej
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 21

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ks20
B. ksB20
C. ksP200
D. ks200
Odpowiedź ks200 jest jak najbardziej trafna. Tutaj literka 'k' oznacza, że mówimy o przewodach kanalizacyjnych, a 's' wskazuje na ich rodzaj, czyli sanitarny. Liczba '200' to nic innego jak średnica przewodu podana w milimetrach, co oznacza, że mamy do czynienia z przewodem o średnicy 20 cm. Moim zdaniem, takie oznaczenia są super ważne, bo inżynierowie muszą mieć jasność, jak rozróżnić różne rodzaje przewodów w kanalizacji. Dzięki temu możemy lepiej zaprojektować i zrealizować instalacje. Odpowiednie oznaczenie przewodów jest kluczowe, żeby wszystko działało jak należy i było zgodne z normami budowlanymi. Fajnie, że mamy ustalone konwencje, bo to podnosi jakość projektów i ułatwia późniejszą konserwację.

Pytanie 22

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 0,5%
B. iAB = 5%
C. iAB = 10%
D. iAB = 1%
Prawidłowa odpowiedź to iAB = 1%. Aby obliczyć pochylenie linii łączącej dwa punkty A i B na podstawie odległości międzywarstwicowej oraz różnicy wysokości, stosujemy wzór na pochylenie, które wyraża się jako stosunek różnicy wysokości do poziomej odległości między punktami. W tym przypadku różnica wysokości wynosi 0,5 m, a pozioma odległość wynosi 50 m. Zatem pochylenie wyliczamy według wzoru: iAB = (wysokość / odległość) * 100%. Czyli: iAB = (0,5 m / 50 m) * 100% = 1%. Pochylenie to istotny parametr w geodezji, inżynierii lądowej oraz w planowaniu przestrzennym, ponieważ wpływa na projektowanie dróg, infrastruktury oraz systemów odwodnienia. Przykład praktycznego zastosowania można znaleźć w projektowaniu dróg, gdzie odpowiednie pochylenie zapewnia bezpieczną jazdę i efektywne odprowadzanie wody opadowej. Ponadto, znajomość pochylenia warstwic jest kluczowa w ocenie stabilności gruntów i w budownictwie. W kontekście standardów, pochylenia powinny być zgodne z wytycznymi zawartymi w normach geodezyjnych oraz budowlanych.

Pytanie 23

Jaki jest błąd wartości wyrównanej, jeśli kąt poziomy został zmierzony 4 razy, a średni błąd pojedynczego pomiaru kąta wynosi ±10cc?

A. M = ±4cc
B. M = ±2cc
C. M = ±3cc
D. M = ±5cc
Odpowiedzi, które proponują inne wartości błędu wartości wyrównanej, nie uwzględniają kluczowego aspektu, jakim jest liczba pomiarów. W przypadku pomiarów kątów, zasada redukcji błędów przy wielokrotnym pomiarze jest właściwie stosowana zgodnie z regułą statystyczną, która mówi, że z każdym dodatkowym pomiarem poprawiamy dokładność wyniku. Kiedy ktoś wybiera błąd równy ±2cc, ±3cc lub ±4cc, błędnie interpretuje wpływ powtórzeń na zmniejszenie niepewności pomiarowej. To prowadzi do niedoszacowania rzeczywistego błędu, co jest typowym błędem zarówno w zrozumieniu parametrów pomiarowych, jak i w ich zastosowaniach praktycznych. Warto zwrócić uwagę, że błąd pomiaru nie jest liniowy, a jego redukcja w przypadku powtórzeń jest opisana twierdzeniem o niepewności pomiarowej. W praktyce, poprawne podejście do obliczania błędów pomiarowych ma ogromne znaczenie podczas analizy danych, szczególnie w kontekście zapewnienia jakości i rzetelności wyników w inżynierii i naukach przyrodniczych. Zastosowanie błędnych wartości błędów może prowadzić do niewłaściwych decyzji projektowych oraz wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 24

Jak powinny zostać zapisane na szkicu tyczenia wyniki pomiarów kontrolnych?

A. Kolorem czerwonym, kursywą
B. Kolorem czerwonym, w nawiasie
C. Kolorem czarnym, w nawiasie
D. Kolorem czarnym, kursywą
Wpisywanie wyników pomiarów kontrolnych kolorem czerwonym, w nawiasie lub kursywą, może wydawać się atrakcyjną alternatywą, jednakże takie podejście wprowadza zamieszanie i niezgodność z ustalonymi standardami. Kolor czerwony często stosowany jest w dokumentacji technicznej do oznaczania błędów, problemów lub uwag, co może prowadzić do mylnego odczytu informacji. Użycie kursywy również nie jest zalecane, ponieważ może utrudniać czytelność, zwłaszcza w kontekście precyzyjnych danych pomiarowych, gdzie każdy szczegół ma znaczenie. W dokumentacji technicznej kluczowe jest, aby wszystkie informacje były jasne i zrozumiałe dla innych użytkowników, dlatego zaleca się stosowanie jednolitych i uznawanych konwencji. W praktyce, brak stosowania odpowiednich kolorów i formatowania może prowadzić do błędnych interpretacji wyników, co w geodezji ma poważne konsekwencje, takie jak błędne przyjęcia w procesach projektowych. Warto zwrócić uwagę na standardy ISO oraz lokalne regulacje prawne dotyczące dokumentacji geodezyjnej, które podkreślają znaczenie przejrzystości i spójności w prezentacji danych.

Pytanie 25

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Sygnał drogowy.
B. Ogrodzenie stałe.
C. Przyłącze wodociągowe
D. Plac zabaw.
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 26

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 300g
B. 200g
C. 400g
D. 100g
W przypadku błędnych odpowiedzi należy zwrócić uwagę na istotne aspekty związane z obliczaniem azymutów. Odpowiedzi takie jak 200g, 300g czy 400g nie uwzględniają faktu, że różnice współrzędnych wskazują na bezpośredni ruch w górę wzdłuż osi y, bez zmiany wartości na osi x. Typowym błędem myślowym jest założenie, że niezerowa wartość na osi y automatycznie implikuje, że azymut boku AB musi być większy niż 100g. Oczywiście, w rzeczywistości, azymut jest mierzony od kierunku północnego, a w przypadku, gdy różnica w osi x wynosi 0, cały kierunek wektora ruchu wskazuje na północny wschód. Ważne jest, aby pamiętać, że azymut nie może przekraczać wartości 400g, co byłoby błędnym założeniem w kontekście tego pytania. Zrozumienie zasadniczych koncepcji geometrii analitycznej oraz ich zastosowania w systemach współrzędnych jest kluczowe dla poprawnego obliczania azymutów. Poprawne metody obliczeniowe oraz umiejętność interpretacji wyników są niezbędne w geodezji i inżynierii, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla sukcesu projektów budowlanych oraz infrastruktur.

Pytanie 27

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem 2s = g + d, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 1,7 m
B. s = 1,9 m
C. s = 2,0 m
D. s = 1,8 m
Odpowiedź s = 1,9 m jest poprawna i wynika z zastosowania wzoru 2s = g + d, gdzie g to odczyt z łaty kreski górnej, a d to odczyt z łaty kreski dolnej. W tym przypadku mamy g = 2200 mm i d = 1600 mm. Podstawiając te wartości do wzoru, otrzymujemy: 2s = 2200 mm + 1600 mm, co daje 2s = 3800 mm. Dzieląc przez 2, uzyskujemy s = 1900 mm, co po przeliczeniu na metry daje 1,9 m. Takie obliczenia są kluczowe w tachimetrii, gdzie precyzyjne pomiary wysokości są niezbędne do określenia różnic terenu oraz do tworzenia dokładnych modeli topograficznych. Zastosowanie tego wzoru jest szerokie, od prac inżynieryjnych po geodezję, gdzie precyzja jest kluczowa dla sukcesu projektów budowlanych i infrastrukturalnych. Dobre praktyki w tej dziedzinie wymagają również odpowiedniej kalibracji sprzętu oraz uwzględnienia czynników atmosferycznych, które mogą wpływać na pomiary.

Pytanie 28

W przypadku wykonania pomiaru niwelacyjnego, jeżeli wartość odczytu z łaty niwelacyjnej kreską górną wynosi g = 2000 mm, a kreską dolną d = 1500 mm, to odczyt z łaty kreską środkową powinien być równy

A. s = 1500 mm
B. s = 1250 mm
C. s = 1750 mm
D. s = 2000 mm
Aby obliczyć wartość odczytu z łaty niwelacyjnej kreską środkową, należy skorzystać z zasady, że odczyt kreską środkową jest średnią arytmetyczną odczytów kreską górną i dolną. W tym przypadku mamy odczyt górny g = 2000 mm oraz odczyt dolny d = 1500 mm. Możemy zatem obliczyć s jako: s = (g + d) / 2 = (2000 mm + 1500 mm) / 2 = 1750 mm. Taki sposób obliczania odczytów jest standardową praktyką w pomiarach niwelacyjnych, ponieważ pozwala na uzyskanie precyzyjnych wyników poprzez eliminację błędów związanych z odczytem z jednego punktu. W praktyce stosowane są różne metody niwelacji, a dobrym przykładem są pomiary geodezyjne, w których precyzja i dokładność są kluczowe. Dzięki temu można zapewnić rzetelność danych, co jest istotne w inżynierii budowlanej czy topografii. Poprawne interpretowanie odczytów z łaty jest więc nie tylko zadaniem teoretycznym, ale także praktycznym, wymagającym znajomości zasad niwelacji i umiejętności ich zastosowania w rzeczywistych pomiarach.

Pytanie 29

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 1,0 cm2
B. 0,1 cm2
C. 100,0 cm2
D. 10,0 cm2
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 30

Długości krawędzi działki w formie kwadratu zmierzono z takim samym błędem ±3 cm. Jaki jest błąd obliczenia powierzchni działki, jeśli długość krawędzi wynosi 100 m?

A. ±60 m2
B. ±30 m2
C. ±6 m2
D. ±3 m2
Inne odpowiedzi, które nie są poprawne, wynikają z nieporozumienia w zrozumieniu, jak błędy pomiarowe wpływają na obliczenia pól powierzchni. Wiele osób może pomyśleć, że błąd w pomiarze długości boku można po prostu dodać do obliczonego pola, co prowadzi do błędnych wniosków. Na przykład, odpowiedź ±3 m² ignoruje zasadę, że błąd pomiarowy w funkcji kwadratowej nie jest równy błędowi pomiarowemu w długości. Dodatkowo, odpowiedzi takie jak ±30 m² oraz ±60 m² mogą wynikać z błędnego zastosowania wzorów lub rozumienia związku między długością a polem. W przypadku kwadratu, wzrost długości boku prowadzi do znacznie większego wzrostu pola, co jest ilustrowane przez fakt, że pole jest proporcjonalne do kwadratu długości boku. Inżynierowie oraz profesjonaliści w dziedzinie budownictwa muszą być świadomi, że błędy pomiarowe mogą się kumulować, a praktyka wskazuje, że odpowiednie metody obliczania błędów są kluczowe w procesie projektowania. Prawidłowe podejście do analizy błędów i ich propagacji jest niezbędne, aby uniknąć niekorzystnych skutków w realizacji projektów budowlanych.

Pytanie 31

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2472 m
B. 2427 m
C. 2742 m
D. 2724 m
Punkt na profilu podłużnym zapisany jako 2/4+27 oznacza, że znajduje się on 2427 metrów od początku trasy. Taki zapis jest standardem w dokumentacji inżynieryjnej i geodezyjnej, gdzie '2' to numer odcinka trasy, '4' to numer kilometra, a '+27' to dodatkowe metry. Zrozumienie tego formatu jest kluczowe w pracach związanych z projektowaniem infrastruktury drogowej oraz kolejowej. Na przykład, gdy inżynierowie planują prace remontowe, muszą precyzyjnie określić lokalizację, aby uniknąć błędów i zapewnić bezpieczeństwo. W praktyce, takie zapisy pomagają w identyfikacji miejsc, w których potrzebne są interwencje, a także w komunikacji między różnymi zespołami roboczymi. Dobre praktyki branżowe zalecają stosowanie jednoznacznego systemu numeracji, co ułatwia lokalizację punktów kontrolnych i zarządzanie projektem. Warto również zwrócić uwagę na znaczenie precyzyjnych zapisów w kontekście zarządzania projektem, co pozwala na dokładne planowanie zasobów i terminów realizacji zadań.

Pytanie 32

Który południk jest osiowym w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-2000?

A. 22°
B. 24°
C. 25°
D. 23°
Wybierając odpowiedzi 25°, 23° lub 22°, można wpaść w pułapkę pomylenia pojęcia południka osiowego z innymi aspektami układu współrzędnych. Południki te nie są przypadkowe i mają swoje konkretne umiejscowienie w kontekście odwzorowania Gaussa-Krugera. W przypadku układu PL-2000, południki te są precyzyjnie wyznaczone, aby zminimalizować zniekształcenia podczas przekształcania danych geograficznych na współrzędne prostokątne. Wybierając 25°, można założyć, że jest to bardziej na zachód, co może wprowadzać w błąd, ponieważ w rzeczywistości ten południk nie jest centralnym południkiem dla omawianego odwzorowania. Odpowiedź 23° i 22° również nie są prawidłowe dla obszaru Polski. Zasadniczo, każdy z tych błędnych wyborów może wynikać z nieporozumień dotyczących regionalnych układów odniesienia i ich zastosowania w praktyce geodezyjnej. Odpowiedzi te wskazują na typowe błędy myślowe, takie jak zakładanie, że każdy południk reprezentuje równą wartość dla regionalnego odwzorowania, co jest mylne. W rzeczywistości, kluczowe jest zrozumienie koncepcji południka osiowego oraz jego wpływu na dokładność i efektywność odwzorowania, co jest podstawą skutecznego planowania przestrzennego i geodezyjnego.

Pytanie 33

Na precyzję pomiarów niwelacyjnych nie wpływa

A. wyważenie łat niwelacyjnych
B. kolejność dokonywanych pomiarów
C. odległość między niwelatorem a łatami
D. poziomowanie libelli niwelacyjnej
Kolejność wykonywanych odczytów w niwelacji nie ma wpływu na dokładność pomiarów, ponieważ kluczowe są inne aspekty techniczne, takie jak poziomowanie i spionizowanie instrumentu oraz prawidłowe ustawienie łat. W praktyce niwelacyjnym, jeżeli wszystkie pomiary są wykonywane zgodnie z wymaganiami i standardami, to niezależnie od kolejności odczytów wynik końcowy będzie taki sam, pod warunkiem, że nie popełniono błędów w innych etapach procesu. Standardy takie jak PN-EN 17123-1:2018 określają procedury, które minimalizują błędy pomiarowe. Przykładowo, jeżeli niwelator jest starannie spoziomowany, a łatka jest poprawnie ustawiona w pionie, uzyskane wyniki będą wiarygodne niezależnie od tego, w jakiej kolejności zrealizujemy pomiary. To podejście może być stosowane w różnych projektach budowlanych i inżynieryjnych, co podkreśla znaczenie rzetelności technicznej nad subiektywną interpretacją kolejności działań.

Pytanie 34

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. niwelacji trygonometrycznej
B. niwelacji geometrycznej
C. biegunową
D. tachimetryczną
Przestrzenne wcięcie w przód to ważny element w metodzie niwelacji trygonometrycznej. Chodzi tu o wyznaczanie różnic wysokości pomiędzy różnymi punktami, a robimy to przez pomiar kątów i odległości. Ustawiając instrument w odpowiedni sposób, możemy uzyskać dokładniejsze pomiary. Eliminuje to błędy, które mogą wynikać z krzywizny ziemi czy refrakcji atmosferycznej. Można to zauważyć w projektach budowlanych, gdzie dokładne niwelacje są mega ważne, szczególnie przy ustalaniu poziomów fundamentów. Według norm geodezyjnych, takich jak ISO 17123, metody trygonometryczne mają duże znaczenie przy zbieraniu danych topograficznych, co potem ułatwia planowanie różnych inwestycji. Szczególnie w obszarach górzystych, gdzie inne metody mogą być mniej skuteczne, niwelacja trygonometryczna jest bardzo przydatna.

Pytanie 35

Który z obiektów należy do I grupy dokładnościowej detali terenowych?

A. Słup telekomunikacyjny
B. Rura wodociągowa
C. Plac sportowy
D. Skarpa bez umocnień
Przewód wodociągowy nie łapie się do I grupy dokładnościowej, bo jego miejsce może się zmieniać i często jest schowany pod ziemią, co utrudnia jego lokalizację. W porównaniu do słupów telekomunikacyjnych, które są stałe, przewody potrzebują dodatkowych informacji, żeby je znaleźć. Zresztą skarpy, jako coś naturalnego, też nie pasują do tej grupy, bo ich położenie zmienia się przez erozję czy działania ludzi. Boisko sportowe, choć jest widoczne, ma zbyt dużą powierzchnię i różne kształty, przez co nie spełnia wymogów precyzyjnej lokalizacji. Widać, że to mylne podejście do oceny obiektów w geodezji. Wiele osób myśli, że widoczne rzeczy są bardziej precyzyjne, co prowadzi do złych wniosków i problemów przy planowaniu w inżynierii oraz urbanistyce. Ważne jest, żeby rozumieć różnice w dokładności obiektów, bo to jest kluczowe dla dobrego zarządzania danymi przestrzennymi.

Pytanie 36

Topograficzny opis punktu osnowy pomiarowej nie zawiera

A. numeru punktu osnowy, który jest opisywany
B. skali przygotowania opisu
C. miar umożliwiających lokalizację znaku
D. nazwiska geodety, który sporządził opis
Zauważyłem, że w innych odpowiedziach były ważne rzeczy, które są potrzebne do dobrego opisu topograficznego punktu osnowy. Każdy punkt musi mieć swój numer identyfikacyjny, bo to dzięki niemu można go łatwo zlokalizować i znaleźć w terenie. To jest naprawdę kluczowe w geodezji. Oprócz tego, potrzebne są też miary, żeby określić, jak się dotrzeć do znaku - mogą to być odległości czy kierunki do pobliskich punktów. W trudnych warunkach terenowych jasne wskazanie lokalizacji jest mega ważne. No i nie zapominaj, że dobrze jest podać nazwisko geodety, który opisał ten punkt, bo to gwarantuje odpowiedzialność i rzetelność dokumentów. Powinno się sprawdzić każdy opis przez odpowiedzialnego geodetę. Takie podejście zapewnia, że wszystko jest zgodne z normami. Zrozumienie, jak te wszystkie elementy się do siebie odnoszą, jest ważne dla sprawnego działania systemu osnowy geodezyjnej oraz jakości danych pomiarowych.

Pytanie 37

Długości boków działki o kształcie kwadratu, którego powierzchnia wynosi 1 hektar, zmierzono z przeciętnym błędem ±0,10 m. Jaką wartość ma średni błąd w obliczaniu powierzchni tej działki?

A. ±200 m2
B. ±10 m2
C. ±100 m2
D. ±20 m2
Analiza błędów pomiarowych w kontekście wyznaczania powierzchni działki wymaga znajomości podstawowych zasad geometrii oraz matematyki stosowanej w inżynierii. Wybór błędnych odpowiedzi wynika najczęściej z nieprawidłowego zastosowania wzorów dotyczących obliczeń błędów. Na przykład, odpowiedź wskazująca na ±100 m² nie uwzględnia, że błąd w pomiarze długości nie przekłada się proporcjonalnie na błędy w obliczaniu powierzchni. Rozszerzając tę myśl, warto zauważyć, że błąd w jednej jednostce długości nie jest równy błędowi w jednostce powierzchni, ponieważ działka ma dwie wymiary – długość i szerokość. Inny typowy błąd to przyjęcie, że błąd obliczenia powierzchni można uzyskać przez dodanie błędów pomiarowych, co nie jest zgodne z zasadą propagacji błędów w przypadku funkcji nieliniowych, takich jak pole powierzchni. Również niepoprawne jest myślenie, że większy błąd pomiarowy długości boku automatycznie oznacza większy błąd powierzchniowy w sposób liniowy. W rzeczywistości zmiana długości boku wpływa na pole powierzchni w sposób kwadratowy. To zrozumienie jest kluczowe dla każdej osoby pracującej w branży geodezyjnej, architektonicznej czy budowlanej, gdzie precyzyjne pomiary mają kluczowe znaczenie dla sukcesu projektów.

Pytanie 38

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. rodzaje
B. klasy
C. grupy
D. kategorie
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 39

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Liczba osób przeprowadzających pomiar
B. Planowana skala mapy
C. Metoda realizacji rysunku polowego
D. Typ używanego sprzętu pomiarowego
Gęstość i rozmieszczenie pikiet w pomiarze wysokościowym terenu są ściśle związane z przewidywaną skalą mapy, która ma być rezultatem tego pomiaru. Skala mapy określa, jak szczegółowo mają być przedstawione dane na finalnym produkcie. Im mniejsza skala, tym mniej szczegółów musi być uwzględnionych, co może prowadzić do zmniejszenia gęstości pikiet. Z kolei przy większej skali, gdzie każdy detal terenu jest istotny, pikiety muszą być gęsiej rozmieszczone, aby uchwycić wszystkie istotne zmiany wysokości i ukształtowania terenu. Przykładowo, przy pomiarze terenu do małej skali, np. 1:50000, wystarczy mniej punktów pomiarowych, podczas gdy przy skali 1:5000 konieczne może być znacznie więcej pikiet, aby oddać wszystkie niuanse terenu. W praktyce, standardy takie jak ISO 19111 dotyczące geoinformacji podkreślają znaczenie odpowiedniego rozmieszczenia punktów pomiarowych w zależności od końcowego celu mapy, co jest kluczowe dla rzetelności i dokładności wyników pomiarów wysokościowych.

Pytanie 40

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 27g12c35cc
B. 127g12c35cc
C. 227g12c35cc
D. 527g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.