Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 30 maja 2025 16:38
  • Data zakończenia: 30 maja 2025 16:54

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Typowa wartość stopnia sprężania w silniku o zapłonie iskrowym to

A. od 20 do 26
B. od 14 do 20
C. od 8 do 14
D. od 26 do 32
Odpowiedź "od 8 do 14" jest prawidłowa, ponieważ przeciętny stopień sprężania w silnikach o zapłonie iskrowym, takich jak te stosowane w samochodach osobowych, oscyluje właśnie w tym zakresie. Wartości te są zgodne z normami branżowymi i praktykami inżynieryjnymi, które definiują optymalne parametry dla efektywności spalania oraz osiągów silników. Na przykład, silniki o stopniu sprężania w przedziale 9-11 są powszechnie stosowane w pojazdach osobowych, co pozwala na uzyskanie dobrych osiągów i oszczędności paliwa. Wyższe stopnie sprężania, choć umożliwiają większą moc, na ogół wymagają stosowania paliw o wyższej jakości, aby uniknąć wystąpienia spalania stukowego. Dobrą praktyką inżynieryjną jest również dostosowanie stopnia sprężania do konstrukcji silnika, co wpływa na jego trwałość oraz efektywność energetyczną. Dlatego znajomość tego zakresu jest kluczowa dla konstruktorów i mechaników zajmujących się projektowaniem oraz serwisowaniem silników. Warto również przytoczyć, że w silnikach sportowych stopnie sprężania mogą sięgać wartości od 10 do 14, co pozwala na uzyskanie wyższej mocy, ale wiąże się z większymi wymaganiami dotyczącymi paliwa i smarowania.

Pytanie 2

Niska moc hamowania pojazdu może wynikać z

A. zbyt dużych luzów w zawieszeniu
B. wycieku z cylinderka hamulcowego
C. braku wspomagania układu kierowniczego
D. zużycia łożysk kół
Odpowiedź dotycząca wycieku z cylinderka hamulcowego jako przyczyny niedostatecznej siły hamowania pojazdu jest poprawna. Cylinder hamulcowy jest kluczowym elementem układu hamulcowego, a jego uszkodzenia mogą prowadzić do znacznych strat ciśnienia płynu hamulcowego. W przypadku wycieku, ciśnienie generowane podczas naciśnięcia pedału hamulca nie jest wystarczające do skutecznego hamowania. Praktycznie oznacza to, że siła przenoszona na klocki hamulcowe jest zbyt niska, co może prowadzić do wydłużenia drogi hamowania lub całkowitej utraty możliwości hamowania. W celu zapewnienia sprawności układu hamulcowego, regularne inspekcje oraz wymiany płynów hamulcowych są niezbędne i powinny być realizowane zgodnie z zaleceniami producenta pojazdu oraz standardami branżowymi, takimi jak normy SAE. Przykładem dobrej praktyki jest okresowe sprawdzanie poziomu płynu hamulcowego oraz wizualna inspekcja cylinderków hamulcowych w celu wykrycia ewentualnych nieszczelności.

Pytanie 3

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Zbyt wysokie ciśnienie w oponach
B. Niski poziom oleju w silniku
C. Niedziałający wentylator chłodnicy
D. Uszkodzony alternator
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 4

Gdy zostanie wykryte uszkodzenie przegubu kulowego półosi napędowej, co należy zrobić?

A. zastosować napawanie
B. wymienić go na nowy
C. zastosować galwanizację
D. poddąć go nawęglaniu
Wymiana uszkodzonego przegubu kulowego półosi napędowej jest jedynym skutecznym rozwiązaniem w przypadku stwierdzenia jego uszkodzenia. Przegub kulowy jest kluczowym elementem układu napędowego, który zapewnia przenoszenie momentu obrotowego oraz umożliwia ruch w różnych płaszczyznach. Gdy przegub ulega uszkodzeniu, może to prowadzić do poważnych problemów, takich jak nadmierne zużycie innych podzespołów, uszkodzenie skrzyni biegów czy drgań podczas jazdy, co wpływa na bezpieczeństwo. Wymiana przegubu na nowy zapewnia, że wszystkie właściwości mechaniczne i materiale są zgodne z normami producenta, co przekłada się na długotrwałość i niezawodność pojazdu. W praktyce, wymiana przegubu kulowego powinna być przeprowadzana z zachowaniem standardów jakości, takich jak użycie oryginalnych części zamiennych oraz przestrzeganie procedur montażowych, aby zminimalizować ryzyko przyszłych awarii. Trzeba również zwrócić uwagę na regularne przeglądy i konserwację układu napędowego, aby wcześniej wychwycić ewentualne uszkodzenia.

Pytanie 5

Co oznacza symbol API GL-4?

A. oleju przekładniowego
B. płynu chłodzącego
C. płynu hamulcowego
D. oleju silnikowego
Symbol API GL-4 odnosi się do olejów przekładniowych, które są zaprojektowane do zastosowania w skrzyniach biegów manualnych, szczególnie w jednostkach wymagających olejów o wyższej wydajności. Standard ten zapewnia odpowiednie właściwości smarne, ochronę przed zużyciem oraz odporność na wysokie temperatury, co jest kluczowe dla prawidłowego funkcjonowania układu przekładniowego. Oleje oznaczone jako GL-4 są specyfikowane do zastosowań, gdzie występują wysokie obciążenia, a także do przekładni, w których nie jest wymagane stosowanie olejów o właściwościach EP (Extreme Pressure). Przykładem zastosowania olejów GL-4 są pojazdy wyposażone w manualne skrzynie biegów, które często nie wymagają olejów o wyższej klasie, takich jak GL-5, które są przeznaczone do bardziej obciążonych przekładni. Właściwy dobór oleju wpływa na efektywność pracy przekładni oraz wydłuża jej żywotność, co jest zgodne z zaleceniami producentów pojazdów oraz normami branżowymi, co czyni tę wiedzę istotną dla każdego użytkownika samochodu oraz specjalisty w dziedzinie motoryzacji.

Pytanie 6

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta pochylenia sworznia zwrotnicy
B. zbieżności całkowitej
C. pochylenia koła jezdnego
D. kąta wyprzedzenia sworznia zwrotnicy
Zauważyłem, że wspomniałeś o różnych parametrach związanych z układem jezdnym, ale nie wszystkie one są powiązane z tym, co mierzymy na płycie pomiarowej. Pochylenie koła to coś innego, chodzi głównie o kąt w stosunku do pionu, ale to nie to, co bezpośrednio sprawdzamy na płycie. Tak samo kąt wyprzedzenia czy kąt pochylenia sworznia zwrotnicy to ważne rzeczy, ale wymagają innych metod pomiarowych. Często ludzie mylą te różne parametry i potem mogą źle interpretować wyniki. Dobrze jest zrozumieć, czym różnią się te pojęcia, bo to pomoże lepiej zadbać o auto.

Pytanie 7

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. gęstości elektrolitu
B. objętości elektrolitu
C. masy elektrolitu
D. lepkości elektrolitu
Gęstość elektrolitu jest kluczowym wskaźnikiem stanu naładowania akumulatora, ponieważ zmienia się w zależności od stężenia kwasu siarkowego w roztworze. W miarę naładowania akumulatora gęstość elektrolitu wzrasta, co można zmierzyć za pomocą areometru. Przykładem praktycznego zastosowania tej metody jest regularne sprawdzanie stanu naładowania w akumulatorach kwasowo-ołowiowych, które są powszechnie stosowane w pojazdach. Zgodnie z normami branżowymi, takich jak SAE J537, pomiar gęstości elektrolitu powinien być przeprowadzany, aby zapewnić odpowiednią konserwację i zapobiec uszkodzeniom akumulatora. Wartości gęstości elektrolitu mogą również różnić się w zależności od temperatury, dlatego istotne jest, aby pomiary były wykonywane w warunkach znormalizowanej temperatury, co pozwala na dokładniejszą ocenę stanu naładowania. Znajomość i umiejętność interpretacji gęstości elektrolitu są niezbędne dla każdej osoby zajmującej się obsługą techniczną akumulatorów.

Pytanie 8

W współczesnych silnikach benzynowych stopień kompresji to mniej więcej

A. 1:6
B. 11:1
C. 6:1
D. 1:11
Stopień sprężania 11:1 w nowoczesnych silnikach benzynowych to teraz norma w motoryzacji. Dzięki temu silniki lepiej wykorzystują paliwo, co sprawia, że mają większą moc, a jednocześnie zużywają mniej paliwa. Wyższy stopień sprężania poprawia też spalanie mieszanki paliwowo-powietrznej, co wpływa na lepszą efektywność energetyczną. Można tu podać przykłady silników sportowych, które wykorzystują nowinki technologiczne, takie jak bezpośredni wtrysk paliwa czy zmienna geometria dolotu, żeby osiągnąć lepsze wyniki przy mniejszej emisji spalin. Warto pamiętać, że silniki z wyższym stopniem sprężania potrzebują paliwa o dużej liczbie oktanowej, co zapewnia stabilne spalanie i zmniejsza ryzyko detonacji. To naprawdę ważne, żeby przestrzegać tych zasad, bo pozwalają one na uzyskanie najlepszych rezultatów w motoryzacji.

Pytanie 9

Aby zamówić właściwe części do naprawy pojazdu,

A. należy dostarczyć uszkodzony element do porównania z zamiennikiem.
B. wystarczy podać rok produkcji pojazdu.
C. wystarczy podać jego markę oraz model.
D. wystarczy podać numer VIN.
Podanie numeru VIN (Vehicle Identification Number) jest kluczowe w procesie zamawiania części do pojazdu, ponieważ ten unikalny identyfikator zawiera wszystkie istotne informacje dotyczące konkretnego egzemplarza samochodu. Numery VIN składają się z 17 znaków, które obejmują m.in. informacje o marce, modelu, roku produkcji, miejscu produkcji oraz specyfikacji silnika. Dzięki temu, kiedy zamawiamy części, dostawcy mogą dokładnie zidentyfikować, które elementy będą odpowiednie do danego pojazdu, co pozwala zminimalizować ryzyko pomyłek i niezgodności. Przykładowo, dwa modele tego samego pojazdu mogą mieć różniące się specyfikacje, a użycie VIN zapewnia, że zamówione części będą idealnie pasować. W praktyce, stosowanie numeru VIN jest standardem w branży motoryzacyjnej, co z kolei wspiera procesy logistyczne i serwisowe, podnosząc efektywność obsługi klienta oraz zmniejszając koszty związane z błędnymi zamówieniami.

Pytanie 10

Biały kolor wskaźnika stanu naładowania (tzw. magicznego oka) akumulatora bezobsługowego sygnalizuje

A. uszkodzenie akumulatora
B. akumulator jest naładowany
C. za niski poziom elektrolitu
D. akumulator jest rozładowany
Kolor biały wskaźnika naładowania akumulatora bezobsługowego, znany jako "magiczne oko", sygnalizuje, że poziom elektrolitu w akumulatorze jest za niski. Akumulatory te są zaprojektowane, aby działały w określonym zakresie poziomu elektrolitu, a jego niedobór może prowadzić do nieprawidłowego działania i skrócenia żywotności akumulatora. Wartości elektrolitu powinny być regularnie kontrolowane, aby zapewnić prawidłowe funkcjonowanie akumulatora. Praktyczne podejście do zarządzania akumulatorami zaleca sprawdzanie poziomu elektrolitu co kilka miesięcy, zwłaszcza w warunkach intensywnego użytkowania pojazdu. Niskie poziomy elektrolitu mogą prowadzić do nadmiernego przegrzewania akumulatora oraz zmniejszenia jego pojemności. Wymiana elektrolitu powinna być przeprowadzana zgodnie z zaleceniami producenta, aby uniknąć uszkodzenia akumulatora oraz zapewnić jego optymalne działanie. W celu monitorowania stanu akumulatora można również korzystać z testerów, które wskazują nie tylko poziom elektrolitu, ale także ogólny stan naładowania akumulatora.

Pytanie 11

Z wykorzystaniem popularnego czujnika zegarowego możliwe jest przeprowadzenie pomiaru z precyzją do

A. 0,1 mm
B. 0,01 mm
C. 0,001 mm
D. 0,0001 mm
Wybór odpowiedzi, która sugeruje, że czujnik zegarowy może dokonywać pomiarów z dokładnością do 0,001 mm, 0,0001 mm lub 0,1 mm, wynika często z nieporozumienia dotyczącego specyfikacji technicznych tych urządzeń. Czujniki zegarowe w standardowych zastosowaniach najczęściej oferują dokładność rzędu 0,01 mm, co odpowiada ich konstrukcji oraz możliwościom pomiarowym. W rzeczywistości, czujniki o dokładności 0,001 mm lub 0,0001 mm, choć istnieją, są zazwyczaj bardziej skomplikowane i kosztowne, a ich stosowanie ma miejsce w specjalistycznych aplikacjach, takich jak mikroskopia czy pomiary w laboratoriach metrologicznych. Z kolei pomiar z dokładnością 0,1 mm jest zbyt mało precyzyjny dla większości zastosowań inżynieryjnych, gdzie wymagane są znacznie dokładniejsze rezultaty. Typowym błędem myślowym jest założenie, że im mniejsza wartość pomiarowa, tym lepszy pomiar. Ważne jest zrozumienie kontekstu, w jakim czujnik jest używany. Rekomendacje dotyczące pomiarów precyzyjnych powinny opierać się na realnych potrzebach aplikacji oraz standardach branżowych, co pozwala na dokonanie świadomego wyboru narzędzi pomiarowych. Świadomość zakresu dokładności czujników jest kluczowa dla skutecznego i efektywnego zarządzania procesami produkcyjnymi oraz zapewnienia jakości wytwarzanych produktów.

Pytanie 12

Firma transportowa zleciła regulację luzów7 zaworowych w 10 pojazdach wyposażonych w silniki rzędowe 4-cylindrowe 8 zaworowe. Silniki mają jedną pokrywę zaworów. Posługując się danymi z tabeli oblicz całkowity czas wykonania zlecenia.

Nazwa operacjiCzas [min]
Wymiana świecy5
Demontaż pokrywy zaworów10
Regulacja luzu zaworów 1 cylindra(*)5*
Montaż pokrywy zaworów10
Wymiana filtra powietrza8

(*) – podany czas dotyczy wyłącznie regulacji luzu zaworowego

A. 40 minut
B. 20 minut
C. 400 minut
D. 228 minut
Poprawna odpowiedź to 400 minut, co wynika z dokładnego przeliczenia czasu potrzebnego na regulację luzów zaworowych w 10 pojazdach. Każde z silników 4-cylindrowych wymaga 60 minut na wykonanie wszystkich niezbędnych operacji: 20 minut na wymianę świec zapłonowych, 10 minut na demontaż pokrywy zaworów, 20 minut na regulację luzów, oraz 10 minut na montaż pokrywy. Sumując te czasy, otrzymujemy 60 minut na jeden pojazd. Następnie, dla 10 pojazdów, czas ten mnożymy przez 10, co daje 600 minut. Warto jednak zwrócić uwagę, że pytanie dotyczy regulacji luzów zaworowych, która dla 10 silników powinna być uwzględniona w kontekście praktyki wykonawczej i planowania czasu pracy w warsztacie. W branży motoryzacyjnej, takie obliczenia pozwalają na efektywne zarządzanie czasem pracy i kosztami usług, co jest kluczowe dla zadowolenia klienta oraz rentowności działalności. Dla dalszej analizy, można również zapoznać się z dokumentacją producentów silników, gdzie znajdziemy szczegółowe instrukcje dotyczące regulacji luzów oraz oszacowania czasu potrzebnego na wykonanie tych operacji.

Pytanie 13

Obecność kropel płynu chłodzącego w misce olejowej może wskazywać

A. na uszkodzenie pompy oleju
B. na uszkodzenie uszczelki głowicy
C. na uszkodzenie termostatu
D. na użycie niewłaściwego oleju
Występowanie kropel płynu chłodzącego w misce olejowej jest istotnym wskaźnikiem, który może sugerować uszkodzenie uszczelki głowicy. Uszczelka głowicy jest kluczowym elementem silnika, odpowiedzialnym za szczelne połączenie pomiędzy głowicą a blokiem silnika. Jej uszkodzenie może prowadzić do mieszania się płynów – oleju silnikowego i płynu chłodzącego. W praktyce, jeśli zauważysz płyn chłodzący w oleju, jest to znak, że należy niezwłocznie przeprowadzić diagnostykę silnika, aby uniknąć poważniejszych uszkodzeń. Konsekwencje zignorowania tego problemu mogą obejmować przegrzewanie się silnika, a w skrajnych przypadkach nawet jego zatarcie. W standardach motoryzacyjnych kładzie się duży nacisk na regularne kontrole uszczelki głowicy oraz monitorowanie jakości płynów eksploatacyjnych, co jest niezbędne dla utrzymania silnika w dobrym stanie.

Pytanie 14

Po wymianie klocków hamulcowych w pojeździe osobowym konieczne jest zbadanie

A. wyważenia felg
B. siły hamowania
C. geometrii kół
D. stanu opon
Po wymianie szczęk hamulcowych kluczowe jest sprawdzenie siły hamowania, ponieważ nowo zamontowane elementy muszą być odpowiednio osadzone i dopasowane do reszty układu hamulcowego. Siła hamowania jest bezpośrednio związana z efektywnością układu hamulcowego, a jej niewłaściwe ustawienie może prowadzić do wydłużenia drogi hamowania, co zagraża bezpieczeństwu kierowcy i pasażerów. Przykładem praktycznym może być sytuacja, w której nowe szczęki wymagają kilkukrotnej operacji hamowania, aby osiągnąć optymalne tarcie. Właściwe sprawdzenie siły hamowania można przeprowadzić na specjalistycznym stanowisku diagnostycznym, gdzie mierzy się wartości siły hamowania na poszczególnych kołach. Zgodnie z obowiązującymi standardami, takim jak normy ISO dotyczące badań układów hamulcowych, należy również zwrócić uwagę na równomierność siły hamowania pomiędzy kołami, co ma kluczowe znaczenie dla stabilności pojazdu podczas manewrów hamowania. Regularne przeglądy i testy hamulców są nie tylko zalecane, ale również wymagane przez przepisy prawne w wielu krajach, aby zapewnić maksymalne bezpieczeństwo na drogach.

Pytanie 15

Podczas wymiany uszkodzonej sprężyny w kolumnie McPhersona, mechanik powinien

A. używać ogólnej prasy hydraulicznej
B. wymienić wszystkie cztery sprężyny
C. zainstalować nowe amortyzatory
D. stosować ściągacz do ściskania sprężyn
Używanie ściągacza do ściskania sprężyn jest kluczowym krokiem w procesie wymiany pękniętej sprężyny w kolumnie McPhersona. Sprężyny tego typu są poddawane dużym siłom i ich demontaż bez odpowiedniego narzędzia może prowadzić do poważnych urazów zarówno dla mechanika, jak i dla otoczenia. Ściągacz pozwala na bezpieczne i kontrolowane ściśnięcie sprężyny, co umożliwia jej demontaż bez ryzyka nagłego uwolnienia energii sprężynowej. Dobrym podejściem jest także stosowanie ściągaczy, które są zgodne z normami bezpieczeństwa i zostały przetestowane w warunkach warsztatowych. Przykładem zastosowania ściągacza może być sytuacja, gdy mechanik wymienia sprężyny w samochodzie sportowym, gdzie wyższe parametry sprężyn wymagają wyjątkowej ostrożności. Oprócz bezpieczeństwa, użycie ściągacza zapewnia również precyzyjne dopasowanie nowej sprężyny, co jest niezbędne do prawidłowego działania zawieszenia pojazdu.

Pytanie 16

Metaliczne stuki z obszaru głowicy silnika mogą być spowodowane

A. zbyt dużym luzem zaworowym
B. nieszczelną uszczelką pod głowicą
C. niskim ciśnieniem sprężania
D. nieszczelnością zaworów
Zbyt duży luz zaworowy jest jedną z częstszych przyczyn metalicznych stuków w silniku. Gdy luz zaworowy jest zbyt duży, zawory nie zamykają się prawidłowo, co prowadzi do nieprawidłowego cyklu pracy silnika. Taki stan rzeczy może powodować, że zawory nie są w stanie wygenerować wystarczającej siły do zamknięcia, co skutkuje uderzeniami metalowymi. Oprócz hałasu, może to prowadzić do poważnych uszkodzeń w układzie rozrządu i górnej części silnika. Przykładowo, niewłaściwe ustawienie luzu zaworowego może skutkować ich nadmiernym zużyciem, co z kolei prowadzi do nieprawidłowej pracy silnika. W praktyce, mechanicy często zalecają regularne kontrolowanie i regulację luzu zaworowego zgodnie z instrukcjami producenta, co jest kluczowym elementem konserwacji silnika. Pomiar luzu zaworowego powinien być dokonywany za pomocą specjalistycznych narzędzi, takich jak feeler gauge, a odpowiednie wartości luzu są zazwyczaj podane w dokumentacji technicznej pojazdu. Przestrzeganie tych standardów pomoże zapobiec problemom z hałasem i zwiększy żywotność silnika."

Pytanie 17

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. białym
B. czerwonym
C. niebieskim
D. czarnym
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.

Pytanie 18

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
B. wzmocnienie struktury cylindra, który jest chłodzony cieczą
C. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
D. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 19

Tempomat to system, który pozwala na utrzymanie stałej prędkości pojazdu. Który element pełni rolę jego części roboczej?

A. Pompa hamulcowa
B. Modulator hydrauliczny
C. Nastawnik przepustnicy
D. Siłownik sprzęgła
Nastawnik przepustnicy to naprawdę ważny element w tempomacie, bo to on kontroluje otwarcie przepustnicy silnika. Dzięki temu możemy jechać stałą prędkością. Działa to tak, że gdy na przykład zbliżamy się do wzniesienia, to nastawnik zwiększa otwarcie przepustnicy, żeby silnik miał więcej mocy i nie zwolnił. W nowoczesnych autach tempomaty często łączą się z systemami bezpieczeństwa, jak adaptacyjny tempomat, który zmienia prędkość w zależności od tego, jak blisko jest inny samochód. Fajnie, że mechanika i elektronika są zgodne z normami, bo dzięki temu użytkownicy mogą czuć się bezpiecznie. Warto też pamiętać, że dobre ustawienia nastawnika przepustnicy mogą pomóc zaoszczędzić paliwo, co jest istotne dla kierowców, którzy chcą mieć mniejsze koszty eksploatacji.

Pytanie 20

Zgięty wahacz w pojeździe należy

A. wyprostować w niskiej temperaturze
B. wyprostować w wysokiej temperaturze
C. wymienić na nowy
D. wzmocnić dodatkowym elementem
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 21

Retarder to element systemu

A. zasilania
B. kierowniczego
C. nośnego
D. hamulcowego
Retarder jest urządzeniem składającym się z mechanizmu, który służy do wspomagania hamowania pojazdów, szczególnie ciężarowych. Działa poprzez generowanie oporu mechanicznego, co powoduje spowolnienie ruchu pojazdu. W przypadku hamulców hydraulicznych, retarder może być integralną częścią systemu, zwiększając efektywność hamowania i wydłużając żywotność tradycyjnych hamulców. Używanie retardera jest szczególnie zalecane w warunkach górskich lub przy długich zjazdach, gdzie hamulce mogą się przegrzewać. Przykładowo, w pojazdach ciężarowych, często stosuje się retarder w połączeniu z hamulcami tarczowymi, co redukuje ryzyko ich przegrzania i poprawia bezpieczeństwo na drodze. Dobrą praktyką jest regularne serwisowanie systemu hamulcowego oraz retardera, aby zapewnić ich prawidłowe działanie zgodnie z normami bezpieczeństwa i wydajności.

Pytanie 22

Jaki jest minimalny poziom efektywności hamowania hamulca roboczego, który pozwala na dalsze użytkowanie pojazdu osobowego?

A. 50%
B. 60%
C. 80%
D. 70%
Minimalny wskaźnik skuteczności hamowania hamulcem roboczym, który dopuszcza pojazd osobowy do dalszej eksploatacji, wynosi 50%. To oznacza, że pojazd musi być w stanie zatrzymać się w odpowiednim czasie, co jest kluczowe dla bezpieczeństwa ruchu drogowego. W praktyce, wskaźnik ten odnosi się do efektywności działania układu hamulcowego, który powinien umożliwiać hamowanie w sposób przewidywalny i skuteczny. Przykładowo, podczas rutynowych badań technicznych, pojazdy są testowane pod kątem tego wskaźnika, aby upewnić się, że nie stanowią zagrożenia dla kierowcy oraz innych uczestników ruchu. W przypadku, gdy wskaźnik ten jest poniżej wymaganych norm, pojazd nie powinien być dopuszczany do ruchu, co jest zgodne z regulacjami zawartymi w ustawodawstwie drogowym. Oznacza to również, że priorytetem powinno być regularne sprawdzanie i konserwacja układu hamulcowego, aby zapewnić jego efektywność oraz poprawić bezpieczeństwo jazdy.

Pytanie 23

Podczas analizy układu korbowo-tłokowego zauważono zarysowanie tłoka w rejonie pierścieni. Uszkodzony tłok powinien zostać

A. pozostawiony bez naprawy do dalszego użytkowania
B. naprawiony przez oszlifowanie uszkodzonego miejsca papierem ściernym
C. wymieniony na nowy
D. zregenerowany metodą klejenia
Wymiana uszkodzonego tłoka na nowy jest kluczowym elementem zapewnienia prawidłowego funkcjonowania silnika. Zarysowanie w części pierścieniowej tłoka może prowadzić do nieszczelności, co z kolei skutkuje utratą kompresji i obniżeniem efektywności pracy silnika. Praktyka wskazuje, że stosowanie uszkodzonych komponentów zamiast ich wymiany może prowadzić do poważniejszych awarii, w tym uszkodzenia cylindrów. Dobrym przykładem jest procedura przeglądów silników wysokoprężnych, gdzie zaleca się wymianę tłoków w przypadku stwierdzenia jakichkolwiek uszkodzeń. Przemysłowy standard jakości dla silników, zwany ISO 9001, promuje zasadę wymiany uszkodzonych części w celu zapewnienia długoterminowej efektywności i niezawodności. Wymiana tłoka na nowy, zgodnie z producentem, zapewnia optymalne dopasowanie oraz wydajność, co jest niezbędne w przypadku serwisowania i naprawy silników.

Pytanie 24

W mechanizmie silnika tłokowo-korbowego występują zmieniające się obciążenia, które prowadzą do uszkodzeń śrub korbowodowych na skutek

A. zużycia w wyniku erozji
B. zużycia mechanicznego
C. starzenia się materiału
D. zmęczenia struktury materiałowej
Zmęczenie materiału to proces, w którym materiał ulega uszkodzeniu wskutek cyklicznych obciążeń, co jest typowe w mechanizmie tłokowo-korbowym. W silnikach spalinowych, śruby korbowodowe narażone są na zmienne siły, które działają na nie podczas pracy silnika. Te siły powodują, że mikrodefekty w strukturze materiału zaczynają się powiększać, co w końcu prowadzi do pęknięć i zniszczenia elementu. Przykładem wpływu zmęczenia materiału jest zjawisko zmęczenia zmiennego, które można obserwować przy silnikach pracujących w trybie o zmiennej prędkości obrotowej. W praktyce, inżynierowie muszą projektować elementy silników zgodnie z normami, takimi jak ISO 1099, które dotyczą wytrzymałości na zmęczenie, aby zapewnić ich długotrwałą funkcjonalność. Używanie materiałów o wysokiej trwałości oraz odpowiednich powłok ochronnych również przyczynia się do wydłużenia żywotności takich komponentów.

Pytanie 25

Jakie będą łączne koszty części potrzebnych do wymiany szczęk hamulcowych w samochodzie osobowym z bębnowym układem hamulcowym, jeśli cena za komplet szczęk na przód wynosi 80 zł (jedna oś), a na tył 120 zł (jedna oś)?

A. 400,00 zł
B. 240,00 zł
C. 200,00 zł
D. 180,00 zł
Wybór błędnej odpowiedzi może wynikać z kilku typowych nieporozumień związanych z obliczeniem całkowitych kosztów części do wymiany szczęk hamulcowych. Często błędne podejście do tego zagadnienia polega na pominięciu faktu, że całkowity koszt należy zsumować niezależnie dla przodu i tyłu pojazdu. Na przykład, niektóre osoby mogą pomylić się, sądząc, że całkowity koszt części można przeliczyć tylko na podstawie jednej osi, co prowadzi do odpowiedzi takich jak 240 zł (80 zł + 120 zł + 40 zł), co nie ma uzasadnienia. Inni mogą mylnie traktować koszty jako stałe, nie uwzględniając, że różne osie mają różne ceny części. Dodatkowo, zrozumienie ogólnych zasad kosztorysowania jest niezbędne, aby unikać błędów w przyszłości. Ważne jest, aby mieć na uwadze, że poprawne kalkulacje są kluczowe dla efektywnego zarządzania naprawami i konserwacją pojazdów, co potwierdzają standardy branżowe w dziedzinie motoryzacji. Dlatego umiejętność precyzyjnego obliczania kosztów części zamiennych nie tylko oszczędza czas, ale również pozwala uniknąć nieprzyjemnych niespodzianek finansowych w trakcie eksploatacji samochodu.

Pytanie 26

Dlaczego ważne jest regularne sprawdzanie poziomu oleju silnikowego?

A. Zapobieganie uszkodzeniom silnika z powodu niedostatecznego smarowania
B. Zmniejszenie hałasu pracy silnika
C. Poprawa wydajności systemu klimatyzacji
D. Zwiększenie mocy silnika
Regularne sprawdzanie poziomu oleju silnikowego jest kluczowe dla prawidłowego funkcjonowania samochodu. Olej pełni funkcję smarowania elementów silnika, co zapobiega ich zużyciu i przegrzewaniu. Gdy poziom oleju jest zbyt niski, elementy silnika mogą nie być odpowiednio smarowane, co prowadzi do zwiększonego tarcia i potencjalnie poważnych uszkodzeń. Może to skutkować kosztownymi naprawami, a w ekstremalnych przypadkach całkowitym zniszczeniem silnika. Regularne sprawdzanie poziomu oleju pozwala także zauważyć ewentualne wycieki czy nadmierne zużycie oleju, które mogą być sygnałem innych problemów mechanicznych. Właściwy poziom oleju wspomaga także efektywne spalanie paliwa, co przekłada się na lepszą ekonomię jazdy. Dbanie o odpowiedni poziom oleju jest uznawane za podstawową dobrą praktykę w zakresie konserwacji samochodów i jest zalecane przez wszystkich producentów pojazdów.

Pytanie 27

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj

A. 3,21 %.
B. 508 ppm.
C. 1.141
D. 12,60 %.
Stężenie tlenu (O2) w spalinach, które wynosi 3,21% objętościowych, jest naprawdę istotnym wskaźnikiem, jeśli chodzi o efektywność spalania w silniku. Mówiąc prosto, pokazuje nam, ile tlenu zostało niezużyte podczas spalania paliwa, a to może znacząco wpłynąć na emisję spalin i wydajność całego silnika. W praktyce zbyt wysoka ilość tlenu może świadczyć o tym, że mieszanka paliwowo-powietrzna jest źle ustawiona albo że coś jest nie tak z układem wtryskowym. A to z kolei może prowadzić do większego zużycia paliwa oraz wyższej emisji zanieczyszczeń. W motoryzacji monitorowanie stężenia tlenu w spalinach to standard, który pozwala lepiej dostosować parametry pracy silnika i spełniać normy emisji. Przykładowo, w autach z systemami kontroli emisji, jak katalizatory czy układy recyrkulacji spalin, odpowiednie stężenie tlenu jest kluczowe, żeby wszystko działało jak należy.

Pytanie 28

Jaką funkcję pełni turbosprężarka w silniku spalinowym?

A. Poprawia działanie układu wydechowego
B. Reguluje temperaturę pracy silnika
C. Zmniejsza emisję spalin
D. Zwiększa ilość powietrza dostarczanego do cylindrów
Turbosprężarka to jedno z tych urządzeń, które w znaczący sposób wpływa na wydajność silnika spalinowego. Jej podstawową funkcją jest zwiększenie ilości powietrza dostarczanego do cylindrów. Dzięki temu możliwe jest spalanie większej ilości paliwa, co prowadzi do zwiększenia mocy silnika. Turbosprężarka działa na zasadzie wykorzystania energii spalin, które napędzają wirnik połączony z kompresorem. Kompresor ten zasysa powietrze z otoczenia i wtłacza je pod większym ciśnieniem do kolektora ssącego. W praktyce oznacza to, że silnik może generować większą moc bez zwiększania swojej pojemności. Zastosowanie turbosprężarki jest standardem w nowoczesnych pojazdach, ponieważ pozwala na poprawienie wskaźników mocy i momentu obrotowego przy jednoczesnym utrzymaniu względnie niskiej masy jednostki napędowej. Warto zaznaczyć, że turbosprężarki są szeroko stosowane w motoryzacji, a ich poprawne funkcjonowanie jest kluczowe dla osiągów pojazdu. Jest to również przykład zastosowania energii spalin do poprawy efektywności, co jest zgodne z trendami ekologicznymi.

Pytanie 29

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. pas napędowy
B. satelita
C. element synchronizujący
D. wałek napędowy
Pas napędowy to naprawdę ważny element w bezstopniowej skrzyni biegów CVT, bo dzięki niemu moc z silnika płynnie przechodzi na koła. W tradycyjnych skrzyniach biegów mamy ustalone przełożenia, a CVT działa trochę inaczej, bo wykorzystuje pasy i stożki do zmiany przełożenia na bieżąco. Dzięki temu auto lepiej się prowadzi i bardziej oszczędza paliwo, co każdy kierowca na pewno doceni. W praktyce oznacza to, że jazda jest bardziej komfortowa, bo nie ma takiego szarpania. Widać, że CVT staje się coraz bardziej popularne, zwłaszcza w hybrydach, gdzie ekonomik to kluczowa sprawa. Pamiętaj też, żeby dbać o odpowiednie napięcie pasa i jego stan, bo to ma ogromne znaczenie dla wydajności i trwałości całego systemu.

Pytanie 30

Jednym z powodów, dla których nie następuje ładowanie (włączona czerwona lampka kontrolna ładowania akumulatora) przy pracującym silniku, może być

A. zacięta szczotka w szczotkotrzymaczu alternatora
B. spalona żarówka świateł mijania
C. kompletnie naładowany akumulator
D. zwarcie w obwodzie sygnałowym akustycznym
Zawieszona szczotka w szczotkotrzymaczu alternatora to jedna z najczęstszych przyczyn problemów z ładowaniem akumulatora. Te szczotki mają za zadanie przesyłać prąd do wirnika, więc muszą działać poprawnie, żeby alternator mógł generować energię. Jak szczotka jest zablokowana, to nie ma pełnego kontaktu z wirnikiem, przez co energia się nie wytwarza jak powinna. Zwykle objawia się to tym, że kontrolka ładowania akumulatora świeci na czerwono, co wskazuje na kłopoty z ładowaniem. Żeby to sprawdzić, zazwyczaj trzeba zajrzeć do alternatora i zmierzyć napięcie wyjściowe. W branży mówi się, że dobrze jest regularnie kontrolować stan szczotek, szczególnie w starszych autach, które mogą mieć spore zużycie. No i jak zauważysz jakiekolwiek problemy z ładowaniem, lepiej działać szybko, bo inaczej możesz uszkodzić akumulator lub inne elektryczne części w samochodzie.

Pytanie 31

Hybrydowy napęd to wykorzystanie w pojeździe jednostki napędowej

A. elektrycznej
B. z zapłonem iskrowym
C. wysokoprężnej
D. spalinowej z elektryczną
Napęd hybrydowy w pojazdach oznacza zastosowanie zarówno silnika spalinowego, jak i elektrycznego w celu optymalizacji efektywności energetycznej oraz zmniejszenia emisji spalin. W praktyce oznacza to, że pojazdy hybrydowe mogą korzystać z mocy silnika spalinowego podczas jazdy na autostradzie, gdzie wymagana jest większa moc, natomiast w warunkach miejskich, gdzie prędkości są niższe, silnik elektryczny może działać samodzielnie. Taki system przyczynia się do znacznego obniżenia zużycia paliwa i redukcji emisji CO2, co jest zgodne z globalnymi standardami w zakresie ochrony środowiska. Przykłady zastosowania obejmują popularne modele samochodów takie jak Toyota Prius czy Honda Insight, które udowodniły, że hybrydowe napędy są nie tylko technologicznie zaawansowane, ale również ekonomicznie opłacalne dla użytkowników. Standardy dotyczące emisji spalin, takie jak Euro 6, kładą nacisk na rozwój technologii hybrydowych, co potwierdza ich rosnące znaczenie w branży motoryzacyjnej.

Pytanie 32

Który składnik występuje w największej ilości w spalinach z silników ZI oraz ZS?

A. Węglowodorów
B. Tlenu
C. Azotu
D. Dwutlenku węgla
Azot jest najliczniejszym składnikiem spalin silników ZI (zapłon iskrowy) oraz ZS (zapłon samoczynny), a jego obecność wynika głównie z powietrza, które jest niezbędne do spalania paliwa. Powietrze składa się w około 78% z azotu, co oznacza, że podczas procesu spalania, mimo że azot nie uczestniczy aktywnie w reakcjach chemicznych, zostaje wydalony do atmosfery w dużych ilościach. W praktyce oznacza to, że podczas eksploatacji silników, na przykład w pojazdach czy maszynach przemysłowych, azot w spalinach jest nie tylko dominującym składnikiem, ale również ma wpływ na procesy emisji zanieczyszczeń. Zrozumienie tej kwestii jest istotne w kontekście regulacji dotyczących emisji spalin oraz opracowywania technologii redukcji zanieczyszczeń, takich jak systemy selektywnej redukcji katalitycznej (SCR), które mogą redukować inne uciążliwe składniki, ale azot pozostaje w spalinach w znaczącej ilości. Dodatkowo, azot ma zastosowanie w różnych procesach przemysłowych, gdzie służy jako gaz obojętny, co podkreśla jego szeroką obecność i znaczenie w różnych dziedzinach.

Pytanie 33

Wynik pomiaru kąta zbieżności kół to -lmm. Producent informuje, że wartość ta powinna mieścić się w zakresie od 0 do + 2mm. Jak interpretujemy ten wynik pomiaru?

A. Wynik nieprawidłowy, koła rozbieżne
B. Wynik prawidłowy, koła rozbieżne
C. Zbieżność znajduje się w dopuszczalnych granicach
D. Wynik prawidłowy, koła zbieżne
Wynik pomiaru zbieżności kół wynoszący -1 mm jest interpretowany jako nieprawidłowy, ponieważ mieści się poniżej minimalnej wartości tolerancji, która według producenta powinna wynosić od 0 do +2 mm. W skrajnych przypadkach, gdy zbieżność kół jest ujemna, koła są uważane za rozbieżne, co może prowadzić do nierównomiernego zużycia opon, problemów z prowadzeniem pojazdu oraz negatywnego wpływu na bezpieczeństwo jazdy. Przykładowo, w praktyce, podczas regularnych przeglądów technicznych zaleca się pomiar zbieżności kół, aby upewnić się, że wartości są zgodne z normami, co powinno być częścią rutynowej konserwacji pojazdu. Niezgodności w zbieżności mogą wymagać regulacji geometrii kół, co jest kluczowe dla zachowania stabilności pojazdu oraz optymalizacji osiągów. Zgodnie z normami branżowymi, zaleca się, aby pomiary były wykonywane przez przeszkolonych techników, którzy dysponują odpowiednim sprzętem pomiarowym, co zapewnia ich dokładność i rzetelność.

Pytanie 34

Ostatnia obróbka cylindra w silniku spalinowym to

A. szlifowanie
B. toczenie
C. planowanie
D. honowanie
Honowanie to naprawdę ważny proces, kiedy mówimy o końcowej obróbce cylindrów w silnikach spalinowych. Chodzi o to, żeby osiągnąć właściwą chropowatość i dokładne wymiary. Dzięki honowaniu, wewnętrzne ścianki cylindrów są gładkie i pozbawione malutkich niedoskonałości, co jest kluczowe, żeby pierścienie tłokowe dobrze przylegały. To z kolei wpływa na efektywność spalania i zmniejsza zużycie paliwa. Widziałem, że w nowoczesnych silnikach wyścigowych honowanie to standard, który pomaga uzyskać maksymalne osiągi. W motoryzacji mamy różne techniki honowania, jak honowanie na sucho czy na mokro, co zależy od materiałów i wymagań budowy. Dobre honowanie daje chropowatość Ra w granicach 0,2 - 0,5 μm, co jest naprawdę na poziomie najlepszych praktyk w branży.

Pytanie 35

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. skokowej do objętości całkowitej cylindra
B. komory spalania do objętości całkowitej cylindra
C. całkowitej cylindra do objętości skokowej
D. całkowitej cylindra do objętości komory spalania
Stopień sprężania w silnikach spalinowych definiuje się jako stosunek objętości całkowitej cylindra do objętości komory spalania. Prawidłowe zrozumienie tego pojęcia jest kluczowe dla oceny wydajności silnika oraz jego pracy. W praktyce, wyższy stopień sprężania pozwala na lepsze wykorzystanie mieszanki paliwowo-powietrznej, co skutkuje zwiększoną mocą oraz efektywnością energetyczną. Przykładowo, w silnikach wysokoprężnych, które zazwyczaj charakteryzują się dużo wyższymi wartościami stopnia sprężania niż silniki benzynowe, proces sprężania powietrza w cylindrze prowadzi do jego nagrzania, co umożliwia zapłon paliwa bez użycia świecy zapłonowej. W branży motoryzacyjnej standardy dotyczące stopnia sprężania są ściśle regulowane, a inżynierowie projektujący silniki często dążą do optymalizacji tego parametru, aby osiągnąć jak najlepsze parametry pracy silnika oraz spełnić normy emisji spalin.

Pytanie 36

Mieszanka stechiometryczna to taka mieszanka, w której współczynnik nadmiaru powietrza wynosi

A. λ = 2,0
B. λ = 0,85
C. λ = 1,0
D. λ = 1,1
Mieszanka stechiometryczna to taka, w której współczynnik nadmiaru powietrza λ wynosi 1,0. Oznacza to, że ilość powietrza dostarczonego do reakcji jest dokładnie dobrana do zużycia całkowitej ilości paliwa. W praktyce oznacza to optymalne spalanie, które prowadzi do maksymalnej efektywności energetycznej oraz minimalizacji emisji szkodliwych substancji. W kontekście silników spalinowych i pieców przemysłowych, utrzymanie tego stanu jest kluczowe dla zapewnienia prawidłowego działania systemu. W branży energetycznej oraz w procesach chemicznych standardy takie jak ISO 50001 zalecają monitorowanie i optymalizację współczynnika λ w celu zwiększenia efektywności energetycznej. Przykładem zastosowania tej wiedzy może być dobór odpowiednich parametrów pracy pieca w celu osiągnięcia maksymalnej wydajności oraz minimalizacji emisji CO2. Tak więc, zrozumienie współczynnika nadmiaru powietrza jest kluczowe dla inżynierów zajmujących się optymalizacją procesów spalania.

Pytanie 37

Podczas testu diagnostycznego komputer pokładowy wskazuje błąd systemu paliwowego. Co należy sprawdzić w pierwszej kolejności?

A. Napięcie akumulatora
B. Filtr paliwa
C. Stan opon
D. Poziom oleju silnikowego
Filtr paliwa to element układu paliwowego, który pełni kluczową rolę w zapewnieniu czystości paliwa dostarczanego do silnika. Zanieczyszczone paliwo może prowadzić do wielu problemów, takich jak zatkanie wtryskiwaczy lub uszkodzenie pompy paliwa. W przypadku wystąpienia błędu systemu paliwowego, sprawdzenie stanu filtra paliwa jest logicznym i zgodnym z dobrymi praktykami krokiem. Nowoczesne pojazdy są wyposażone w systemy diagnostyczne, które mogą wykrywać problemy z przepływem paliwa, a zatkany filtr często jest przyczyną takich usterek. Regularna kontrola i wymiana filtra paliwa są zalecane przez producentów samochodów jako część rutynowej konserwacji, co pomaga w uniknięciu poważniejszych problemów i przedłuża żywotność układu paliwowego. Dodatkowo, czysty filtr zapewnia optymalną wydajność silnika i efektywność spalania, co przekłada się na lepszą ekonomię paliwową i niższą emisję spalin. To szczególnie ważne w kontekście rosnących standardów ekologicznych i wymagań dotyczących emisji.

Pytanie 38

Refraktometr nie jest przeznaczony do diagnozowania

A. płynu chłodzącego
B. płynu do spryskiwaczy
C. elektrolitu używanego w akumulatorach samochodowych
D. czynnika chłodzącego do napełnienia klimatyzacji
Czynnik chłodzący do napełnienia klimatyzacji rzeczywiście nie jest diagnozowany za pomocą refraktometru. Refraktometr jest narzędziem stosowanym do pomiaru współczynnika załamania światła substancji, co pozwala ocenić stężenie rozpuszczeń. W przypadku płynów chłodzących, elektrolitów do baterii czy płynów do spryskiwaczy, refraktometr może być użyty do określenia ich właściwości fizykochemicznych, takich jak stężenie czy jakość. Na przykład, w samochodach używa się refraktometrów do pomiaru stężenia glikolu w płynie chłodzącym, co jest istotne dla zapewnienia odpowiednich właściwości ochronnych w zmiennych warunkach temperatury. Z kolei w przypadku elektrolitów do baterii, pomiar gęstości roztworu pozwala ocenić stan naładowania akumulatora. Jednakże, refraktometry nie są przeznaczone do analizy czynników chłodzących stosowanych w systemach klimatyzacyjnych, które wymagają innych metod diagnostycznych, takich jak pomiar ciśnienia czy analizy chemiczne, aby określić ich jakość i ilość.

Pytanie 39

Wniknięcie cieczy chłodzącej do komory spalania silnika objawia się wydobywaniem spalin w kolorze

A. czarnym
B. białym
C. szarym
D. niebieskim
Odpowiedź biała jest prawidłowa, ponieważ przedostanie się cieczy chłodzącej do komory spalania silnika skutkuje emisją spalin o jasnym, mlecznym zabarwieniu. Taki stan rzeczy wskazuje na obecność wody lub płynu chłodzącego, który ulega spaleniu w wysokotemperaturowych warunkach komory cylindrów. W praktyce obserwowanie białego dymu z rury wydechowej jest istotnym sygnałem, że należy zbadać układ chłodzenia oraz uszczelki głowicy silnika. W przypadku wystąpienia tego objawu, zaleca się natychmiastowe zatrzymanie pojazdu w celu zapobiegnięcia dalszym uszkodzeniom silnika. Właściwa diagnostyka, często z wykorzystaniem analizy spalin oraz kontroli poziomu płynu chłodzącego, jest kluczowa dla zachowania sprawności silnika i uniknięcia kosztownych napraw. Wiedza o tym zjawisku jest szczególnie istotna dla mechaników oraz właścicieli pojazdów, gdyż pozwala na wczesne wykrycie problemu i jego skuteczne rozwiązanie, co jest zgodne z zasadami utrzymania i eksploatacji pojazdów zgodnie z normami przemysłowymi.

Pytanie 40

Głównym celem smaru używanego w piastach kół tylnych jest przede wszystkim

A. odprowadzanie nadmiaru ciepła
B. utrzymanie w dobrym stanie elementów piasty
C. uzupełnienie wolnych przestrzeni
D. zmniejszenie współczynnika tarcia
Smar w piastach kół tylnych odgrywa kluczową rolę w zmniejszaniu współczynnika tarcia, co jest niezwykle istotne dla zapewnienia płynności ruchu oraz wydajności układu. Gdy elementy mechaniczne poruszają się względem siebie, generują tarcie, które może prowadzić do zużycia komponentów oraz obniżenia efektywności energetycznej. Zastosowanie odpowiedniego smaru, który ma niską lepkość, pozwala na zmniejszenie tego tarcia, co z kolei przekłada się na lepsze osiągi pojazdu. Przykładem może być zastosowanie smarów litowych w piastach, które nie tylko redukują tarcie, ale także chronią przed korozją oraz zanieczyszczeniami. W branży motoryzacyjnej stosuje się także smary zgodne z normami ASTM i ISO, co zapewnia ich wysoką jakość i efektywność. Oprócz zapewnienia efektywności mechanicznej, zmniejszenie tarcia wpływa także na oszczędność paliwa, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju i ochrony środowiska. Dlatego właściwy dobór smaru oraz jego regularna wymiana są kluczowe dla długowieczności i bezawaryjności układów napędowych.