Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 5 czerwca 2025 08:57
  • Data zakończenia: 5 czerwca 2025 09:08

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)

A. 35 bar
B. 525 bar
C. 350 bar
D. 70 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 2

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
B. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
D. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 3

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. średnia napięcia wyznaczona dla okresu
B. maksymalna napięcia podzielona przez √2
C. maksymalna napięcia podzielona przez √3
D. średnia napięcia wyznaczona dla półokresu
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 4

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
B. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
C. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
Prawidłowa odpowiedź wskazuje na to, że pracownik obsługujący urządzenie elektryczne prądu stałego o napięciu znamionowym 60 V w III klasie ochronności może odczuwać skutki przepływu prądu podczas kontaktu z nieizolowanymi elementami czynnych. W kontekście III klasy ochronności urządzeń elektrycznych, oznacza to, że sprzęt jest zabezpieczony w taki sposób, aby nie stwarzał zagrożenia dla użytkownika. Urządzenia te są projektowane z dodatkowymi środkami ochrony, na przykład przez zastosowanie izolacji oraz zastosowanie materiałów, które nie przewodzą prądu. Niemniej jednak, w sytuacji, gdy pracownik ma kontakt z nieizolowanymi elementami, takich jak przewody lub terminale, ryzyko odczuwalnych skutków przepływu prądu istnieje. Ważne jest, aby przestrzegać norm i dobrych praktyk, takich jak zapewnienie odpowiednich procedur szkoleniowych oraz stosowanie osłon ochronnych, aby minimalizować ryzyko porażenia prądem. W praktyce oznacza to, że zawsze należy zachować ostrożność i stosować odpowiednie środki ochrony osobistej, takie jak rękawice izolacyjne oraz narzędzia z izolowanymi uchwytami.

Pytanie 5

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. temperatury
B. prędkości
C. szumów
D. drgań
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 6

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. suwmiarka
B. liniał
C. mikrometr
D. szczelinomierz
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 7

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. odłączyć urządzenie od źródła zasilania.
B. uziemić urządzenie.
C. zdjąć obudowę.
D. zweryfikować stan izolacji.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 8

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. analizy stopnia zużycia
B. sprawdzenia wymiarów
C. weryfikacji czystości paska
D. oceny stopnia naprężenia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 9

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. lutownicy
B. klucza
C. wkrętaka
D. szczypiec
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 10

W celu kontroli siłowników jednostronnego działania wykorzystuje się zawory rozdzielające

A. 4/2
B. 4/3
C. 3/2
D. 5/2
Zawór rozdzielający 3/2 jest odpowiednim elementem do sterowania siłownikami jednostronnego działania, ponieważ ten typ zaworu ma trzy porty i dwa stany robocze. W konfiguracji 3/2, jeden z portów jest podłączony do źródła zasilania, a dwa pozostałe porty mogą być podłączone do siłownika oraz do otoczenia. W przypadku siłownika jednostronnego działania, który działa w jednym kierunku, zawór 3/2 jest odpowiedni, ponieważ umożliwia wprowadzenie ciśnienia do siłownika, a następnie jego odprowadzenie do atmosfery przy powrocie. Przykładem zastosowania zaworu 3/2 może być system pneumatyczny w maszynach produkcyjnych, gdzie siłowniki są używane do podnoszenia lub opuszczania komponentów. Warto również zauważyć, że w praktyce przemysłowej stosowanie zaworów powinno być zgodne z normami, takimi jak ISO 1219, które definiują symbole i oznaczenia dla urządzeń pneumatycznych, co ułatwia ich identyfikację oraz integrację w systemach automatyki.

Pytanie 11

Watomierz jest urządzeniem do pomiaru mocy

A. chwilowej
B. czynnej
C. pozornej
D. biernej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 12

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. dwufazowym
B. jednofazowym
C. stałym
D. trójfazowym
Silnik bezszczotkowy (BLDC) zasilany jest napięciem stałym, co jest fundamentalną cechą jego konstrukcji. Ten typ silnika charakteryzuje się brakiem szczotek, co prowadzi do mniejszych strat energii i większej efektywności w porównaniu do tradycyjnych silników komutatorowych. W zastosowaniach przemysłowych, takich jak robotyka, drony czy napędy elektryczne w pojazdach, silniki BLDC zyskują na popularności dzięki swojej niezawodności i długowieczności. Przykładem zastosowania silników bezszczotkowych zasilanych napięciem stałym są napędy w elektrycznych hulajnogach, gdzie wymagane są wysoka wydajność oraz kontrola prędkości. W silnikach BLDC zastosowanie napięcia stałego pozwala na prostotę układów sterujących, które mogą być oparte na zaawansowanych systemach PWM (modulacja szerokości impulsu), co umożliwia precyzyjne dostosowanie momentu obrotowego i prędkości silnika. W praktyce, standardy takie jak IEC 60034 dotyczące maszyn elektrycznych podkreślają znaczenie efektywności energetycznej i niezawodności, które są kluczowe w projektowaniu systemów opartych na silnikach BLDC.

Pytanie 13

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. ustawienie na boku, sztuczne oddychanie
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
C. sztuczne oddychanie oraz masaż serca
D. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 14

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
B. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
C. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
D. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 15

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal niskowęglowa
B. Żeliwo szare
C. Stal wysokowęglowa
D. Żeliwo białe
Wybór materiału do konstrukcji spawanych jest kluczowy, a materiały takie jak stal wysokowęglowa, żeliwo białe oraz żeliwo szare nie są odpowiednie do tego typu zastosowań. Stal wysokowęglowa, zawierająca powyżej 0,6% węgla, ma tendencję do bycia kruchą po spawaniu, co może prowadzić do powstawania pęknięć oraz osłabienia struktury. Tego typu stal jest bardziej odpowiednia do produkcji narzędzi, sprężyn czy elementów wymagających wysokiej twardości, a nie do konstrukcji, gdzie kluczowa jest plastyczność i odporność na obciążenia. Żeliwo białe, z kolei, charakteryzuje się wysoką twardością i jest stosowane w produkcji odlewów, ale jego kruchość sprawia, że nie nadaje się do spawania. Żeliwo szare, mimo że ma lepsze właściwości plastyczne niż żeliwo białe, również nie jest optymalnym materiałem do konstrukcji spawanych. Jego strefy osnowy grafitowej mogą ulegać zniszczeniu podczas spawania, co prowadzi do obniżenia wytrzymałości połączeń. Wybór niewłaściwego materiału do spawania może prowadzić do poważnych problemów inżynieryjnych i zagrożeń bezpieczeństwa, dlatego kluczowe jest stosowanie stali niskowęglowej, która zapewnia odpowiednią jakość oraz wydajność w konstrukcjach spawanych.

Pytanie 16

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Hallotronowy
B. Tensometryczny
C. Pojemnościowy
D. Ultradźwiękowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 17

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. DC
B. GND
C. AC
D. ADD
Odpowiedź DC jest poprawna, ponieważ oscyloskop w trybie DC umożliwia pomiar i obserwację składowej stałej napięcia oraz sygnałów zmiennych. W przypadku napięcia, które składa się ze składowej stałej i składowej zmiennej, tryb DC pozwala na "zdjęcie" wartości średniej napięcia, która reprezentuje składową stałą. W praktyce, gdy analizujemy układy elektroniczne, często spotykamy się z takimi napięciami, gdzie napięcie stałe jest nałożone na sygnał zmienny, co jest typowe w zasilaczach czy układach analogowych. W zastosowaniach przemysłowych, taka analiza jest istotna, by ocenić poprawność działania systemów, na przykład w monitorowaniu zasilania silników elektrycznych, gdzie składowa stała może odpowiadać za poziom napięcia zasilającego. Ponadto, w kontekście pomiarów i przetwarzania sygnałów, standardy takie jak IEC 61000 wymagają odpowiednich metodologii pomiarowych, w tym umiejętności rozdzielania składowych sygnałów. Zrozumienie, jak działa tryb DC na oscyloskopie, jest kluczowe dla analizy i diagnostyki systemów elektronicznych oraz zapewnienia ich niezawodności.

Pytanie 18

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. obróbki
B. montażu
C. pomiarów
D. oględzin
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 19

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 10 Nm
C. 986 Nm
D. 1 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 20

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik tensometryczny
B. Czujnik magnetyczny
C. Czujnik optyczny
D. Czujnik indukcyjny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 21

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
B. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
C. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
D. założyć opaskę uciskową powyżej miejsca urazu
Założenie opaski uciskowej powyżej rany jest kluczowym działaniem w przypadku krwotoku tętniczego. Krwotok tętniczy charakteryzuje się intensywnym krwawieniem, które może prowadzić do szybkiej utraty krwi i wstrząsu hipowolemicznego. Opaska uciskowa działa poprzez wywieranie stałego ucisku na naczynia krwionośne, co ogranicza przepływ krwi do miejsca rany, a tym samym zmniejsza utratę krwi. Ważne jest, aby opaskę założyć powyżej rany, aby skutecznie zablokować krwawienie. Należy również pamiętać, że opaska uciskowa powinna być stosowana tylko w sytuacjach, gdy inne metody, takie jak bezpośredni ucisk na ranę, nie przynoszą efektu. W praktyce, opaskę należy założyć jak najszybciej, a następnie jak najszybciej wezwać pomoc medyczną. W przypadku urazów kończyn, opaska powinna być umieszczona jak najwyżej, aby odpowiednio ograniczyć przepływ krwi. Zachowanie tej procedury jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi standardami w zakresie pierwszej pomocy.

Pytanie 22

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MIG
B. TIG
C. MAG
D. SAW
Metoda spawania MAG (Metal Active Gas) wykorzystuje gaz chemicznie aktywny, najczęściej w postaci mieszanki argonu z dwutlenkiem węgla lub innymi gazami, co pozwala na uzyskanie wysokiej jakości spoiny. W przeciwieństwie do MIG (Metal Inert Gas), gdzie stosuje się gazy obojętne, takie jak argon, w MAG aktywne gazy wpływają na proces spawania, co przyczynia się do lepszego wtopienia materiału oraz zwiększenia odporności na niepożądane zjawiska, takie jak utlenianie. Przykładem zastosowania technologii MAG jest spawanie wszelkiego rodzaju konstrukcji stalowych, takich jak ramy budynków, kontenery i elementy maszyn. Dobre praktyki w tej metodzie obejmują dobór odpowiednich parametrów spawania, jak prędkość, napięcie i natężenie prądu, co jest zgodne z normami EN ISO 4063. Dzięki temu proces staje się bardziej efektywny i kontrolowany, co jest niezwykle ważne w przemyśle metalowym.

Pytanie 23

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. zawór podwójnego sygnału
B. przełącznik obiegu
C. zawór szybkiego spustu
D. zawór dławiąco zwrotny
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 24

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. częstotliwości impulsu
B. amplitudy impulsu
C. szerokości impulsu
D. częstotliwości oraz fazy impulsu
Modulacja szerokości impulsu (PWM) to technika, w której szerokość impulsów w sygnale modulowanym jest zmieniana w zależności od wartości sygnału wejściowego. W praktyce oznacza to, że czas, w jakim sygnał jest w stanie wysokim (ON) lub niskim (OFF), jest dostosowywany, co pozwala na skuteczne reprezentowanie informacji. PWM jest szeroko stosowana w elektronice, zwłaszcza w kontrolowaniu prędkości silników, jasności diod LED oraz w systemach audio. Przy zastosowaniu PWM, możemy zredukować straty energii, co jest zgodne z dobrą praktyką inżynieryjną, ponieważ umożliwia efektywne zarządzanie mocą. Na przykład, w przypadku silników DC, poprzez zmianę szerokości impulsów, inżynierowie mogą precyzyjnie regulować prędkość obrotową silnika, co jest kluczowe w automatyzacji i robotyce. Zgodnie ze standardami branżowymi, stosowanie PWM może również poprawić jakość sygnałów w systemach audio, co przekłada się na lepsze wrażenia słuchowe. Warto również zauważyć, że technika ta jest fundamentalna w systemach zasilania, gdzie precyzyjna kontrola mocy jest niezbędna do zapewnienia stabilności i efektywności operacyjnej.

Pytanie 25

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. nieprawidłowo zamocowanym przewodem pneumatycznym
C. przerwanym przewodem pneumatycznym
D. siłownikiem
Wybór odpowiedzi dotyczącej "rozerwanego przewodu pneumatycznego" nie jest właściwy, ponieważ chociaż uszkodzony przewód może prowadzić do niebezpiecznych sytuacji, nie jest on bezpośrednią przyczyną uderzenia. W praktyce takie przypadki są zazwyczaj wynikiem wcześniejszych problemów z instalacją i konserwacją, a nie bezpośrednio związane z eksploatacją układu. Z kolei siłownik jako element wykonawczy, mimo że może generować znaczne siły, stanowi bardziej kontrolowany element układu, który w odpowiednio zaprojektowanych systemach nie powinien stwarzać zagrożenia dla użytkowników. Tłoczysko siłownika również nie jest przyczyną zagrożenia, o ile system jest odpowiednio zabezpieczony. Zastosowanie standardów takich jak ISO 12100, dotyczących bezpieczeństwa maszyn, podkreśla znaczenie analizy ryzyka oraz dostosowania środków ochronnych, aby zapobiec sytuacjom, w których elementy ruchome mogłyby stać się zagrożeniem dla osób w ich otoczeniu. Wiele osób mylnie utożsamia ogólne ryzyko związane z uszkodzeniem elementów układu z bezpośrednim zagrożeniem, co prowadzi do niewłaściwych wniosków. Kluczowe jest zrozumienie, że to zazwyczaj niewłaściwe działania związane z instalacją i konserwacją, a nie same elementy, stają się źródłem zagrożeń.

Pytanie 26

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. umieścić poszkodowanego w bezpiecznej pozycji bocznej
B. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
C. założyć poszkodowanemu opatrunek uciskowy poniżej rany
D. założyć poszkodowanemu opatrunek uciskowy na ranę
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 27

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Fartuch ochronny z bawełny
B. Ochronne okulary
C. Buty z izolującą podeszwą
D. Opaskę uziemiającą
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 28

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wyprostować skrzywiony wentylator lub osłonę
B. dokręcić śruby mocujące osłonę wentylatora
C. wymienić łożyska silnika
D. wycentrować wirnik w stojanie
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 29

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. piana gaśnicza
B. dwutlenek węgla
C. proszek gaśniczy
D. woda
Wybór środków gaśniczych jest niezwykle istotny w kontekście ochrony przeciwpożarowej i powiązanych z nią zagrożeń. W przypadku użycia wody, chociaż jest to popularny środek gaśniczy do zwalczania pożarów grupy A, czyli materiałów stałych, może być skrajnie nieodpowiedni w przypadku pożarów zagrażających sprzętowi elektronicznemu. Woda może spowodować zwarcia, a w konsekwencji jeszcze większe straty. Piana gaśnicza, która jest skuteczna w gaszeniu cieczy palnych, może również nie być odpowiednia do ochrony sprzętu komputerowego ze względu na ryzyko uszkodzenia elementów elektronicznych. Ponadto piana nie jest zalecana do gaszenia pożarów grupy C, ponieważ nie ma zdolności do odcięcia źródła tlenu w przypadku gazów palnych. Z kolei dwutlenek węgla, chociaż skuteczny w gaszeniu pożarów grupy B i C, nie jest uniwersalnym środkiem, ponieważ może nie zadziałać w przypadku pożarów materiałów stałych. Wybór niewłaściwego środka gaśniczego może prowadzić do poważnych konsekwencji, dlatego kluczowa jest znajomość klasyfikacji pożarów oraz właściwego doboru środków gaśniczych do konkretnej sytuacji. W praktyce, zrozumienie różnic pomiędzy tymi środkami pomaga w podjęciu świadomej decyzji podczas akcji gaśniczej oraz minimalizuje ryzyko wystąpienia dodatkowych strat.

Pytanie 30

Jakie jest medium robocze w systemie hydraulicznym?

A. powietrze sprężone
B. woda pod ciśnieniem
C. olej pod ciśnieniem
D. energia elektryczna
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 31

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. płaskie
B. oczko
C. zapadkowe
D. uniwersalne
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 32

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie skóry dłoni
B. zmiany w układzie kostnym
C. porażenie prądem elektrycznym
D. uszkodzenie narządu słuchu
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 33

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 100 mm
B. 63 mm
C. 80 mm
D. 50 mm
Wybór niepoprawnej średnicy cylindra siłownika pneumatycznego często wynika z niepełnego zrozumienia istoty obliczeń i zastosowanych parametrów. Odpowiedzi o średnicy 63 mm, 50 mm czy 100 mm są niewłaściwe z kilku powodów. W przypadku 63 mm i 50 mm, nie spełniają one wymaganego zapasu mocy, co wynika z analizy obliczonej średnicy 65 mm. Takie podejście często prowadzi do sytuacji, w których siłownik nie ma wystarczającej siły do podnoszenia obciążenia, zwłaszcza gdy uwzględnimy wahania ciśnienia. Z drugiej strony, wybór 100 mm, choć teoretycznie wydaje się bezpieczny, może prowadzić do nieefektywności. Siłowniki o zbyt dużej średnicy mogą generować nadmierny opór, co skutkuje niepotrzebnym zużyciem energii i obciążeniem całego systemu pneumatycznego. Kluczowe jest zrozumienie, że dobór średnicy cylindra musi być zrównoważony, uwzględniając zarówno wymagania obciążeniowe, jak i rzeczywiste warunki pracy. W branży pneumatycznej istnieją standardy, które podkreślają znaczenie zachowania równowagi między mocą a efektywnością, co pozwala uniknąć problemów z wydajnością oraz awariami systemu.

Pytanie 34

Silniki, które mają największy moment rozruchowy to

A. szeregowe prądu stałego
B. asynchroniczne prądu przemiennego
C. synchroniczne prądu przemiennego
D. bocznikowe prądu stałego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 35

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 36

Filtr o charakterystyce pasmowo-zaporowej

A. przepuszcza sygnały o niskich częstotliwościach.
B. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
C. tłumi sygnały o niskich częstotliwościach.
D. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 37

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 5487 obr/min
B. 2916 obr/min
C. 305 obr/min
D. 524 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 38

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc
B. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar
C. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
D. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
Odpowiedź wskazująca na konieczność wymiany elementów filtrów standardowych w zespole przygotowania powietrza podczas przeglądu konserwacyjnego wykonywanego raz w roku lub w przypadku, gdy spadek ciśnienia na filtrze przekroczy 0,5 bara, jest zgodna z najlepszymi praktykami w zakresie utrzymania systemów wentylacyjnych i klimatyzacyjnych. Regularne przeglądy, co najmniej raz w roku, pozwalają na wczesne wykrycie problemów oraz zapewnienie optymalnej wydajności filtrów, co jest kluczowe dla jakości powietrza w pomieszczeniach. W przypadku, gdy spadek ciśnienia na filtrze przekracza 0,5 bara, oznacza to, że filtr jest zanieczyszczony lub zatkany, co może prowadzić do spadku efektywności całego systemu, a w skrajnych przypadkach do uszkodzeń urządzeń. Przykładem zastosowania tej praktyki może być przemysłowe użycie systemów filtracji w halach produkcyjnych, gdzie zanieczyszczenia powietrza mogą wpływać na jakość produktów. W takich przypadkach, regularna wymiana filtrów jest nie tylko zalecana, ale wręcz niezbędna dla zapewnienia ciągłości produkcji oraz ochrony zdrowia pracowników. Ponadto, stosowanie się do zaleceń producenta dotyczących konserwacji i wymiany filtrów pozwala na utrzymanie gwarancji na urządzenia oraz na optymalizację kosztów eksploatacyjnych.

Pytanie 39

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 2 000 mm2
B. 3 000 mm2
C. 1 500 mm2
D. 1 000 mm2
Aby obliczyć powierzchnię czynną tłoka siłownika, należy skorzystać z równania związku między siłą, ciśnieniem i powierzchnią: F = P × A, gdzie F to siła, P to ciśnienie, a A to powierzchnia. W tym przypadku mamy siłę czynną równą 1600 N oraz ciśnienie wynoszące 1 MPa, co odpowiada 1 000 000 Pa. Przekształcamy równanie, aby znaleźć powierzchnię: A = F / P. Po podstawieniu wartości: A = 1600 N / 1 000 000 Pa = 0,0016 m², co po przeliczeniu na milimetry kwadratowe (1 m² = 1 000 000 mm²) daje 1600 mm². Jednak uwzględniając współczynnik sprawności równy 0,8, końcowy wynik wynosi: A = 1600 mm² / 0,8 = 2000 mm². Taka wiedza jest niezbędna w kontekście projektowania i analizy układów hydraulicznych, gdzie dokładność obliczeń ma kluczowe znaczenie dla bezpieczeństwa i efektywności działania systemów. W praktyce, dobrą praktyką jest również przeprowadzenie walidacji wyników przez pomiar rzeczywistych wartości w aplikacjach inżynieryjnych, co pomaga w optymalizacji projektów.

Pytanie 40

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. przełącznik obiegu.
B. rozdzielacz czterodrogowy.
C. zawór zwrotno-dławiący.
D. zawór z popychaczem.
Zawór z popychaczem to kluczowy element w systemach pneumatycznych, który pozwala na manualne sterowanie przepływem powietrza. Posiada charakterystyczny popychacz znajdujący się na górze, który umożliwia włączenie lub wyłączenie przepływu powietrza poprzez nacisk. Tego rodzaju zawory są często używane w aplikacjach, gdzie wymagana jest szybka i intuicyjna kontrola, na przykład w automatyzacji procesów przemysłowych. Standardy dotyczące elementów pneumatycznych, takie jak ISO 1219, określają zasady projektowania i klasyfikacji tych urządzeń, co zapewnia ich niezawodność i bezpieczeństwo. W praktyce zawory z popychaczem są wykorzystywane w systemach napędowych, w maszynach pakujących, a także w urządzeniach stosowanych w przemyśle motoryzacyjnym. Zrozumienie funkcji i zastosowania tego typu zaworów jest niezbędne dla prawidłowego projektowania i eksploatacji systemów pneumatycznych.