Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 29 maja 2025 01:21
  • Data zakończenia: 29 maja 2025 01:34

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Południkiem centralnym odwzorowania Gaussa-Krügera w systemie współrzędnych PL-1992 jest południk

A. 15°
B. 19°
C. 21°
D. 17°
Wybór odpowiedzi 17°, 21° czy 15° wskazuje na niezrozumienie podstawowych zasad funkcjonowania układu współrzędnych PL-1992 oraz odwzorowania Gaussa-Krügera. W kontekście kartografii, południk osiowy stanowi kluczowy element, który określa orientację mapy oraz zapewnia spójność pomiarów geodezyjnych w danym regionie. Odpowiedzi te mogą wynikać z błędnych założeń dotyczących lokalizacji geograficznej Polski, a także mylnej interpretacji systemów odwzorowania. Warto zauważyć, że każdy z tych południków może być używany w różnych odwzorowaniach, ale tylko jeden z nich jest właściwy dla konkretnego regionu. Południki 17°, 21° i 15° mogą być mylone z innymi systemami odwzorowań, co prowadzi do nieporozumień w zakresie ich zastosowania. Często pojawiającym się błędem jest mylenie południków z innymi parametrami geograficznymi, takimi jak równoleżniki, co zaburza zrozumienie struktury systemów geodezyjnych. Aby skutecznie posługiwać się systemem PL-1992, ważne jest zrozumienie, że południk 19° jest optymalny dla tego obszaru, ponieważ minimalizuje zniekształcenia w odwzorowaniu, co jest niezbędne w geodezji i kartografii. Zatem, dla każdego, kto chce pracować w dziedzinie pomiarów geodezyjnych czy tworzenia map, wiedza o odpowiednim południku osiowym jest fundamentalna.

Pytanie 2

Długość odcinka na mapie w skali 1:2 000 wynosi 3 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 6 m
B. 600 m
C. 0,6 m
D. 60 m
Kiedy wybierasz odpowiedzi, które są błędne, jak 6 m, 0,6 m czy 600 m, możesz zauważyć, że tu zachodzą różne błędy. W przypadku 6 m, może to być pomyłka z jednostkami lub po prostu brak zrozumienia koncepcji skali. Skracanie długości od 60 m do 6 m nie ma sensu w rzeczywistości, a 0,6 m sugeruje, że coś się bardzo zmniejszyło, a to jest w sprzeczności z tym, co mamy na mapie. Natomiast 600 m to też zła odpowiedź, bo może świadczyć o myleniu jednostek lub źle wykonanych obliczeniach. Żeby unikać takich pomyłek, ważne jest, żeby zrozumieć, jak skala działa i umieć przeliczać jednostki miary. To przydaje się w wielu dziedzinach, od geodezji po inżynierię. Pamiętaj, żeby starannie podchodzić do obliczeń, bo dokładność się liczy.

Pytanie 3

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 83,3400g
B. 83,3350g
C. 16,6700g
D. 16,6650g
Analizując błędne odpowiedzi, warto zauważyć, że w kontekście obliczania kąta nachylenia α podstawową zasadą jest prawidłowe zrozumienie, czym jest różnica pomiędzy dwoma odczytami lunety. Wybór wartości 83,3350g sugeruje jedynie nieznaczne obniżenie jednego z odczytów, co nie ma logicznego uzasadnienia w kontekście geodezyjnym. Odczyt 83,3400g odnosi się do położenia I lunety, natomiast w położeniu II mamy wartość 316,6700g. Błędne podejście polega na zignorowaniu właściwej metody obliczania różnicy, co prowadzi do mylnego wniosku. Odpowiedź 16,6700g także wydaje się być bliska prawdy, lecz nie uwzględnia różnicy między wyjściowymi odczytami. Istotnym błędem jest także to, że nie wszyscy uwzględniają, iż kąty nachylenia w geodezji są wyrażane jako różnice między odczytami w odniesieniu do poziomu. Z kolei wartość 83,3400g jest jedynie powtórzeniem odczytu z położenia I, co w żaden sposób nie odnosi się do obliczenia kąta nachylenia. W geodezji, dla poprawności pomiarów i analiz, kluczowe jest stosowanie właściwych formuł i zrozumienie kontekstu, w jakim są używane, dlatego tak ważne jest przyswajanie wiedzy na temat standardów i dobrych praktyk w tej dziedzinie.

Pytanie 4

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:1000
B. 1:500
C. 1:5000
D. 1:2000
Odpowiedź 1:1000 jest prawidłowa, ponieważ w układzie PL-2000 arkusz mapy zasadniczej o godle 7.125.30.10.3 jest sporządzony w skali 1:1000. Tego typu skala jest powszechnie stosowana w dokumentacji geodezyjnej, ponieważ pozwala na szczegółowe przedstawienie małych obszarów, takich jak działki budowlane czy obiekty infrastrukturalne. W praktyce, dla geodetów i urbanistów, skala 1:1000 umożliwia precyzyjne planowanie przestrzenne oraz analizę zagospodarowania terenu. Ponadto, zgodnie z obowiązującymi przepisami prawno-geodezyjnymi, mapy w takiej skali muszą spełniać określone standardy jakości, co zapewnia ich użyteczność w procesach decyzyjnych związanych z inwestycjami budowlanymi. Dodatkowo, w kontekście normatywów, skala ta jest uznawana za optymalną dla przedstawienia szczegółowych informacji, takich jak granice działek, ukształtowanie terenu, czy lokalizację istniejącej infrastruktury. W związku z tym, posługiwanie się skalą 1:1000 w arkuszach mapy zasadniczej jest nie tylko zgodne z wymaganiami, ale również efektywne z punktu widzenia praktycznego zastosowania w geodezji i urbanistyce.

Pytanie 5

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. ul.
B. al.
C. pl.
D. dr.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 6

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. rodzaje
B. kategorie
C. grupy
D. klasy
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 7

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. ZP
B. US
C. MW
D. U
Wprowadzenie w błąd przez wybór innego symbolu może mieć poważne konsekwencje dla planowania przestrzennego. Symbol U oznacza tereny usługowe, co nie precyzuje rodzaju usług, które mogą być tam świadczone; to może prowadzić do niejasności w kontekście działalności sportowej, która wymaga specyficznych warunków. Z kolei symbol MW oznacza tereny zabudowy mieszkaniowej wielorodzinnej, co jest absolutnie niezgodne z przeznaczeniem obszarów rekreacyjnych. Tereny te powinny być dedykowane dla aktywności fizycznej i rekreacji, a nie dla budownictwa mieszkaniowego, co mogłoby negatywnie wpłynąć na jakość życia mieszkańców. Symbol ZP, który oznacza tereny zieleni publicznej, również nie oddaje pełnej specyfiki obiektów sportowych, które są bardziej złożone niż sama zieleń. Wybór nieodpowiednich symboli może prowadzić do nieprawidłowego zagospodarowania przestrzeni, co w praktyce skutkuje brakiem odpowiednich obiektów sportowych i rekreacyjnych w danym regionie. Warto pamiętać, że każdy symbol w planie zagospodarowania przestrzennego ma swoje konkretne znaczenie i przeznaczenie, dlatego kluczowe jest zrozumienie ich funkcji oraz trzymanie się uznanych standardów i norm. Ignorowanie tych zasad może skutkować nieefektywnym wykorzystaniem przestrzeni i frustracją społeczności lokalnych, które oczekują dostępu do profesjonalnych obiektów sportowych.

Pytanie 8

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. rejestru cen oraz wartości nieruchomości
B. geodezyjnej ewidencji infrastruktury terenowej
C. ewidencji gruntów i budynków (katastru nieruchomości)
D. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
Niepoprawne odpowiedzi nawiązuą do różnych aspektów zarządzania danymi geodezyjnymi, jednak żadna z nich nie odnosi się bezpośrednio do centralnego zasobu geodezyjnego i kartograficznego w kontekście podstawowych osnów geodezyjnych. Rejestr cen i wartości nieruchomości, choć istotny w obszarze wyceny i obrotu nieruchomościami, nie jest związany bezpośrednio z fundamentami geodezji, a tym samym nie odzwierciedla kluczowych danych potrzebnych do precyzyjnych pomiarów przestrzennych. Ewidencja gruntów i budynków, znana również jako kataster, koncentruje się na dokumentacji własności i użytkowania gruntów, co jest ważne, ale nie obejmuje danych geodezyjnych dotyczących osnów. Geodezyjna ewidencja sieci uzbrojenia terenu natomiast dotyczy infrastruktury podziemnej, takiej jak wodociągi czy sieci elektryczne, a nie zasadniczych punktów odniesienia. Każda z tych pomyłek wynika z błędnego rozumienia roli centralnego zasobu geodezyjnego oraz jego znaczenia w kontekście precyzyjnego pomiaru i lokalizacji obiektów. Aby uniknąć takich nieporozumień, istotne jest zrozumienie, że ustalenie osnów geodezyjnych jest fundamentem dla wszystkich innych danych geodezyjnych i kartograficznych, na których opierają się analizy przestrzenne i planowanie.

Pytanie 9

Jakim znakiem geodezyjnym powinno się zaznaczyć punkt sytuacyjnej osnowy pomiarowej na twardej nawierzchni drogi?

A. Słupek marmurowy
B. Bolec metalowy
C. Palik drewniany
D. Słupek betonowy
Bolec metalowy jest odpowiedni do oznaczania punktów osnowy pomiarowej na utwardzonych nawierzchniach, takich jak jezdnie, ze względu na swoje właściwości trwałości oraz odporności na uszkodzenia mechaniczne. W praktyce geodezyjnej, stosowanie bolców metalowych pozwala na precyzyjne wytyczanie punktów, które są często narażone na mechaniczne obciążenia wynikające z ruchu drogowego. Metalowy bolec można łatwo zamontować w nawierzchni, co minimalizuje konieczność ingerencji w strukturę jezdni, w przeciwieństwie do słupków betonowych czy marmurowych, które wymagają bardziej skomplikowanego przygotowania terenu. Dodatkowo, standardy pomiarowe, takie jak normy ISO dotyczące geodezji, zalecają stosowanie trwałych i łatwych do identyfikacji znaczników, co czyni bolec metalowy najlepszym wyborem. W praktyce, zastosowanie bolców metalowych zapewnia długotrwałą widoczność punktów pomiarowych, co jest kluczowe dla dokładności i wiarygodności pomiarów geodezyjnych.

Pytanie 10

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Wysokości punktów terenu
B. Numery obiektów
C. Sytuacyjne szczegóły terenowe
D. Domiary prostokątne
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 11

Podstawowym krokiem w procesie tworzenia pierwotnej mapy tradycyjną metodą jest umieszczenie na arkuszu ramki sekcyjnej oraz siatki kwadratów. Jakim narzędziem nie można przenieść siatki kwadratów na zdefiniowany arkusz?

A. Podziałki transwersalnej i kroczka
B. Nanosnika biegunowego
C. Koordynatografu
D. Kwadratnicy z nakłuwaczem
Koordynatograf, kwadratnica z nakłuwaczem oraz podziałka transwersalna i kroczek to narzędzia, które w różny sposób mogą być wykorzystane do nanoszenia siatki kwadratów na arkusz mapy. Koordynatograf to kluczowy instrument w kartografii, który pozwala na precyzyjne przenoszenie współrzędnych i naznaczanie punktów w siatce, co jest niezbędne przy tworzeniu dokładnych map. Jego konstrukcja umożliwia łatwe i szybkie ustawienie punktów w odpowiednich miejscach. Kwadratnica z nakłuwaczem to narzędzie, które umożliwia tworzenie siatki poprzez nakłuwanie otworów w odpowiednich odstępach, co jest przydatne, gdy chcemy uzyskać wysoce precyzyjne podziały. Z kolei podziałka transwersalna i kroczek służą do pomiarów i nanoszenia podziałów, co również wspiera proces tworzenia siatki. Warto zauważyć, że każdy z tych instrumentów ma swoje specyficzne zastosowanie i w odpowiednich warunkach może znacznie ułatwić pracę. Błędy w wyborze narzędzi do nanoszenia siatki mogą prowadzić do nieprecyzyjnych odwzorowań i w efekcie do poważnych pomyłek w późniejszych analizach geodezyjnych czy kartograficznych.

Pytanie 12

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Ortogonalną oraz niwelacji trygonometrycznej
B. Biegunową oraz niwelacji trygonometrycznej
C. Biegunową oraz niwelacji geometrycznej
D. Ortogonalną oraz niwelacji geometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 13

Jakie znaczenie ma oznaczenie mz1 1 na mapie zasadniczej?

A. Wieżowiec.
B. Dom w zabudowie szeregowej
C. Budynek mieszkalny.
D. Jednorodzinny dom.
Zapis 'mz1 1' na mapie zasadniczej oznacza wieżowiec i jest zgodny z obowiązującymi standardami klasyfikacji obiektów budowlanych. Wieżowce to budynki, które przekraczają określoną wysokość, co czyni je dominującymi elementami w krajobrazie urbanistycznym. W praktyce, wieżowce są projektowane w sposób umożliwiający maksymalne wykorzystanie przestrzeni, co jest istotne w gęsto zabudowanych obszarach miejskich. Często pełnią funkcje mieszkalne, biurowe lub komercyjne. W kontekście planowania przestrzennego, zrozumienie tej klasyfikacji jest kluczowe dla urbanistów i architektów, ponieważ wpływa na decyzje dotyczące zagospodarowania terenu oraz wytycznych budowlanych. Przykładowo, przy planowaniu nowego osiedla w obrębie miasta, wiedza o tym, jak klasyfikować budynki, pozwala na lepsze dostosowanie infrastruktury do potrzeb mieszkańców oraz na utrzymanie harmonii w krajobrazie miejskim. Obiekty te często wymagają również specjalnych rozwiązań inżynieryjnych, takich jak systemy przeciwpożarowe i windy o dużej wydajności, co może wpływać na koszty budowy i późniejszej eksploatacji.

Pytanie 14

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Planowana skala mapy
B. Liczba osób przeprowadzających pomiar
C. Metoda realizacji rysunku polowego
D. Typ używanego sprzętu pomiarowego
Gęstość i rozmieszczenie pikiet w pomiarze wysokościowym terenu są ściśle związane z przewidywaną skalą mapy, która ma być rezultatem tego pomiaru. Skala mapy określa, jak szczegółowo mają być przedstawione dane na finalnym produkcie. Im mniejsza skala, tym mniej szczegółów musi być uwzględnionych, co może prowadzić do zmniejszenia gęstości pikiet. Z kolei przy większej skali, gdzie każdy detal terenu jest istotny, pikiety muszą być gęsiej rozmieszczone, aby uchwycić wszystkie istotne zmiany wysokości i ukształtowania terenu. Przykładowo, przy pomiarze terenu do małej skali, np. 1:50000, wystarczy mniej punktów pomiarowych, podczas gdy przy skali 1:5000 konieczne może być znacznie więcej pikiet, aby oddać wszystkie niuanse terenu. W praktyce, standardy takie jak ISO 19111 dotyczące geoinformacji podkreślają znaczenie odpowiedniego rozmieszczenia punktów pomiarowych w zależności od końcowego celu mapy, co jest kluczowe dla rzetelności i dokładności wyników pomiarów wysokościowych.

Pytanie 15

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +5cc
B. +15cc
C. +10cc
D. +20cc
Rozważając inne możliwe odpowiedzi, warto zauważyć, że pomyłki w obliczeniach wartości błędu indeksu często wynikają z niezrozumienia relacji pomiędzy kątami pomierzonymi a teoretycznymi wartościami. Na przykład, wybór +10cc mógłby sugerować, że pomiar został zinterpretowany jako mniejszy błąd, co jest mylnym wnioskiem przy skomplikowanej analizie kątów. Inne opcje, takie jak +20cc, +15cc, także mogą wynikać z błędnego założenia o pełnym obrocie lunety. Zrozumienie podstaw metody pomiarowej oraz znajomość geodezyjnych norm i praktyk jest kluczowe. Kiedy luneta jest nieodpowiednio skalibrowana, pomiary mogą przynieść zafałszowane wyniki. Należy pamiętać, że błąd indeksu jest istotny dla precyzyjnych pomiarów w geodezji, a jego właściwe obliczenie ma kluczowe znaczenie dla dokładności całego procesu pomiarowego. Dlatego też każdy, kto pracuje z instrumentami geodezyjnymi, powinien być świadomy potencjalnych źródeł błędów oraz regularnie dokonywać kalibracji sprzętu.

Pytanie 16

W celu ustabilizowania punktu osnowy realizacyjnej można zastosować

A. ceramiczną rurkę
B. drewniany palik
C. znak wykonany z kamienia
D. narysowany znak
Znak z kamienia to naprawdę jedna z najlepszych opcji, jeśli chodzi o stabilizację punktu osnowy w geodezji. Kamień jest mega odporny na różne warunki pogodowe, co sprawia, że pomiary są bardziej precyzyjne i trwałe. W praktyce często wykorzystuje się je w miejscach, gdzie punkty odniesienia muszą być stabilne przez dłuższy czas, na przykład w sieciach geodezyjnych. Z tego co wiem, istotne jest, żeby umiejscowienie tych znaków było zgodne z normami, takimi jak PN-EN ISO 19152, które mówią, jak powinno się je zakupywać i instalować. Ważne, żeby były oznaczone tak, żeby łatwo je było znaleźć w przyszłości, co jest kluczowe dla dokładności pomiarów. W realnym świecie, użycie takiego znaku z kamienia ułatwia odnajdywanie punktów podczas kolejnych prac geodezyjnych. Naprawdę warto w to zainwestować.

Pytanie 17

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 25 m
B. 30 m
C. 20 m
D. 15 m
Dopuszczalna długość rzędnej wynosząca 25 m w pomiarach sytuacyjnych konturów budynków przy zastosowaniu metody domiarów prostokątnych jest zgodna z zaleceniami norm i standardów pomiarowych. Taka długość pozwala na efektywne wykonywanie pomiarów, minimalizując jednocześnie błędy związane z nieprawidłowym przenoszeniem wymiarów. Przykładowo, przy pomiarach na większych dystansach, błędy kumulacyjne mogą znacząco wpłynąć na dokładność wyników. Dlatego stosowanie rzędnych o długości 25 m jest praktycznym rozwiązaniem, które zapewnia równocześnie wysoką precyzję i efektywność pracy. W praktyce, taki wymiar pozwala na zastosowanie odpowiednich narzędzi pomiarowych, takich jak dalmierze optyczne, które są zoptymalizowane do pracy w takich odległościach. Dobrą praktyką jest także regularne kalibrowanie sprzętu, co dodatkowo zwiększa dokładność pomiarów. W kontekście przepisów budowlanych oraz norm geodezyjnych, długość rzędnej powinna być dostosowana do specyfiki terenu oraz rodzaju budowli, co czyni znajomość tego zagadnienia niezwykle istotnym elementem pracy geodety.

Pytanie 18

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. katastralnego
B. szacunkowego
C. pomiarowego
D. technicznego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.

Pytanie 19

Zbiór punktów o współrzędnych X, Y ustalonych w sieciach geodezyjnych o najwyższej precyzji określamy mianem osnowy

A. podstawową
B. dokładną
C. pomiarową
D. niwelacyjną
Osnowa geodezyjna to zbiór punktów o znanych współrzędnych, stanowiących podstawę do prowadzenia prac pomiarowych w geodezji. Wyróżnia się osnowę geodezyjną podstawową, która charakteryzuje się najwyższą dokładnością i stabilnością. Punkty te są wykorzystywane jako referencyjne w procesie pomiarowym, co zapewnia wysoką jakość i precyzję wyników. Osnowa podstawowa jest podstawą dla dalszej analizy i opracowywania danych w geodezji, jak również w infrastrukturze, takiej jak budownictwo i planowanie przestrzenne. Przykłady zastosowania osnowy podstawowej obejmują wytyczanie granic działek, pomiary inżynieryjne oraz tworzenie map topograficznych. W praktyce, dokładność osnowy podstawowej może wynikać z zastosowania technologii, takich jak GNSS, które umożliwiają precyzyjne określenie położenia punktów w przestrzeni. Zgodnie z normami geodezyjnymi, osnowa podstawowa jest niezbędna dla zapewnienia wiarygodności i spójności danych geodezyjnych w danym obszarze.

Pytanie 20

W jakim dokumencie, będącym częścią każdego operatu geodezyjnego, określone są: cel i zakres rzeczowy oraz terytorialny przeprowadzonych prac, czas realizacji prac geodezyjnych oraz identyfikator zgłoszenia dotyczącego pracy geodezyjnej?

A. W wykazie robót geodezyjnych
B. Na szkicu polowym
C. W dzienniku pomiarów
D. W sprawozdaniu technicznym
Sprawozdanie techniczne stanowi kluczowy dokument w operacie geodezyjnym, w którym szczegółowo opisane są cel oraz zakres rzeczowy i terytorialny wykonanych prac geodezyjnych. Jego istotą jest nie tylko dokumentacja wykonanych czynności, ale również pełna identyfikacja projektu, co jest zgodne z wymogami standardów geodezyjnych. Sprawozdanie zawiera również informacje o okresie realizacji prac oraz identyfikatorze zgłoszenia, co umożliwia efektywne zarządzanie danymi i ich późniejszą weryfikację przez organy nadzoru. Przykładowo, w przypadku kontroli jakości wykonanych usług geodezyjnych, sprawozdanie techniczne stanowi nieocenione źródło informacji, pozwalające na ocenę zgodności z założeniami projektowymi i regulacjami prawnymi. Zastosowanie sprawozdania technicznego jako podstawy w dokumentacji geodezyjnej jest zgodne z dobrymi praktykami w branży, które kładą nacisk na transparentność i rzetelność w dokumentacji geodezyjnej.

Pytanie 21

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔXAB < 0 oraz ΔYAB < 0?

A. 0100g
B. 300400g
C. 200300g
D. 100200g
Azymut boku AB, w którym różnice współrzędnych ΔXAB i ΔYAB są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 22

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Nanośnika biegunowego
B. Koordynatografu
C. Nanośnika prostokątnego
D. Współrzędnika
Wybierając nanośnik biegunowy, współrzędnik lub nanośnik prostokątny, można wprowadzić do procesu opracowywania map błędne założenia dotyczące precyzji i dokładności. Nanośnik biegunowy, mimo iż potrafi wspierać pomiar na powierzchni, nie jest narzędziem zoptymalizowanym do tworzenia ramki sekcyjnej czy siatki na mapie. Jego zastosowanie jest bardziej związane z określaniem kierunków, a nie precyzyjnym nanoszeniem detali. W przypadku współrzędnika, jego konstrukcja może wprowadzać ograniczenia w dokładności pomiaru, co jest kluczowe w kontekście opracowywania map. Z kolei nanośnik prostokątny, choć bywa używany do wyznaczania obszarów, nie oferuje tego samego poziomu wsparcia w precyzyjnym nanoszeniu siatek, co koordynatograf. Często błędem jest mylenie funkcji tych narzędzi, co może prowadzić do poważnych nieścisłości w opracowywanych mapach. Profesjonalne podejście do kartografii wymaga zrozumienia, że każdy instrument ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może skutkować obniżeniem standardów jakościowych, co jest nieakceptowalne w branży, gdzie precyzja jest kluczowa.

Pytanie 23

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/5000
B. 1/2000
C. 1/1000
D. 1/4000
Aby zrozumieć, dlaczego inne odpowiedzi są nieprawidłowe, warto przyjrzeć się, jak oblicza się błąd względny i jakie są typowe błędy w jego interpretacji. Niektórzy mogą mylnie uznawać, że błąd względny można obliczyć w inny sposób, na przykład poprzez dodanie lub pomnożenie błędu do wartości pomiarowej, co prowadzi do błędnych wyników. Inna powszechna mylna koncepcja dotyczy pomijania przeliczeń jednostek. Przykładowo, odpowiedzi, które sugerują błędne wartości, mogą wynikać z nieprawidłowego przeliczenia błędu z centymetrów na metry lub z błędnych założeń dotyczących wartości bazowej. Podczas obliczania błędu względnego kluczowe jest, aby błąd zawsze odnosił się do wartości, która jest analizowana, w tym przypadku 120 m. Każdy błąd w tym podejściu prowadzi do niepoprawnych wyników, co może mieć istotne konsekwencje w praktyce inżynieryjnej, gdzie precyzja jest kluczowa. Przykładowo, w budownictwie lub geodezji, nieprawidłowe obliczenia mogą skutkować błędnymi pomiarami, co z kolei może prowadzić do poważnych problemów w realizacji projektów.

Pytanie 24

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. informacyjnego
B. ewidencyjnego
C. komunikacyjnego
D. teleinformatycznego
System teleinformatyczny jest kluczowym narzędziem w procesie pozyskiwania, ewidencjonowania, przechowywania, udostępniania oraz zabezpieczania materiałów z państwowego zasobu geodezyjnego i kartograficznego. Dzięki zastosowaniu nowoczesnych technologii informacyjnych, możliwe jest zautomatyzowanie wielu procesów, co przyspiesza i upraszcza pracę. Przykładem może być wykorzystanie systemów GIS (Geographic Information Systems), które umożliwiają analizowanie i wizualizowanie danych przestrzennych. W praktyce, instytucje takie jak ośrodki dokumentacji geodezyjnej i kartograficznej korzystają z teleinformatycznych systemów zarządzania danymi, co zapewnia ich aktualność, integralność oraz bezpieczeństwo. Zgodnie z normami ISO/IEC 27001, należy wdrażać odpowiednie środki ochrony danych, co jest realizowane poprzez technologie szyfrowania oraz systemy kontroli dostępu. Poprawne wdrożenie systemu teleinformatycznego znacząco podnosi jakość usług świadczonych przez administrację publiczną w zakresie geodezji i kartografii.

Pytanie 25

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. I
B. III
C. II
D. IV
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 26

Jaką wartość ma korekta kątowa dla jednego kąta w zamkniętym ciągu poligonowym, jeżeli ciąg ten zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vk = +6cc
B. Vk = +5cc
C. Vk = -6cc
D. Vk = -5cc
Wartość poprawki kątowej do jednego kąta w ciągu poligonowym zamkniętym oblicza się na podstawie ogólnej zasady, że suma kątów wewnętrznych n-kąta w postaci: (n-2) * 180°. W przypadku poligonu zamkniętego, gdzie mamy 5 kątów, oczekiwana suma kątów powinna wynosić (5-2) * 180° = 540°. Odchyłka kątowa, fα = +30cc, oznacza, że całkowita suma kątów zamyka się z błędem pomiarowym, co wpływa na konieczność wprowadzenia poprawek. Zatem, aby skorygować pomiar, stosujemy wzór na poprawkę kątową Vk = fα / n, gdzie n to liczba kątów. W tym przypadku Vk = +30cc / 5 = +6cc. Jednakże w kontekście zamkniętego poligonu, w którym zaszła odchyłka, musimy dodać dodatkową poprawkę wynikającą z błędu pomiarowego, co prowadzi do obliczenia wartości korygującej na -6cc, aby uzyskać zamknięcie poligonu. Praktyczne zastosowanie tej wiedzy ma miejsce w geodezji, gdzie dokładność pomiarów kątowych jest kluczowa przy tworzeniu map i pomiarach terenowych.

Pytanie 27

Jak wielki jest maksymalny dopuszczalny średni błąd lokalizacji punktu w pomiarowej osnowie wysokościowej w odniesieniu do najbliższych punktów wysokościowej osnowy geodezyjnej?

A. 0,07 m
B. 0,05 m
C. 0,01 m
D. 0,03 m
Odpowiedzi sugerujące błędne wartości, takie jak 0,07 m, 0,03 m czy 0,01 m, wynikają z niepełnego zrozumienia wymagań dotyczących precyzji pomiarów w geodezji. Wartość 0,07 m jest zbyt duża, co wskazuje na lekceważenie standardów dokładności wymaganych w procesie budowy osnowy geodezyjnej. Tego rodzaju błąd może prowadzić do poważnych nieścisłości w pomiarach, co w praktyce skutkuje błędnymi danymi wysokościowymi, a w konsekwencji problemami w projektach budowlanych. W przypadku wartości 0,03 m i 0,01 m, można zauważyć, że są one zbyt restrykcyjne w kontekście dopuszczalnych błędów w osnowie wysokościowej. Osiągnięcie takiej dokładności w codziennych pomiarach wymagałoby skomplikowanych procedur oraz kosztownego sprzętu, co może być niepraktyczne w wielu zastosowaniach. Dlatego kluczowe jest, aby geodeci rozumieli, jakie są rzeczywiste wymagania dotyczące dokładności oraz jakie wartości są realistyczne i akceptowalne w kontekście wykonywanych prac. Zbyt niska tolerancja na błąd może prowadzić do niepotrzebnego zwiększenia kosztów oraz wydłużenia czasu realizacji projektu bez proporcjonalnych korzyści w dokładności pomiarów.

Pytanie 28

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości poziomej i kąta pionowego
B. odległości poziomej i kąta poziomego
C. odległości pionowej i kąta pionowego
D. odległości pionowej i kąta poziomego
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 29

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Archiwum Geodezyjnego
B. Państwowego Zasobu Geodezyjnego i Kartograficznego
C. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
D. Banku Danych Lokalnych
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 30

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 10%
B. iAB = 1%
C. iAB = 5%
D. iAB = 0,5%
Prawidłowa odpowiedź to iAB = 1%. Aby obliczyć pochylenie linii łączącej dwa punkty A i B na podstawie odległości międzywarstwicowej oraz różnicy wysokości, stosujemy wzór na pochylenie, które wyraża się jako stosunek różnicy wysokości do poziomej odległości między punktami. W tym przypadku różnica wysokości wynosi 0,5 m, a pozioma odległość wynosi 50 m. Zatem pochylenie wyliczamy według wzoru: iAB = (wysokość / odległość) * 100%. Czyli: iAB = (0,5 m / 50 m) * 100% = 1%. Pochylenie to istotny parametr w geodezji, inżynierii lądowej oraz w planowaniu przestrzennym, ponieważ wpływa na projektowanie dróg, infrastruktury oraz systemów odwodnienia. Przykład praktycznego zastosowania można znaleźć w projektowaniu dróg, gdzie odpowiednie pochylenie zapewnia bezpieczną jazdę i efektywne odprowadzanie wody opadowej. Ponadto, znajomość pochylenia warstwic jest kluczowa w ocenie stabilności gruntów i w budownictwie. W kontekście standardów, pochylenia powinny być zgodne z wytycznymi zawartymi w normach geodezyjnych oraz budowlanych.

Pytanie 31

Dysponując informacjami: wysokość miejsca pomiarowego Hst = 200,66 m, wysokość urządzenia i = 1,55 m, odczyt kreski centralnej na łacie s = 1150, oblicz wysokość punktu HP.

A. HP = 203,36 m
B. HP = 200,26 m
C. HP = 197,96 m
D. HP = 201,06 m
Wszystkie niepoprawne odpowiedzi wynikają z błędów w interpretacji przepisów dotyczących obliczania wysokości punktu pomiarowego. Często spotykanym błędem jest pomijanie konwersji jednostek lub nieprawidłowe uwzględnianie wartości w wzorze. Na przykład, niektóre osoby mogą zignorować fakt, że odczyt kreski środkowej na łacie s powinien być przeliczony na metry, co prowadzi do błędnych obliczeń. W przypadku takiego pytania, kluczowe jest, aby pamiętać, że odczyt na łacie jest wartością, którą należy odjąć od sumy wysokości instrumentu i wysokości stanowiska. Ponadto, wiele osób myli wysokość instrumentu z wysokością punktu pomiarowego, co prowadzi do obliczeń, które nie mają sensu w kontekście geodezji. Często, w procesie nauczania, pojawiają się upraszczające założenia, które mogą wprowadzać w błąd. W rzeczywistości, każdy z tych elementów jest istotny dla uzyskania dokładności pomiarów, co jest kluczowe w zastosowaniach geodezyjnych, takich jak skanowanie terenu czy projektowanie infrastruktury. Dlatego, aby skutecznie przeprowadzić obliczenia, należy przestrzegać standardów metodycznych oraz praktyk obowiązujących w branży, co pozwala na uniknięcie typowych pułapek podczas realizacji pomiarów.

Pytanie 32

Geodezyjne pomiary sytuacyjne w terenie nie mogą być realizowane za pomocą metod

A. biegunowej.
B. ortogonalną (domiarów prostokątnych).
C. wcięć kątowych, liniowych i kątowo-liniowych.
D. skaningu laserowego.
Skaning laserowy to naprawdę fajna technika pomiarowa. Działa na zasadzie zbierania danych za pomocą skanera laserowego, co sprawia, że jest bardzo efektywna, zwłaszcza w geodezyjnych pomiarach terenowych. Choć nie jest to typowa metoda, to pozwala na zbieranie ogromnej ilości punktów danych w krótkim czasie. Dzięki temu możemy stworzyć bardzo szczegółowy model 3D terenu. W projektach budowlanych to może być super przydatne, bo pozwala szybko i dokładnie dokumentować istniejące budynki czy inne obiekty. To jest mega ważne, gdy planujemy coś nowego. Ważne jest, aby pamiętać, że skanowanie laserowe powinno być robione w odpowiednich warunkach, a wyniki warto sprawdzić tradycyjnymi metodami, żeby mieć pewność co do jakości tych danych.

Pytanie 33

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. szkicu dokumentacyjnym
B. mapie zasadniczej
C. szkicu inwentaryzacyjnym
D. mapie ewidencyjnej
Szkic inwentaryzacyjny, mapa ewidencyjna i mapa zasadnicza to dokumenty, które mają różne role w geodezji i kartografii, ale nie nadają się do nanoszenia współrzędnych punktów osnowy realizacyjnej tak, jak szkic dokumentacyjny. Szkic inwentaryzacyjny pokazuje stan obiektów budowlanych i infrastruktury, a jego głównym celem jest odzwierciedlenie stanu fizycznego obiektów. Mapa ewidencyjna zajmuje się rejestracją danych o gruntach i ich użytkowaniu, a nie tak dokładnym przedstawieniem współrzędnych punktów osnowy. Mapa zasadnicza w ogóle dostarcza ogólnych informacji o terenie, pokazując cechy topograficzne i administracyjne, ale nie sprawdzi się przy dokumentacji dokładnych pomiarów. Dużo ludzi myśli, że te mapy i szkice można używać zamiennie, co wprowadza w błąd i może prowadzić do problemów przy późniejszych pracach geodezyjnych. Ważne, żeby rozumieć różnice między tymi dokumentami i ich zastosowaniem, bo to klucz do wiarygodnych wyników w geodezji i zgodności ze standardami w branży.

Pytanie 34

Jakiego zestawu sprzętu należy użyć do przeprowadzenia pomiaru różnic wysokości metodą niwelacji geometrycznej?

A. Teodolit optyczny, statyw, łata niwelacyjna
B. Tachimetr elektroniczny, statyw, tyczka z lustrem
C. Niwelator precyzyjny, statyw, tyczka z lustrem
D. Niwelator techniczny, statyw, łata niwelacyjna
Niwelator techniczny to kluczowe narzędzie do wykonywania dokładnych pomiarów różnic wysokości, które są niezbędne w wielu dziedzinach, takich jak budownictwo, inżynieria lądowa i geodezja. Użycie niwelatora w połączeniu z odpowiednim statywem i łata niwelacyjną zapewnia wysoką precyzję i powtarzalność pomiarów. Niwelator techniczny działa na zasadzie emisji promieni świetlnych, które umożliwiają precyzyjne określenie różnicy wysokości pomiędzy punktami. W praktyce, operator ustawia niwelator na statywie w punkcie odniesienia, a następnie korzysta z łaty niwelacyjnej umieszczonej na punkcie, którego wysokość chcemy zmierzyć. Różnice wysokości odczytuje się z podziałki na łacie, co pozwala na uzyskanie dokładnych wartości. Stosowanie takich narzędzi nie tylko spełnia normy branżowe, ale również zapewnia zgodność z wymaganiami projektów budowlanych, gdzie precyzja jest kluczowa dla sukcesu realizacji. Warto również zaznaczyć, że metody niwelacji geometrycznej są powszechnie stosowane w praktyce do różnorodnych zastosowań, w tym do projektowania i budowy infrastruktury, co czyni je istotnym elementem edukacji technicznej.

Pytanie 35

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2742 m
B. 2472 m
C. 2724 m
D. 2427 m
Punkt na profilu podłużnym zapisany jako 2/4+27 oznacza, że znajduje się on 2427 metrów od początku trasy. Taki zapis jest standardem w dokumentacji inżynieryjnej i geodezyjnej, gdzie '2' to numer odcinka trasy, '4' to numer kilometra, a '+27' to dodatkowe metry. Zrozumienie tego formatu jest kluczowe w pracach związanych z projektowaniem infrastruktury drogowej oraz kolejowej. Na przykład, gdy inżynierowie planują prace remontowe, muszą precyzyjnie określić lokalizację, aby uniknąć błędów i zapewnić bezpieczeństwo. W praktyce, takie zapisy pomagają w identyfikacji miejsc, w których potrzebne są interwencje, a także w komunikacji między różnymi zespołami roboczymi. Dobre praktyki branżowe zalecają stosowanie jednoznacznego systemu numeracji, co ułatwia lokalizację punktów kontrolnych i zarządzanie projektem. Warto również zwrócić uwagę na znaczenie precyzyjnych zapisów w kontekście zarządzania projektem, co pozwala na dokładne planowanie zasobów i terminów realizacji zadań.

Pytanie 36

Na czym polega metoda niwelacji trygonometrycznej?

A. Na określaniu współrzędnych punktów za pomocą GPS, co nie jest związane z niwelacją trygonometryczną.
B. Na obliczaniu różnic wysokości na podstawie pomiarów kątów i odległości.
C. Na tworzeniu profili terenu za pomocą modelowania 3D, co nie dotyczy bezpośrednio pomiarów wysokościowych.
D. Na bezpośrednim pomiarze długości przy użyciu miarki, co nie ma związku z pomiarami wysokościowymi.
Metoda niwelacji trygonometrycznej jest jedną z kluczowych technik stosowanych w geodezji do pomiaru różnic wysokości między punktami terenowymi. Polega ona na wykorzystaniu pomiarów kątów oraz odległości poziomych lub skośnych, aby obliczyć różnice wysokości. Metoda ta wykorzystuje trygonometrię, w szczególności funkcje trygonometryczne, takie jak sinus i tangens, do przekształcenia danych kątowych i odległościowych w różnice wysokości. Dzięki temu można precyzyjnie określić wysokość punktów w terenie bez konieczności fizycznego przemieszczania się między nimi. W praktyce, niwelacja trygonometryczna jest stosowana w sytuacjach, gdy teren jest trudny do przebycia lub gdy pomiary wymagają dużej dokładności, np. w budownictwie mostów czy tuneli. Dodatkowo, ta technika jest przydatna w miejscach, gdzie niemożliwe jest zastosowanie tradycyjnych metod niwelacji, takich jak niwelacja geometryczna. Korzystanie z tej metody wymaga jednak precyzyjnych instrumentów, takich jak tachimetry, oraz umiejętności analizy danych pomiarowych w kontekście matematycznym. Metoda ta jest zgodna z normami i standardami geodezyjnymi, co czyni ją niezastąpioną w wielu profesjonalnych zastosowaniach.

Pytanie 37

W ciągu niwelacyjnym teoretyczna suma różnic wysokości, mająca wartość 0 m, jest uzyskiwana w przypadku

A. zamkniętego.
B. otwartego.
C. jednostronnie nawiązanego.
D. dwustronnie nawiązanego.
W przypadku niwelacji zamkniętej teoretyczna suma różnic wysokości wynosi 0 m, co oznacza, że po wykonaniu pomiarów w terenie i powrocie do punktu wyjścia, uzyskujemy taki sam poziom odniesienia. Taki układ pomiarowy minimalizuje błędy systematyczne i pozwala na dokładne określenie różnic wysokości między punktami. W praktyce niwelacja zamknięta jest stosowana w sytuacjach, gdzie wymagane są wysokie standardy dokładności, na przykład przy budowie infrastruktury drogowej, mostów czy budynków. W standardach branżowych, takich jak normy PN-EN 17123, podkreśla się znaczenie niwelacji zamkniętej jako metody o niskiej podatności na błędy pomiarowe. Wiedza na temat tej metody jest kluczowa dla inżynierów i geodetów, ponieważ pozwala na uzyskanie wiarygodnych pomiarów, co jest niezbędne w procesie projektowania i realizacji inwestycji budowlanych.

Pytanie 38

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 400 m
B. 150 m
C. 600 m
D. 250 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 39

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. niwelacji geometrycznej
B. tachimetryczną
C. niwelacji trygonometrycznej
D. biegunową
Wielu ludzi może mieć problem z różnicowaniem metod niwelacji, co czasami prowadzi do złych wyborów. Metoda biegunowa, która opiera się na pomiarze kątów i odległości z jednego punktu, nie bierze pod uwagę kilku ważnych spraw przy przestrzennym wcięciu w przód. Moim zdaniem, trochę mylące jest też myślenie, że metoda tachimetryczna, mimo swojego zaawansowania, dotyczy tylko pomiaru kątów i odległości, a to jakoś nie wystarcza do dokładnych obliczeń wysokości. A jeśli chodzi o niwelację geometryczną, to chociaż działa w pomiarze różnic wysokości, to nie wykorzystuje kątów w taki sposób, żeby skutecznie zastosować wcięcie w przód. Często też mylą się pojęcia związane z tymi metodami, co prowadzi do pomyłek i źle dobranych technik w pracy geodezyjnej. Ważne jest, żeby zrozumieć, że każda z tych metod ma swoje plusy i minusy, a niwelacja trygonometryczna to tylko jedno z wielu narzędzi, które umożliwiają precyzyjne pomiary w terenie. Dobrze zrozumiane podstawy tych metod i ich odpowiednie zastosowanie są kluczowe dla każdego geodety.

Pytanie 40

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 500 m
B. 600 m
C. 400 m
D. 300 m
Wybieranie długości boków w poligonach na 300 m, 400 m albo 600 m to nie najlepszy pomysł. Przy takich długościach możemy natknąć się na naprawdę dużo problemów, które mogą zaburzyć pomiar. Zwłaszcza te powyżej 500 m mocno zwiększają ryzyko błędów, a te są trudne do naprawienia. Jak mamy długie odcinki, jak na przykład 600 m, to różne czynniki, jak pogoda, mogą łatwo wpłynąć na wyniki, co sprawia, że stają się mniej pewne. Trudniej też wtedy zapewnić dobre odniesienia w pomiarach, co jest mega ważne, gdy robimy poligonizację. Pamiętaj, żeby dbać o równomierny rozkład punktów, żeby uniknąć błędów i uzyskać bardziej wiarygodne dane. W praktyce, geodeci zazwyczaj wybierają długości w zakresie 150 m do 500 m, co jest zgodne z branżowymi standardami. Jeśli wybierzesz nieodpowiednie długości, to możesz zaszkodzić dokładności późniejszych analiz i map.