Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 31 maja 2025 13:21
  • Data zakończenia: 31 maja 2025 13:33

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Odbiorczych
B. Przesyłowych
C. Wytwórczych
D. Pomocniczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 2

Która z wymienionych przyczyn może być odpowiedzialna za zwęglenie izolacji na końcu przewodu fazowego w okolicy zacisku w puszce rozgałęźnej?

A. Poluzowanie śruby mocującej w puszce
B. Niewystarczająca wartość prądu roboczego
C. Wzrost napięcia zasilającego na skutek przepięcia
D. Zbyt duży przekrój używanego przewodu
Przyczyną zwęglenia izolacji przewodu nie może być zbyt mała wartość prądu roboczego, ponieważ w takim przypadku nie dochodzi do przegrzania przewodu. Zbyt niski prąd skutkuje brakiem skutecznej pracy urządzenia, ale nie generuje nadmiernego ciepła, które mogłoby prowadzić do degradacji izolacji. Użycie zbyt dużego przekroju przewodu również nie jest bezpośrednią przyczyną zwęglenia, ponieważ większy przekrój przewodu z reguły poprawia jego zdolność do przewodzenia energii bez generowania nadmiernych strat ciepła. Wzrost napięcia zasilającego z kolei, będący wynikiem przepięcia, jest istotnym zagrożeniem, ale nie jest to najczęstszy czynnik odpowiedzialny za zwęglenie izolacji w tym konkretnym kontekście. Wzrost napięcia może prowadzić do przebicia izolacji lub jej osłabienia, jednak przy odpowiednich zabezpieczeniach, takich jak wyłączniki różnicowoprądowe, ryzyko to jest minimalizowane. Zrozumienie tych zasad jest kluczowe dla poprawnej diagnostyki i prewencji problemów z instalacjami elektrycznymi. W praktyce, ważne jest, aby podczas instalacji i przeglądów przestrzegać najlepszych praktyk, unikając typowych błędów, takich jak niewłaściwe dokręcenie złączy.

Pytanie 3

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (40 ÷ 60) %
B. (60 ÷ 90) %
C. (0 ÷ 10) %
D. (90 ÷ 100) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 4

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. YLY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedzi ADY 2,5 mm2, YLY 2,5 mm2 oraz YDY 2,5 mm2 są niepoprawne, ponieważ nie spełniają właściwych kryteriów dotyczących materiału przewodnika oraz rodzaju konstrukcji. Oznaczenie ADY sugeruje, że przewód ma rdzeń aluminiowy, jednak nie odnosi się do specyfikacji, iż jest to przewód wielodrutowy. W praktyce, przewody aluminiowe jednożyłowe są rzadziej stosowane, ponieważ ich sztywność ogranicza elastyczność w instalacji w porównaniu do przewodów wielodrutowych. Z kolei oznaczenie YLY wskazuje na przewód miedziany, co jest niezgodne z wymaganiami pytania, które dotyczy przewodu aluminiowego. Warto pamiętać, że zastosowanie przewodów miedzianych w sytuacjach, gdzie aluminium powinno być użyte, może prowadzić do problemów z przewodnictwem oraz zwiększonego ryzyka przegrzania, co z kolei może skutkować uszkodzeniem instalacji. Ostatecznie, YDY oznacza przewód z żyłą miedzianą o odpowiednich parametrach, co znowu nie jest zgodne z wymaganiami pytania. Ważne jest, aby znać różnice w oznaczeniach i ich znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, aby unikać nieporozumień i potencjalnych zagrożeń w praktyce inżynieryjnej.

Pytanie 5

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00

A. 7,48 MΩ
B. 6,87 MΩ
C. 6,18 MΩ
D. 6,73 MΩ
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 6

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód priorytetowy
B. priorytetowym, zostaje wyłączony obwód niepriorytetowy
C. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
D. priorytetowym, zostaje wyłączony obwód priorytetowy
Wyjątkowo istotne jest zrozumienie, jak działają przekaźniki priorytetowe i jakie mają zastosowanie w instalacjach elektrycznych. Nieprawidłowe odpowiedzi sugerują, że obwód priorytetowy może być wyłączany lub że obwód niepriorytetowy nie jest wyłączany w odpowiedzi na przekroczenie natężenia prądu. Te koncepcje są mylne, ponieważ przekaźniki priorytetowe zostały zaprojektowane właśnie po to, aby chronić obwody priorytetowe przed opróżnieniem z energii lub przeciążeniem, co mogłoby prowadzić do poważnych awarii. Zamiast tego, w momencie, gdy prąd w obwodzie priorytetowym wzrasta, przekaźnik powinien odciąć zasilanie z obwodu, który nie jest kluczowy dla działania systemu. Wiele osób myli tę funkcję, zakładając, że priorytetowe obwody są te, które zawsze muszą być zasilane, co nie jest zgodne z rzeczywistością. Typowy błąd myślowy polega na nazywaniu obwodu priorytetowego jako tego, który w każdej sytuacji powinien mieć dostęp do energii, co jest niezgodne z zasadami zarządzania energią. W rzeczywistości, kluczowym celem przekaźników priorytetowych jest ochrona zasobów i ich racjonalne zarządzanie, co oznacza, że w sytuacji zagrożenia ważniejsze staje się odłączenie obwodu niepriorytetowego. W instalacjach elektrycznych, szczególnie w kontekście norm branżowych i dobrych praktyk, zrozumienie hierarchii obwodów jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa systemów.

Pytanie 7

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
B. nóż monterski
C. prasę hydrauliczną
D. cęgi do zdejmowania izolacji oraz wkrętak
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 8

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Miedź
B. Stal
C. Nichrom
D. Aluminium
Wybór aluminium, nichromu czy stali jako materiałów do zastosowań elektrycznych może prowadzić do nieefektywności ze względu na ich właściwości rezystywnościowe. Aluminium, choć jest lżejsze i tańsze od miedzi, ma wyższą rezystywność wynoszącą około 2.65 µΩ·m, co oznacza większe straty energii w przewodach oraz konieczność stosowania większych przekrojów dla uzyskania podobnych parametrów przewodzenia prądu. Nichrom, używany głównie w elementach grzejnych, ma rezystywność na poziomie 1.10 µΩ·m, ale jego zastosowanie w systemach przewodzenia energii elektrycznej jest ograniczone ze względu na nieodpowiednie właściwości mechaniczne i korozję. Z kolei stal, która ma znacznie wyższą rezystywność, nie jest dobrym przewodnikiem prądu, co czyni ją mniej efektywną w zastosowaniach wymagających dobrego przewodnictwa elektrycznego. Typowym błędem myślowym w tej kwestii jest założenie, że materiały o wyższej wytrzymałości mechanicznej są również dobrymi przewodnikami, co nie zawsze jest prawdą. Właściwy dobór materiałów do zastosowań elektrycznych oparty jest na zrozumieniu ich rezystywności oraz wpływu na wydajność systemów energetycznych. W praktyce, zgodnie ze standardami branżowymi, miedź pozostaje dominującym materiałem w aplikacjach elektrycznych ze względu na swoje doskonałe właściwości przewodnikowe, co potwierdzają wieloletnie badania i doświadczenia inżynierów w tej dziedzinie.

Pytanie 9

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie oleju elektroizolacyjnego
B. zabezpieczenie klinami ochronnymi
C. wyłożenie izolacją żłobkową
D. nałożenie lakieru elektroizolacyjnego
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 10

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Przekaźnik czasowy.
C. Regulator temperatury.
D. Przekaźnik priorytetowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 11

Do ochrony obwodu przed przeciążeniem oraz zwarciem wykorzystuje się wyłącznik

A. wyposażony w aparat różnicowoprądowy
B. współpracujący z przekaźnikiem czasowym
C. współpracujący z przekaźnikiem sygnalizacyjnym
D. współpracujący z bezpiecznikiem topikowym
Co do pozostałych odpowiedzi, to niestety nie pasują one do tego, jak powinny działać zabezpieczenia elektryczne. Wyłącznik z przekaźnikiem sygnalizacyjnym nie jest do ochrony przed przeciążeniem, bo on raczej wskazuje, co się dzieje w obwodzie, a nie zabezpiecza go. Takie przekaźniki informują o stanie urządzeń, ale nie przerywają obwodu, gdy coś pójdzie nie tak. Jeśli chodzi o przekaźnik czasowy, to on ma zupełnie inne zastosowanie, zajmuje się automatyzacją, a nie ochroną. W zasadzie, przekaźniki czasowe mogą włączać lub wyłączać obwody w określonym czasie, ale nie chronią ich przed przeciążeniem. A co do aparatu różnicowoprądowego, to też jest jakieś nieporozumienie, bo jego zadaniem jest wykrywanie różnicy prądów między przewodami fazowymi a neutralnym, co zapobiega porażeniu prądem, a nie przeciążeniom. Mimo że aparaty różnicowoprądowe są bardzo ważne dla bezpieczeństwa, to nie zastępują zabezpieczeń przed przeciążeniem. Ważne jest, żeby rozumieć te różnice, bo to klucz do sprawnego działania instalacji elektrycznych i ich ochrony przed awariami. Dlatego warto stosować odpowiednie zabezpieczenia zgodnie z ich przeznaczeniem.

Pytanie 12

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
B. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
C. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
D. oznaczyć miejsce pracy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 13

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 14

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 1000 A
B. 0,03 A
C. 25 A
D. 230 A
Przy analizie innych odpowiedzi zauważamy, że wybór wartości 230 A jest błędny ze względu na to, że odpowiadałby on hipotetycznie maksymalnemu prądowi obciążenia, a nie rzeczywistemu prądowi znamionowemu wyłącznika. Przykrością jest, że w praktyce, jeśli obciążenie przekracza znamionowy prąd wyłącznika, może on nie działać prawidłowo, co stwarza potencjalne zagrożenie dla bezpieczeństwa instalacji. Z kolei wartość 0,03 A wskazuje na czułość wyłącznika różnicowoprądowego, co jest istotne dla ochrony przed porażeniem prądem, ale nie ma nic wspólnego z maksymalnym prądem obciążenia, co prowadzi do mylnego rozumienia roli tego parametru. Zastosowanie wyłącznika z czułością 30 mA ma na celu ochronę ludzi, a nie urządzeń. Odpowiedź 1000 A również jest niewłaściwa, ponieważ dotyczy prądu zwarciowego, który wyłącznik może wytrzymać, ale nie jest to wartość, którą można przyjąć jako ciągłe obciążenie. Pojmowanie tych parametrów jest kluczowe, aby uniknąć błędów w doborze urządzeń elektrycznych, co powinno być zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 15

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja redukcyjna
B. Podkładka dystansowa
C. Podkładka sprężysta
D. Tuleja kołnierzowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 16

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
C. Silnik będzie zasilany prądem w przeciwnym kierunku
D. Silnik będzie funkcjonować w trybie jałowym
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 17

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA

A. P202 25-30-AC
B. P304 40-30-AC
C. P302 25-10-AC
D. P304 40-100-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 18

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TT
B. IT
C. TN-C
D. TN-S
Wybory układów TN-S, TN-C oraz TT wskazują na niepełne zrozumienie zasad działania systemów elektroenergetycznych. W układzie TN-S, punkt neutralny jest uziemiony, co oznacza, że w razie uszkodzenia izolacji, prąd zwarciowy przepływa bezpośrednio do ziemi, co zwiększa ryzyko porażenia prądem. Nie ma w nim miejsca na dodatkowy bezpiecznik iskiernikowy, ponieważ jest on niekompatybilny z zasadą bezpośredniego uziemienia. Podobnie w przypadku TN-C, gdzie neutralny i ochronny przewód są połączone, ryzyko uszkodzenia izolacji jest wysokie, a wprowadzenie iskiernika w tym układzie byłoby zbędne i niewłaściwe. Układ TT również zakłada, że punkt neutralny jest uziemiony, a zatem straciłby sens użycie bezpiecznika iskiernikowego, ponieważ nie zapewnia on właściwej izolacji i bezpieczeństwa. Zrozumienie różnic między tymi systemami jest kluczowe dla prawidłowego projektowania instalacji elektrycznych, gdzie odpowiedni dobór układu ma wpływ na bezpieczeństwo i niezawodność dostaw energii elektrycznej. W praktyce, błędne podejście do klasyfikacji układów może prowadzić do poważnych konsekwencji, zarówno finansowych, jak i zdrowotnych.

Pytanie 19

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H05VV-U 2×1,5
B. H03VV-F 3×0,75
C. H05VV-K 3×1,5
D. H03VVH2-F 2×0,75
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 20

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 720 obr./min
B. 1 500 obr./min
C. 1 450 obr./min
D. 750 obr./min
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * fN) / p, gdzie n to prędkość obrotowa w obr./min, fN to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku fN wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.

Pytanie 21

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik instalacyjny płaski
B. wyłącznik różnicowoprądowy
C. bezpiecznik instalacyjny
D. ochronnik przeciwprzepięciowy
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 22

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. zwarciem
B. przeciążeniem
C. porażeniem
D. przepięciem
Wybór niewłaściwej odpowiedzi może prowadzić do nieporozumień na temat funkcji wyłączników różnicowoprądowych. Zwarcie, czyli nagłe połączenie dwóch przewodów o różnym potencjale, prowadzi do zwiększonego przepływu prądu, co zazwyczaj jest zabezpieczane przez wyłączniki automatyczne (np. wyłączniki nadprądowe), a nie przez RCD, które nie reagują na wzrost natężenia prądu, lecz na różnice w prądzie między przewodami. Przepięcia, które mogą być wynikiem nagłych skoków napięcia, również nie są głównym celem RCD. Przeciążenie, z kolei, to sytuacja, gdy obciążenie przekracza nominalną wartość zabezpieczeń, co ponownie wymaga reakcji wyłączników nadprądowych. Kluczowym błędem jest zrozumienie, że RCD nie zabezpiecza przed skutkami zwarcia, przeciążenia ani przepięcia, lecz tylko przed porażeniem elektrycznym wynikającym z upływu prądu. Dobrą praktyką jest stosowanie RCD jako dodatkowego zabezpieczenia w instalacjach elektrycznych, ale nie należy mylić ich funkcji z innymi rodzajami zabezpieczeń, co może prowadzić do niewłaściwego stosowania urządzeń i potencjalnych zagrożeń dla użytkowników.

Pytanie 23

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Szynowe
B. Kabelkowe
C. Rdzeniowe
D. Uzbrojone
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 24

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Uszkodzenie lub przepalenie przewodu neutralnego
B. Przeciążenie obwodu
C. Awaria wyłącznika nadprądowego w rozdzielnicy
D. Zwarcie rezystancyjne do obudowy odbiornika
Przeciążenie obwodu, które sugeruje pierwsza odpowiedź, nie jest bezpośrednią przyczyną zadziałania wyłącznika różnicowoprądowego, ponieważ jego działanie opiera się na detekcji różnic prądów, a nie na ich natężeniu. Przeciążenie może skutkować zadziałaniem wyłącznika nadprądowego, który ma na celu ochronę przewodów przed przegrzewaniem, ale nie wpływa na wyłącznik różnicowoprądowy w tym kontekście. Uszkodzenie przewodu neutralnego, wspomniane w drugiej opcji, również nie musi prowadzić do zadziałania wyłącznika różnicowoprądowego, jeśli obwód nadal może funkcjonować z poprawnym przepływem prądu. Uszkodzenie wyłącznika nadprądowego w rozdzielnicy, opisane w trzeciej odpowiedzi, w rzeczywistości nie ma związku z działaniem wyłącznika różnicowoprądowego, który funkcjonuje niezależnie. Na koniec, zwarcie rezystancyjne do obudowy odbiornika, które nie zostało wybrane, stanowi rzeczywistą przyczynę zadziałania, ale wszystkie pozostałe odpowiedzi nie uwzględniają tej kluczowej kwestii. W praktyce, zrozumienie zasad działania wyłączników różnicowoprądowych oraz odpowiednich zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa i uniknięcia nieprawidłowych wniosków w diagnostyce usterek w instalacjach elektrycznych.

Pytanie 25

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Z PVC lub gumowe
B. Tylko metalowe
C. Metalowe lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 26

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. watomierzem
B. woltomierzem
C. amperomierzem
D. omomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 27

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 30 mA
B. 300 mA
C. 10 mA
D. 100 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 28

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S192B16
B. S194B10
C. S193B10
D. S193B16
Wybór niewłaściwego wyłącznika nadprądowego do obwodu zasilającego może być wynikiem kilku błędnych rozważań. Na przykład, jeśli ktoś zdecyduje się na S194B10, musi pamiętać, że ten model jest przeznaczony do zasilania jednofazowego, co czyni go nieodpowiednim w kontekście obwodu trójfazowego. Problemy pojawiają się, gdy nie uwzględnia się specyfiki obwodu, w którym ma pracować dany wyłącznik. Użycie wyłącznika, który nie jest przystosowany do pracy z obciążeniem trójfazowym, może prowadzić do jego przedwczesnego zadziałania lub braku reakcji w razie przeciążenia. Kolejną nieprzemyślaną decyzją może być wybór modelu S192B16, który, choć ma odpowiednią wartość prądową, nie jest przeznaczony do zastosowań trójfazowych. W kontekście instalacji elektrycznych niezwykle istotne jest, aby urządzenia zabezpieczające były dostosowane do specyfikacji i norm obowiązujących w danej instalacji. Warto zwrócić uwagę na wymagania dotyczące kategorii prądowej i liczby faz, aby uniknąć poważnych problemów z użytkowaniem urządzeń elektrycznych. Niezrozumienie tego aspektu może prowadzić do wyboru niewłaściwych komponentów, co w praktyce może skutkować awariami, a nawet zagrożeniem dla bezpieczeństwa. Właściwy dobór wyłącznika nadprądowego powinien być zawsze oparty na obliczeniach i analizach zgodnych z zasadami bezpieczeństwa oraz normami prawnymi, co podkreśla znaczenie wiedzy i doświadczenia w tej dziedzinie.

Pytanie 29

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji izolacji
B. Rezystancji uziemienia
C. Czasu działania wyłącznika RCD
D. Prądu zadziałania wyłącznika RCD
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 30

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę napędu
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje zwarcia
D. Rozpoznaje przeciążenia
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 31

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. przewietrznika
B. wprowadzenia przewodu zasilającego
C. czopu
D. tabliczki znamionowej
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 32

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie neutralnym
B. Przerwa w przewodzie ochronnym
C. Uszkodzenie izolacji przewodu ochronnego
D. Zwarcie doziemne przewodu neutralnego
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 33

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Przekaźnik czasowy.
C. Lampkę sygnalizacyjną trójfazową.
D. Czujnik kolejności faz.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 34

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 2,3 Ω
B. 8,0 Ω
C. 4,6 Ω
D. 7,7 Ω
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 35

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja uziemienia jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. impedancja sieci zasilającej jest zbyt niska
D. rezystancja izolacji miejsca pracy jest zbyt duża
W kontekście ochrony przed porażeniem prądem elektrycznym, zrozumienie roli różnych parametrów instalacji jest niezwykle istotne. Rezystancja izolacji stanowiska nie jest bezpośrednio związana z efektywnością ochrony w układzie TN-C. Wysoka rezystancja izolacji może świadczyć o dobrym stanie izolacji, co w teorii zmniejsza ryzyko porażenia prądem, ale nie eliminuje potrzeby niskiej impedancji pętli zwarcia. Z kolei zbyt mała rezystancja uziomu nie gwarantuje właściwej ochrony, ponieważ kluczowym parametrem jest to, jak szybko prąd zwarciowy może przepłynąć przez obwód, co zależy od impedancji pętli zwarcia. Impedancja sieci zasilającej jest także mniej istotna w kontekście bezpośredniego bezpieczeństwa, ponieważ to nie ona decyduje o skuteczności wyłączenia obwodu w przypadku zwarcia. Typowym błędem myślowym jest skupianie się na pojedynczych parametrach, zamiast na całościowym zrozumieniu interakcji między różnymi elementami instalacji. Bez właściwej analizy impedancji pętli zwarcia, jakiekolwiek poprawki dotyczące uziemienia czy rezystancji izolacji mogą nie przynieść oczekiwanych rezultatów, a tym samym zagrażać bezpieczeństwu użytkowników instalacji elektrycznych. Kluczowe jest zatem podejście holistyczne, które uwzględnia wszystkie parametry, aby zapewnić pełną ochronę przed porażeniem prądem elektrycznym.

Pytanie 36

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Stal
B. Aluminium
C. Brąz
D. Miedź
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 37

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Impregnację uzwojeń i wyważenie wirnika
B. Sprawdzenie układów rozruchowych i regulacyjnych
C. Pomiar rezystancji izolacji i próbne uruchomienie
D. Sprawdzenie układów sterowania i sygnalizacji
Sprawdzanie układów sterowania i sygnalizacji, układów rozruchowych oraz regulacyjnych, a także impregnacja uzwojeń i wyważanie wirnika to ważne czynności związane z konserwacją silnika elektrycznego, jednak nie są one pierwszymi krokami, które powinny zostać podjęte po przeprowadzeniu konserwacji. Często błędnie uważa się, że wszystkie te czynności są równoważne, co może prowadzić do niedocenienia znaczenia pomiaru rezystancji izolacji. Układy sterowania i sygnalizacji powinny być sprawdzane regularnie, ale to pomiary izolacji są kluczowe dla zapewnienia bezpiecznej pracy silnika, zwłaszcza po konserwacji, gdy mogą wystąpić zmiany w stanie izolacji. Podobnie, chociaż sprawdzenie układów rozruchowych i regulacyjnych jest niezbędne, powinno się je przeprowadzać po wcześniejszym upewnieniu się, że izolacja jest w odpowiednim stanie. Impregnacja uzwojeń i wyważanie wirnika to zaawansowane czynności, które również są istotne, ale nie są konieczne po każdej konserwacji i powinny być wykonywane w odpowiednich odstępach czasu, zgodnie z zaleceniami producenta. Zbagatelizowanie pomiaru izolacji może prowadzić do niebezpiecznych sytuacji, takich jak zwarcie czy uszkodzenie silnika, co jest niezgodne z zasadami bezpieczeństwa pracy i eksploatacji urządzeń elektrycznych.

Pytanie 38

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Instalacja dodatkowego gniazda elektrycznego
C. Zmiana rodzaju zastosowanych przewodów
D. Modernizacja rozdzielnicy instalacji elektrycznej
Nie każda rzecz związana z instalacją elektryczną to prace konserwacyjne. Na przykład zmiana przewodów, mimo że ważna, to zazwyczaj jest modernizacja albo rozbudowa, a nie tylko konserwacja. Powinno się dobierać przewody według norm, jak PN-IEC 60364, które mówią o bezpieczeństwie i wydajności. A modernizacja rozdzielnicy to już w ogóle wykracza poza standardowe konserwacje, bo może oznaczać dodawanie nowych obwodów czy zmienianie konfiguracji. Takie rzeczy potrzebują zezwoleń i lepiej, żeby zajmował się tym kto ma odpowiednie kwalifikacje. Instalacja dodatkowego gniazda również wymaga przemyślenia, czasem projektu i zgód, a to już nie jest tylko prosta konserwacja. To wszystko pokazuje, że konserwacja w instalacjach elektrycznych powinna się skupić głównie na przywracaniu funkcji i bezpieczeństwa, a nie na jakichś modyfikacjach czy rozbudowach.

Pytanie 39

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Wyważenie
B. Kontrola braku zwarć międzyzwojowych
C. Pomiar oporu izolacji
D. Weryfikacja stanu szczelin komutatora
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 40

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Lampy ze rtęcią
B. Lampy indukcyjne
C. Lampy fluorescencyjne
D. Żarówki
Zarówno świetlówki, lampy rtęciowe, jak i lampy indukcyjne oferują wyższą skuteczność świetlną w porównaniu do tradycyjnych żarówek. Świetlówki, na przykład, mogą osiągać skuteczność od 35 do 100 lumenów na wat, co czyni je znacznie bardziej efektywnymi w wytwarzaniu światła. Wybór świetlówek zamiast żarówek tradycyjnych w biurach i innych przestrzeniach komercyjnych jest powszechną praktyką, mającą na celu zmniejszenie kosztów energii oraz ograniczenie emisji dwutlenku węgla. Lampy rtęciowe, stosowane zazwyczaj w oświetleniu ulicznym, również charakteryzują się przyzwoitym poziomem efektywności, osiągając od 50 do 70 lumenów na wat. Lampy indukcyjne, z drugiej strony, mogą nawet przekraczać 100 lumenów na wat, co czyni je idealnym wyborem do oświetlenia dużych powierzchni przemysłowych. Wybór odpowiedniego źródła światła powinien być zatem zgodny z zasadami efektywności energetycznej oraz potrzebami konkretnego zastosowania. Typowe błędy polegają na myleniu żarówek z innymi źródłami światła w kontekście ich efektywności i zastosowania, co często prowadzi do nieoptymalnych decyzji zakupowych i większych kosztów eksploatacji.