Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 6 kwietnia 2025 13:36
  • Data zakończenia: 6 kwietnia 2025 13:50

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. zużycie czopów wału korbowego
B. uszkodzenie uszczelki pod głowicą
C. awaria pompy olejowej
D. zbyt duże zanieczyszczenie filtra oleju
Nadmierne zabrudzenie filtra oleju może prowadzić do spadku ciśnienia oleju w silniku, co objawia się problemami z smarowaniem, ale nie jest przyczyną wzrostu jego poziomu. Filtr oleju ma za zadanie zatrzymywać zanieczyszczenia, a jego zanieczyszczenie skutkuje wyłącznie obniżeniem efektywności smarowania. Zużycie czopów wału korbowego wpływa na luz i może powodować wycieki oleju, ale nie ma bezpośredniego wpływu na wzrost poziomu oleju. W przypadku uszkodzenia pompy olejowej, mogłoby to prowadzić do obniżenia ciśnienia oleju, co także nie jest związane z jego wzrostem. W praktyce, problemy z podzespołami silnika mogą być mylnie interpretowane ze względu na niewystarczającą wiedzę na temat ich funkcji. Aby uniknąć takich błędów myślowych, ważne jest zrozumienie, że różne usterki silnika mają różne objawy, a ich diagnozowanie wymaga znajomości mechaniki i zastosowania odpowiednich narzędzi diagnostycznych. Standardy branżowe sugerują stosowanie systematycznych procedur diagnostycznych w celu prawidłowego zidentyfikowania przyczyny problemów, co jest kluczowe dla zapewnienia bezawaryjnej pracy silników.

Pytanie 2

W pojeździe z silnikiem ZS obserwuje się nadmierną emisję czarnych spalin. Co jest przyczyną tej sytuacji?

A. wadliwe rozpylenie paliwa spowodowane usterką wtryskiwaczy
B. nieprawidłowe ustawienie zaworów
C. nieszczelność uszczelki podgłowicowej
D. nieszczelność pierścieni tłokowych oraz spalanie oleju silnikowego
W przypadku silnika ZS, nadmierne zadymienie spalin barwy czarnej jest najczęściej spowodowane wadliwym rozpyleniem paliwa, co jest bezpośrednio związane z niesprawnością wtryskiwaczy. Wtryskiwacze są kluczowymi elementami systemu wtrysku paliwa, odpowiedzialnymi za atomizację paliwa i jego precyzyjne dostarczenie do komory spalania. Gdy wtryskiwacze nie funkcjonują poprawnie, paliwo może być wtryskiwane w zbyt dużych ilościach lub w sposób nieprawidłowy, co prowadzi do niepełnego spalania i powstawania czarnych spalin. Przykładowo, zanieczyszczenia lub uszkodzenia wtryskiwaczy mogą powodować, że paliwo nie jest efektywnie atomizowane, przez co jego nadmiar gromadzi się w cylindrze i nie spala się całkowicie. W praktyce, regularne serwisowanie układu wtryskowego, w tym czyszczenie wtryskiwaczy, jest kluczowe dla utrzymania optymalnej wydajności silnika i minimalizacji emisji spalin. Standardy branżowe, takie jak wytyczne dotyczące emisji spalin, podkreślają znaczenie dobrze wyregulowanego układu wtryskowego, co ma na celu zarówno ochronę środowiska, jak i efektywność paliwową pojazdów.

Pytanie 3

Jakie napięcie uważa się za bezpieczne dla ludzi?

A. 220 V
B. 110 V
C. 24 V
D. 360 V
Napięcie 24 V jest uważane za bezpieczne dla człowieka, ponieważ w przypadku kontaktu z prądem o tej wartości ryzyko poważnych obrażeń jest znacznie mniejsze w porównaniu do wyższych napięć. Zgodnie z normami IEC 61140 oraz EN 60950, napięcia poniżej 50 V są klasyfikowane jako bezpieczne w warunkach normalnych. W praktyce napięcie 24 V jest powszechnie wykorzystywane w systemach zasilania urządzeń elektronicznych, automatyki budynkowej oraz zasilania czujników. Na przykład, w systemach sterowania oświetleniem lub w instalacjach alarmowych, napięcie 24 V pozwala na bezpieczne użytkowanie oraz minimalizuje ryzyko porażenia prądem. Dodatkowo, zasilanie w tym napięciu znacząco redukuje straty energii w systemach, co jest korzystne z perspektywy efektywności energetycznej. Warto podkreślić, że urządzenia działające na 24 V są często wykorzystywane w pojazdach czy instalacjach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 4

Pomiar jałowego skoku pedału hamulca przeprowadza się przy użyciu

A. mikrometru
B. kątomierza
C. płytek referencyjnych
D. przymiaru kreskowego
Pomiar jałowego skoku pedału hamulca dokonuje się za pomocą przymiaru kreskowego, ponieważ jest to narzędzie zapewniające dokładność i precyzję w pomiarach. Przymiar kreskowy, znany również jako suwmiarka, pozwala na mierzenie wymiarów z dużą dokładnością, co jest kluczowe w kontekście regulacji układów hamulcowych. Dzięki zastosowaniu przymiaru kreskowego, technik może łatwo określić, czy skok pedału hamulca mieści się w normach przewidzianych przez producenta pojazdu. W praktyce stosuje się go do pomiarów w warsztatach samochodowych, gdzie precyzyjne dostosowanie układów hamulcowych ma kluczowe znaczenie dla bezpieczeństwa. Zgodnie z normami branżowymi, regularne pomiary i kontrola skoku pedału hamulca są zalecane w celu utrzymania właściwego stanu technicznego pojazdów. Dodatkowo, umiejętność posługiwania się przymiarem kreskowym jest niezbędna w pracy każdego mechanika, co podkreśla znaczenie tego narzędzia w codziennych czynnościach serwisowych.

Pytanie 5

Aby wykryć luzy w układzie zawieszenia pojazdu, konieczne jest wykonanie kontroli na stanowisku

A. do badań metodą EUSAMA
B. szarpakowym
C. do geometrii kół
D. rolkowym
Odpowiedzi, które nie wskazują na metodę szarpakową, prowadzą do nieporozumień dotyczących właściwych technik diagnostycznych. Badania metodą EUSAMA, które dotyczą analizy geometrii kół, koncentrują się głównie na ustawieniu kół, a nie na ocenie luzów w zawieszeniu. Geometria kół jest istotna, ale nie dostarcza informacji o luzach, które mogą być przyczyną problemów z prowadzeniem pojazdu. Z kolei badanie rolkowe, które jest stosowane do oceny układu napędowego, nie jest odpowiednią metodą do wykrywania luzów w zawieszeniu. Stosując rolki, nie uzyskujemy dynamicznych obciążeń, które są kluczowe dla oceny stanu zawieszenia. W praktyce, błędne wybory metod diagnostycznych mogą prowadzić do niepełnej oceny stanu technicznego pojazdu, co wpływa na bezpieczeństwo jazdy i komfort podróżowania. Typowe błędy myślowe obejmują mylenie różnych metod diagnostycznych i ich przeznaczenia, co jest szczególnie istotne w kontekście zapewnienia bezpieczeństwa na drodze. Dlatego ważne jest, aby technicy i mechanicy mieli solidną wiedzę na temat dostępnych metod i ich zastosowania, aby unikać takich pomyłek.

Pytanie 6

Metaliczny dźwięk pochodzący z górnej części silnika może świadczyć

A. o wyeksploatowaniu łańcucha rozrządu
B. o zbyt dużym luzie zaworów
C. o uszkodzeniu pierścieni tłokowych
D. o luzach w łożyskach wału korbowego
Nadmierny luz zaworów w silniku jest jednym z kluczowych problemów, które mogą manifestować się w postaci charakterystycznych metalicznych stuków, szczególnie w górnej części silnika. Luz zaworowy odnosi się do przestrzeni między końcem zaworu a jego napędem, co w praktyce oznacza, że zawór nie zamyka się całkowicie lub nie otwiera się w odpowiednim momencie. W wyniku tego mogą występować różne nieprawidłowości w pracy silnika, w tym utrata mocy, nierówna praca na biegu jałowym, a także zwiększone zużycie paliwa. W kontekście standardów branżowych, regularne sprawdzanie luzów zaworowych jest zalecane w ramach konserwacji silników spalinowych, a ich odpowiednia regulacja powinna odbywać się zgodnie z wytycznymi producenta pojazdu. Przykładem może być typowy interwał wymiany oleju, podczas którego zaleca się również kontrolę stanu luzu zaworowego, co może zapobiec poważniejszym uszkodzeniom. Oprócz tego, wystąpienie opisanego stukania jest sygnałem, że należy przeprowadzić diagnostykę silnika, aby zidentyfikować i naprawić problem, co przyczyni się do wydłużenia jego żywotności.

Pytanie 7

Przekroczenie dopuszczalnego przebiegu lub okresu użytkowania paska zębatego w systemie rozrządu może prowadzić do

A. przyspieszonego zużycia koła napędowego rozrządu
B. przeskoczenia paska rozrządu na kole i zmiany faz rozrządu
C. przyspieszonego zużycia koła napędzanego rozrządu
D. uszkodzenia rolki napinacza paska rozrządu
Odpowiedzi sugerujące przyśpieszone zużycie koła napędowego lub koła napędzanego rozrządu są mylne, ponieważ nie uwzględniają kluczowych aspektów działania systemu rozrządu. Koło napędowe rozrządu pełni funkcję napędu paska, jednak jego zużycie nie jest bezpośrednio związane z przekroczeniem limitu eksploatacji paska. Przyspieszone zużycie tych elementów może wystąpić w wyniku innych problemów, takich jak niewłaściwa regulacja lub uszkodzenie paska, ale nie jest to bezpośredni skutek przekroczenia norm. Uszkodzenie rolki napinacza paska rozrządu również nie jest efektem braku wymiany paska, lecz raczej wynikiem jego nieprawidłowego działania spowodowanego brakiem smarowania lub zużyciem materiału. Typowym błędem jest zakładanie, że wszystkie elementy układu napędowego rozrządu mogą działać niezależnie od stanu paska, co prowadzi do zaniedbywania regularnych przeglądów. W rzeczywistości wszystkie te komponenty współpracują ze sobą i ich kondycja jest ze sobą powiązana. Dobre praktyki branżowe wskazują na regularne serwisowanie oraz wymianę paska w zalecanych interwałach czasowych, co zapobiega nie tylko uszkodzeniom mechanicznym, ale również wydłuża żywotność całego układu rozrządu.

Pytanie 8

Podczas obsługi okresowej pojazdu wymieniono materiały eksploatacyjne w ilościach podanych w tabeli. Koszt jednej roboczogodziny to 100 zł, a czas pracy mechanika wyniósł 1,5 godziny. Całkowity koszt usługi to

Części i materiałyCena jednostkowa brutto w złIlość
1. Filtr paliwa401 szt.
2. Filtr powietrza301 szt.
3. Filtr oleju201 szt.
4. Olej silnikowy254 l

A. 215 zł
B. 265 zł
C. 290 zł
D. 340 zł
W przypadku błędnych odpowiedzi, kluczowym problemem jest zrozumienie, w jaki sposób należy dokładnie obliczać całkowity koszt usługi. Często zdarza się, że osoby mylnie sumują jedynie koszty części lub niewłaściwie obliczają koszt robocizny. Przykładem może być pomylenie stawki za roboczogodzinę lub czas pracy mechanika. Niektórzy mogą uznać, że koszt robocizny wynosi 200 zł, co prowadzi ich do obliczeń opartych na niepoprawnej stawce lub czasie pracy. Innym typowym błędem jest zbyt szybkie sumowanie kosztów bez ich szczegółowego przeanalizowania, co skutkuje nieprawidłowym wynikiem. Ważne jest, aby w takich sytuacjach zawsze uwzględniać wszystkie elementy kosztów oraz stosować się do metodologii rachunkowości, która wymaga rzetelnego podejścia do analizy kosztów. W praktyce ocena kosztów serwisowych powinna być przeprowadzana z uwzględnieniem wszystkich aspektów, aby uniknąć sytuacji, w której zaniżamy lub zawyżamy wydatki na usługi serwisowe.

Pytanie 9

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. typ konstrukcji osnowy opony
B. maksymalną prędkość jazdy
C. maksymalne dopuszczalne obciążenie (nośność opony)
D. średnicę opony
Odpowiedzi dotyczące dopuszczalnego obciążenia (nośności opony) oraz dopuszczalnej prędkości jazdy wskazują na typowe nieporozumienia związane z oznaczeniami opon. Nośność opony jest oznaczona przez odpowiedni indeks nośności, który w tym przypadku to '101'. Oznaczenie to precyzuje maksymalne obciążenie, jakie opona może przenieść przy określonym ciśnieniu powietrza. Z kolei dopuszczalna prędkość jazdy jest określona przez literę w oznaczeniu, która w tym przypadku to 'H', co oznacza, że opona jest przystosowana do jazdy z maksymalną prędkością do 210 km/h. Promień opony także nie jest oznaczony literą R; w rzeczywistości, rozmiar felgi, na której montowana jest opona, wyraża się w calach (17 w tym przypadku) i jest to bezpośrednio związane z wielkością opony. Typowe błędy myślowe wynikają z pomylenia oznaczeń i ich funkcji, co w konsekwencji prowadzi do nieprawidłowych wniosków. Dla prawidłowego doboru opon do pojazdu, ważne jest, aby kierowcy znali zarówno oznaczenia, jak i właściwości opon, co z kolei wpływa na bezpieczeństwo i komfort jazdy.

Pytanie 10

Jakie narzędzie należy zastosować do pomiaru średnicy czopów wału korbowego?

A. śruby mikrometrycznej
B. przymiaru kreskowego
C. czujnika zegarowego
D. suwmiarki o dokładności 0,1 mm
Suwmiarka, choć powszechnie używana, nie gwarantuje takiej samej precyzji jak śruba mikrometryczna. Jej dokładność wynosi zazwyczaj około 0,1 mm, co w wielu zastosowaniach jest wystarczające, lecz w kontekście pomiarów średnicy czopów wału korbowego, gdzie wymagana jest większa precyzja, może okazać się niewystarczająca. Ponadto, podczas pomiarów suwmiarką istnieje ryzyko błędów wynikających z niewłaściwego ułożenia narzędzia względem mierzonego obiektu. Czujnik zegarowy, z drugiej strony, jest narzędziem stosowanym do pomiarów względnych i służy głównie do oceny tolerancji oraz oceny zużycia, a nie do precyzyjnego pomiaru średnic. Jego zastosowanie w tym kontekście mogłoby prowadzić do błędnych interpretacji danych. Przymiar kreskowy to narzędzie, które, choć może być użyteczne w pomiarze długości, nie jest odpowiednie w przypadku pomiarów średnic, gdzie precyzja jest kluczowa. Użycie błędnych narzędzi pomiarowych, takich jak suwmiarka czy przymiar kreskowy, może prowadzić do błędów w konstrukcji i negatywnie wpłynąć na jakość finalnego produktu. Ważne jest, aby zrozumieć, że precyzyjne pomiary są fundamentem inżynierii, a wybór odpowiednich narzędzi ma kluczowe znaczenie dla sukcesu w tym obszarze.

Pytanie 11

Jak długo zajmie wymiana zaworów w silniku 4 cylindrowym o oznaczeniu 16V, przy założeniu, że praca nad każdym zaworem trwa 0,5 roboczogodziny?

A. 4 godziny
B. 6 godzin
C. 10 godzin
D. 8 godzin
Obliczenia dotyczące wymiany zaworów w silniku wymagają dokładnego rozważenia liczby zaworów oraz czasu potrzebnego na ich wymianę. W błędnych odpowiedziach, takich jak 10 godzin, 6 godzin czy 4 godziny, pojawiają się różnice wynikające z niepoprawnych założeń dotyczących liczby zaworów lub czasu wymiany. Na przykład, jeśli ktoś oblicza całkowity czas wymiany na podstawie błędnej liczby zaworów, może dojść do fałszywych wniosków. Często występuje błąd związany z myleniem liczby cylindrów z liczbą zaworów. W silniku czterocylindrowym, z oznaczeniem 16V, rzeczywiście mamy 16 zaworów. Osoby, które odpowiedziały 10 godzin, mogły mylić czas wymiany z bardziej skomplikowanymi silnikami, które mają więcej zaworów, lub nie uwzględniły poprawnego czasu na wymianę jednego zaworu. Z kolei odpowiedzi takie jak 6 godzin czy 4 godziny mogą wynikać z niepoprawnego pomnożenia lub założeń dotyczących czasu wymiany. Ważne jest, aby podczas nauki o silnikach zrozumieć, jak poprawnie wykonać obliczenia i jakie czynniki mają wpływ na czas napraw. Znajomość zasad obliczeń i podstawowych wartości roboczych jest kluczowa dla prawidłowego planowania serwisu silników i zapewnienia sprawności operacyjnej warsztatu.

Pytanie 12

Aby zmierzyć luz w zamku pierścienia tłokowego, jakie narzędzie powinno się zastosować?

A. szczelinomierza
B. średnicówki mikrometrycznej
C. suwmiarki
D. czujnika zegarowego
Szczelinomierz jest narzędziem pomiarowym, które doskonale nadaje się do pomiaru luzów w zamkach pierścieni tłokowych, ponieważ pozwala na precyzyjne określenie odległości między powierzchniami. Luz w zamku pierścienia tłokowego odgrywa kluczową rolę w prawidłowym funkcjonowaniu silnika, gdyż zbyt duży luz może prowadzić do nieefektywnego spalania, a w konsekwencji do zwiększonego zużycia paliwa i emisji spalin. Dobór odpowiedniego szczelinomierza, którego zakres pomiarowy odpowiada wymaganemu luzowi, umożliwia zachowanie optymalnych parametrów silnika. W praktyce, szczelinomierz wstawia się w szczelinę, a jego odczyt pozwala na szybkie i precyzyjne określenie wymiarów. W warunkach przemysłowych i warsztatowych, stosowanie szczelinomierzy jest normą, a ich wykorzystanie w zgodzie z wytycznymi producentów silników i komponentów mechanicznych jest zalecane dla zapewnienia jakości i niezawodności. Incorporacja tego narzędzia w rutynowych przeglądach i serwisach silników pozwala na wczesne wykrywanie problemów i podejmowanie odpowiednich działań serwisowych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Z rejonu mostu napędowego dochodzi do uciążliwego hałasu, który wzrasta podczas pokonywania zakrętów. Który z poniższych elementów może być jego przyczyną?

A. Łożysko piasty koła
B. Przekładnia główna
C. Półoś napędowa
D. Mechanizm różnicowy
Łożysko piasty koła, przekładnia główna i półoś napędowa są także istotnymi elementami układu napędowego, ale ich funkcje są inne niż mechanizmu różnicowego. Łożyska piasty są odpowiedzialne za wsparcie koła i umożliwiają jego swobodny obrót. Hałas wydobywający się z łożyska piasty może być spowodowany zużyciem lub brakiem smaru, co prowadzi do nadmiernego luzu i wibracji. Hałas ten jest zazwyczaj bardziej wyraźny podczas jazdy prosto, a niekoniecznie w zakrętach, co jest kluczowym wskaźnikiem, że nie jest to źródło problemu opisanego w pytaniu. Przekładnia główna natomiast odpowiada za przenoszenie momentu obrotowego z wału napędowego na mechanizm różnicowy. Problemy z przekładnią główną mogą prowadzić do hałasu, ale również są one często związane z nieprawidłowym ustawieniem lub zużyciem koła zębatego. Z kolei półoś napędowa, która łączy mechanizm różnicowy z kołami napędowymi, również może powodować hałas, zwłaszcza przy uszkodzeniach lub niewłaściwej instalacji, jednak hałas z niej wydobywający się niekoniecznie będzie się nasilał w zakrętach. Kluczowe jest właściwe zrozumienie, że różne źródła hałasu mogą sugerować różne problemy w układzie napędowym, a niepoprawne przypisanie źródła hałasu do konkretnego elementu może prowadzić do błędnych diagnoz i niewłaściwych napraw.

Pytanie 15

Zawroty kół napędowych o różnych promieniach są możliwe dzięki wykorzystaniu

A. trapezowego układu kierowniczego
B. kolumn McPhersona
C. mechanizmu różnicowego
D. drążków skrętnych
Kolumny McPhersona to popularny typ zawieszenia stosowany w samochodach, który jednak nie wpływa na możliwość pokonywania zakrętów o różnych promieniach. Ich główną rolą jest zapewnienie stabilności pojazdu, a nie zarządzanie prędkością obrotową kół. Drążki skrętne również nie mają wpływu na różnicowanie prędkości obrotowej kół, lecz są elementami układów zawieszenia, które zwykle pomagają w utrzymaniu kontaktu kół z nawierzchnią drogi, co nie ma bezpośredniego związku z pokonywaniem zakrętów. Trapezowy układ kierowniczy z kolei służy do przenoszenia ruchu kierownicy na koła, jednak nie rozwiązuje problemu różnicy prędkości między kołami podczas pokonywania zakrętów. Błędem jest mylenie tych systemów z mechanizmem różnicowym, który ma na celu właśnie umożliwienie kołom napędowym obracania się z różnymi prędkościami. Zrozumienie funkcji każdego z tych elementów jest kluczowe dla prawidłowej analizy układów napędowych pojazdów, a także dla skutecznego projektowania nowych rozwiązań w motoryzacji.

Pytanie 16

Usterka, której kod zaczyna się na literę B, odnosi się do komponentu

A. podwozia
B. nadwozia
C. układu napędowego
D. systemu komunikacyjnego
Odpowiedzi dotyczące takich rzeczy jak układ napędowy, podwozie czy system komunikacji to nie jest to, co szukamy, bo nie dotyczą one właściwego przypisania kodów usterek do nadwozia. Układ napędowy, który obejmuje silnik i skrzynie biegów, zajmuje się tylko przenoszeniem mocy, a to nie ma nic wspólnego z nadwoziem, które zaczyna się na B. Podwozie, które łyka nadwozie z układem napędowym, też nie odnosi się do typowych usterek takich jak wgniecenia czy uszkodzenia wizualne. Ważne, żeby zrozumieć, że kod usterek musimy analizować w kontekście struktury pojazdu i jego funkcji, bo to kluczowe w diagnostyce. A system komunikacyjny, to w ogóle inna bajka, bo dotyczy wymiany danych między różnymi elementami auta, więc nie ma związku z problemami nadwozia. Potknięcia w logicznym myśleniu mogą prowadzić do błędnych wniosków, jakoby każdy element pojazdu miał podobny system kodowania, co jest sporym błędem. Każdy podzespół ma swoje unikalne kody, a to jest niezbędne do skutecznego diagnozowania i napraw, dlatego tak ważna jest wiedza o ich klasach.

Pytanie 17

Kontrolą obiegu cieczy w silniku, pomiędzy małym a dużym obiegiem układu chłodzenia, zajmuje się

A. wentylator
B. pompa wody
C. czujnik wody
D. termostat
Pompa wody, czujnik wody i wentylator są elementami układu chłodzenia silnika, ale nie pełnią funkcji regulacji przepływu cieczy między małym a dużym obiegiem. Pompa wody odpowiada za cyrkulację płynu chłodzącego przez silnik oraz chłodnicę. Jej zadaniem jest utrzymanie przepływu cieczy, ale nie decyduje ona o tym, kiedy dany obieg powinien być otwarty lub zamknięty. Czujnik wody monitoruje temperaturę płynu chłodzącego i wysyła sygnał do systemów elektronicznych silnika, ale nie ma bezpośredniego wpływu na regulację przepływu. Wentylator natomiast, gdy zostanie aktywowany przez czujnik temperatury, wspomaga chłodzenie silnika, ale nie uczestniczy w zarządzaniu przepływem cieczy chłodzącej w obrębie układu. Typowym błędem jest mylenie tych komponentów z termostatem, który ma bezpośrednie zadanie regulacyjne. Zrozumienie ról poszczególnych elementów w układzie chłodzenia jest kluczowe dla prawidłowego funkcjonowania silnika oraz zapobiegania awariom. Właściwa obsługa termostatu oraz pozostałych części układu chłodzenia jest kluczowa dla efektywności i długowieczności silnika.

Pytanie 18

Przy odkręcaniu korka zbiornika chłodnicy istnieje ryzyko

A. uszkodzenia płuc.
B. termicznego poparzenia ciała.
C. zmiażdżenia dłoni.
D. poparzenia ręki kwasem.
Wybór odpowiedzi dotyczącej zmiażdżenia ręki lub poparzenia skóry rąk kwasem wskazuje na niepełne zrozumienie ryzyk związanych z pracą przy układach chłodzenia. Zmiażdżenie ręki jest mało prawdopodobne, ponieważ proces odkręcania korka chłodnicy nie wiąże się z elementami mechanicznymi, które mogłyby prowadzić do tego typu obrażeń. Z kolei poparzenia kwasami są związane z innymi substancjami chemicznymi, a nie z płynem chłodniczym, który zazwyczaj bazuje na wodzie i dodatkach, które mogą być nieprzyjemne, ale nie są kwasami. Istnieje także obiegowe przekonanie, że uszkodzenia płuc mogą wystąpić w wyniku kontaktu z oparami, ale w przypadku układów chłodzenia, nie jest to typowe zagrożenie. Praktyki te mogą wynikać z błędnego rozumienia wpływu różnych substancji na organizm ludzki. W branży motoryzacyjnej kluczowe jest, aby przy pracy z płynami chłodniczymi brać pod uwagę ich właściwości termiczne i chemiczne, a unikać nieprawidłowych założeń dotyczących ich potencjalnych zagrożeń. Ignorowanie podstawowych zasad BHP oraz najlepszych praktyk w zakresie obsługi pojazdów może prowadzić do niebezpiecznych sytuacji, dlatego tak istotne jest stosowanie odpowiednich środków ostrożności oraz szkoleń związanych z obsługą układów chłodzenia.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W trakcie corocznego przeglądu serwisowego pojazdu należy zawsze przeprowadzić

A. wymianę płynu chłodzącego
B. wymianę oleju silnikowego i filtra oleju
C. wymianę piór wycieraczek
D. wymianę płynu hamulcowego
Wymiana oleju silnikowego i filtra oleju jest jednym z kluczowych elementów corocznego przeglądu serwisowego pojazdu, ponieważ zapewnia optymalne działanie silnika oraz przedłuża jego żywotność. Olej silnikowy odgrywa fundamentalną rolę w smarowaniu ruchomych części silnika, co zapobiega nadmiernemu zużyciu i uszkodzeniom mechanicznym. W miarę eksploatacji pojazdu, olej ulega degradacji z powodu wysokich temperatur oraz powstawania zanieczyszczeń, co wpływa na jego właściwości smarne. Dlatego regularna wymiana oleju oraz filtra oleju, który zatrzymuje zanieczyszczenia, jest niezbędna dla prawidłowego funkcjonowania jednostki napędowej. Przykładowo, zalecenia producentów dotyczące wymiany oleju często określają interwały czasowe lub przebieg, po którym należy wykonać tę czynność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Ignorowanie tej procedury może prowadzić do poważnych awarii i kosztownych napraw silnika, dlatego kluczowe jest przestrzeganie harmonogramu konserwacji pojazdu, aby zapewnić jego długotrwałe i niezawodne działanie.

Pytanie 21

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. sprawdzania komponentów silnika
B. instalacji części synchronizatorów
C. pielęgnacji karoserii
D. zajmowania się działającym silnikiem
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Przed zamontowaniem nowych tarcz hamulcowych w pojeździe należy

A. tarcze odtłuścić.
B. sprawdzić bicie tarcz.
C. zmierzyć grubość tarcz.
D. przeszlifować tarcze papierem ściernym.
Pomiar bicia tarcz hamulcowych, pomiar grubości tarcz oraz przeszlifowanie ich papierem ściernym to działania, które, choć mogą być istotne w kontekście ogólnego serwisowania układu hamulcowego, nie są kluczowe przed samym montażem nowych tarcz. Pomiar bicia tarcz jest ważny w sytuacjach, gdy tarcze są używane i wymagają oceny ich stanu, zwłaszcza w przypadku, gdy pojazd wykazuje drgania podczas hamowania. Tego rodzaju pomiar wymaga specjalistycznego sprzętu i wiedzy, aby określić, czy tarcze są wypaczone. Z kolei zmierzenie grubości tarcz jest istotne, gdy oceniamy zużycie istniejących tarcz, ale nie ma zastosowania, gdy instalujemy nowe. W przypadku nowych tarcz, grubość jest co do zasady zgodna z normami producentów. Przeszlifowanie tarcz papierem ściernym może wprowadzać niepożądane zarysy i zmieniać parametry pracy tarczy, co prowadzi do nierównomiernego zużycia i spadku efektywności hamowania. Zamiast tego, kluczowe jest, aby nowe tarcze były czyste, co sprawia, że odtłuszczenie przed montażem jest najważniejszym krokiem. Zrozumienie tego procesu jest kluczowe dla zapewnienia efektywności i bezpieczeństwa układu hamulcowego.

Pytanie 24

Tempomat to system, który pozwala na utrzymanie stałej prędkości pojazdu. Który element pełni rolę jego części roboczej?

A. Nastawnik przepustnicy
B. Siłownik sprzęgła
C. Pompa hamulcowa
D. Modulator hydrauliczny
Nastawnik przepustnicy to naprawdę ważny element w tempomacie, bo to on kontroluje otwarcie przepustnicy silnika. Dzięki temu możemy jechać stałą prędkością. Działa to tak, że gdy na przykład zbliżamy się do wzniesienia, to nastawnik zwiększa otwarcie przepustnicy, żeby silnik miał więcej mocy i nie zwolnił. W nowoczesnych autach tempomaty często łączą się z systemami bezpieczeństwa, jak adaptacyjny tempomat, który zmienia prędkość w zależności od tego, jak blisko jest inny samochód. Fajnie, że mechanika i elektronika są zgodne z normami, bo dzięki temu użytkownicy mogą czuć się bezpiecznie. Warto też pamiętać, że dobre ustawienia nastawnika przepustnicy mogą pomóc zaoszczędzić paliwo, co jest istotne dla kierowców, którzy chcą mieć mniejsze koszty eksploatacji.

Pytanie 25

Podczas wykonywania pomiarów kontrolnych po naprawie systemu wydechowego samochodu, miernik poziomu hałasu należy umieścić przy końcówce rury wydechowej w odległości około

A. 0,1 m
B. 0,5 m
C. 1,0 m
D. 0,3 m
Pomiar natężenia hałasu przy końcówce rury wydechowej pojazdu w odległości 0,5 m jest zgodny z normami branżowymi, takimi jak ISO 5130, które szczegółowo określają metody pomiaru hałasu z układów wydechowych. Ta odległość została ustalona jako najlepsza praktyka, ponieważ zapewnia ona optymalne warunki do uzyskania reprezentatywnych wyników, minimalizując wpływ innych źródeł hałasu, takich jak hałas drogowy czy wiatrowy. Przykładowo, pomiar w tej odległości pozwala na uzyskanie dokładnych danych dotyczących poziomu hałasu generowanego przez pojazd, co jest kluczowe dla oceny zgodności z przepisami prawa oraz standardami ochrony środowiska. W praktyce, mechanicy i technicy często wykorzystują te pomiary do oceny efektywności przeprowadzonych napraw oraz do weryfikacji, czy pojazd spełnia normy emisji hałasu. Wiedza na temat odpowiedniej techniki pomiarowej przyczynia się do poprawy jakości usług świadczonych przez warsztaty samochodowe.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Pojawianie się pęcherzyków gazów na powierzchni cieczy chłodzącej w trakcie pracy silnika wskazuje na uszkodzenie

A. pompy cieczy chłodzącej
B. uszczelki pod głowicą
C. chłodnicy
D. uszczelki kolektora wylotowego
Odpowiedzi wskazujące na inne elementy układu chłodzenia, takie jak pompa cieczy chłodzącej, chłodnica czy uszczelka kolektora wylotowego, nie są prawidłowe w kontekście pojawienia się pęcherzyków gazu w cieczy chłodzącej. Pompa cieczy chłodzącej jest odpowiedzialna za cyrkulację płynu chłodzącego przez silnik oraz chłodnicę, a jej uszkodzenie zazwyczaj prowadziłoby do przegrzania silnika, a nie do wydostawania się gazów do cieczy. Chłodnica z kolei ma na celu odprowadzanie ciepła z płynu chłodzącego i nie jest źródłem wydobywających się pęcherzyków gazu, o ile nie występuje poważne uszkodzenie, które spowodowałoby jej wyciek. Uszczelka kolektora wylotowego, z drugiej strony, ma na celu uszczelnienie połączenia między kolektorem a głowicą cylindrów, i jej uszkodzenie zazwyczaj skutkuje nieszczelnościami spalin, a nie interakcją z układem chłodzenia. Pojawienie się pęcherzyków gazu jest sygnałem, że ma miejsce nieszczelność w obrębie układu chłodzenia spowodowana uszkodzeniem uszczelki pod głowicą, co często jest wynikiem przegrzania silnika lub niewłaściwego dokręcenia głowicy cylindrów. Ignorowanie tych objawów może prowadzić do poważnych uszkodzeń silnika, dlatego kluczowe jest zrozumienie, że pęcherzyki gazu są bezpośrednim wskaźnikiem problemów z uszczelką pod głowicą.

Pytanie 28

Który z komponentów należy do hydraulicznego systemu hamulcowego?

A. Zawór sterujący
B. Zbiornik powietrza
C. Pompa hamulcowa
D. Kable hamulcowe
Linki hamulcowe, zbiornik powietrza oraz zawór sterujący nie są elementami hydraulicznego układu hamulcowego, co może wprowadzać w błąd osoby analizujące ten temat. Linki hamulcowe są stosowane w mechanicznych układach hamulcowych, takich jak hamulce ręczne, gdzie działają na zasadzie mechanicznego przesunięcia. W hydraulicznych układach hamulcowych, zamiast linki, wykorzystuje się płyn hamulcowy, co pozwala na szybkie i skuteczne przeniesienie siły z pedału hamulca na klocki hamulcowe. Zbiornik powietrza natomiast jest elementem układów pneumatycznych, które są stosowane głównie w pojazdach ciężarowych i nie są częścią standardowych hydraulicznych układów hamulcowych w samochodach osobowych. Zawór sterujący, mimo że może być używany w różnych układach hydraulicznych, nie jest kluczowym elementem tradycyjnego hydraulicznego układu hamulcowego. Często mylone są te terminy z powodu ich użycia w różnych kontekstach, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że hydrauliczne układy hamulcowe opierają się na działaniu płynów i odpowiednich komponentów, które umożliwiają skuteczne hamowanie pojazdu, co jest fundamentem bezpieczeństwa na drodze.

Pytanie 29

Ciecz chłodząca po zużyciu powinna być

A. przelać do pojemnika z zużytymi olejami
B. poddać destylacji, odzyskując alkohol
C. zneutralizować za pomocą wapna
D. przekazać do utylizacji
Oddanie zużytej cieczy chłodzącej do utylizacji to najodpowiedniejsze i najbardziej odpowiedzialne podejście, które jest zgodne z przepisami prawa ochrony środowiska. Ciecze chłodzące, w zależności od ich składu chemicznego, mogą zawierać substancje toksyczne lub zanieczyszczające, które mogą być szkodliwe zarówno dla ludzi, jak i dla środowiska. Dlatego ważne jest, aby nie wylewać ich do systemów kanalizacyjnych ani do zbiorników z innymi odpadami, jak np. zużyte oleje, co może prowadzić do poważnych zanieczyszczeń. Utylizacja tych cieczy odbywa się zgodnie z przepisami, które mogą obejmować odzysk energii lub recykling chemiczny. W praktyce, odpowiedzialne zarządzanie zużytymi cieczami chłodzącymi jest nie tylko wymogiem prawnym, ale także elementem strategii zrównoważonego rozwoju przedsiębiorstw, które dążą do minimalizacji wpływu na środowisko. Przykładem mogą być zakłady przemysłowe, które regularnie monitorują i dokumentują procesy utylizacji, aby zapewnić zgodność z lokalnymi i międzynarodowymi normami.

Pytanie 30

Kiedy prędkość obrotowa silnika wzrasta w wyniku nagłego wciśnięcia pedału gazu, prędkość samochodu rośnie w sposób nieproporcjonalny. Taki symptom w pojeździe z mechaniczną skrzynią biegów może sugerować uszkodzenie

A. skrzyni biegów
B. mechanizmu różnicowego
C. sprzęgła
D. przekładni głównej
Wybór odpowiedzi związanej z mechanizmem różnicowym, przekładnią główną czy skrzynią biegów wskazuje na niepełne zrozumienie zasad działania układu napędowego w samochodzie. Mechanizm różnicowy jest odpowiedzialny za umożliwienie różnicy prędkości obrotowej kół, co jest istotne podczas skręcania, ale nie ma bezpośredniego wpływu na przyspieszanie pojazdu przy gwałtownym naciśnięciu pedału gazu. Przekładnia główna z kolei przekazuje moc z silnika do kół, jednak w przypadku prawidłowego działania, nie spowoduje nieproporcjonalnego wzrostu prędkości pojazdu. Skrzynia biegów reguluje prędkość i moment obrotowy silnika, ale jeśli jest w dobrym stanie, również nie przyczyni się do tego typu objawów. Typowym błędem myślowym jest mylenie objawów uszkodzenia sprzęgła z usterek innych komponentów układu napędowego. W praktyce, podczas wystąpienia nieproporcjonalnych reakcji silnika na naciśnięcie pedału gazu, zawsze pierwszym krokiem diagnostycznym powinno być sprawdzenie stanu sprzęgła, a następnie pozostałych elementów. Właściwe podejście do diagnostyki i naprawy układu napędowego jest kluczowe dla utrzymania samochodu w dobrym stanie technicznym.

Pytanie 31

Zawsze powinno się zaczynać diagnostykę układu kontroli trakcji od

A. balansowania kół pojazdu
B. odczytania pamięci błędów sterownika
C. sprawdzenia poziomu płynu hamulcowego w zbiorniczku
D. potwierdzenia ciśnienia w ogumieniu pojazdu
Praktyka rozpoczynania diagnostyki układu kontroli trakcji od kontroli poziomu płynu hamulcowego, wyważenia kół lub ciśnienia w ogumieniu jest nieuzasadniona, gdyż te czynności nie dostarczają bezpośrednich informacji o stanie systemów elektronicznych pojazdu. Poziom płynu hamulcowego, choć ważny dla ogólnego bezpieczeństwa, nie ma bezpośredniego wpływu na funkcjonowanie systemu kontroli trakcji, który opiera się głównie na danych z czujników i algorytmach sterujących. W przypadku wyważenia kół, to działanie jest istotne dla stabilności pojazdu, ale nie wskazuje na ewentualne problemy z elektroniką, które mogą wpływać na kontrolę trakcji. Ciśnienie w ogumieniu jest równie ważne, gdyż niewłaściwe ciśnienie może wpłynąć na przyczepność, jednak również nie jest to informacja, która poprowadzi technika w stronę usterek w systemie elektronicznym. Typowe błędy w myśleniu polegają na braku zrozumienia różnicy między aspektami mechanicznymi a elektronicznymi, co prowadzi do niewłaściwego kierowania diagnostyki. Odpowiednie podejście diagnostyczne powinno być oparte na analizie elektronicznych danych i pamięci błędów, a nie na rutynowych kontrolach płynów czy ciśnienia, które mogą jedynie zakłócić proces diagnostyczny i wydłużyć czas usunięcia usterki.

Pytanie 32

Podczas testu po naprawie pojazdu zauważono samoczynny wzrost poziomu oleju w układzie smarowania silnika. Co może być przyczyną tej sytuacji?

A. uszkodzenie uszczelki pod głowicą
B. uszkodzenie pompy olejowej
C. zużycie czopów wału korbowego
D. nadmierne zabrudzenie filtra oleju
No więc, przyczyny wzrostu poziomu oleju w silniku mogą być niejasne i łatwo się w tym pogubić. Ale wiesz, uszkodzenie czopów wału korbowego, mimo że może prowadzić do problemów z silnikiem, nie ma bezpośredniego związku z podnoszeniem się poziomu oleju. Zużycie czopów czasem sprawia, że silnik działa mniej efektywnie albo olej zaczyna wyciekać, ale to nie powoduje jego wzrostu. A jeśli pompa olejowa jest uszkodzona, to zwykle ciśnienie oleju spada, więc też nie ma to związku z samoczynnym wzrostem. Dodatkowo, brudny filtr oleju może zakłócać obieg oleju, ale nie sprawi, że olej nagle będzie więcej. Często źle się interpretuje problemy związane z układem smarowania, bo brakuje wiedzy o tym, jak to działa. Ważne jest, żeby zrozumieć, że wzrost poziomu oleju zazwyczaj jest spowodowany przedostawaniem się innych płynów, na przykład płynu chłodzącego, co często oznacza, że uszczelka pod głowicą jest w złym stanie. Dobra diagnostyka oraz znajomość budowy silników mogą pomóc w rozwiązywaniu problemów i oszczędzeniu pieniędzy na naprawach w przyszłości.

Pytanie 33

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. ślimakową.
B. cierną.
C. walcową.
D. hipoidalną.
Przekładnie hipoidalne są najczęściej stosowane w przekładniach głównych mostów napędowych ze względu na ich unikalne właściwości. Ich konstrukcja pozwala na efektywne przenoszenie momentu obrotowego przy jednoczesnym zapewnieniu kompaktowych rozmiarów. Przekładnie te charakteryzują się zębatkami, które są ustawione pod kątem, co umożliwia większy kąt zębatki w porównaniu do przekładni walcowych. Dzięki temu, hipoidalne przekładnie oferują lepsze właściwości w zakresie redukcji hałasu oraz zmniejszenia wibracji. W praktyce, wykorzystywane są w pojazdach osobowych, ciężarowych oraz w maszynach przemysłowych, gdzie wymagana jest wysoka wydajność przeniesienia mocy. Te przekładnie są zgodne z normami branżowymi, co zapewnia ich niezawodność i trwałość. Dodatkowo, ich projektowanie opiera się na doskonałych praktykach inżynieryjnych, które pozwalają na optymalizację osiągów i ekonomii eksploatacji.

Pytanie 34

Podczas przyjmowania pojazdu do diagnostyki, autoryzowany serwis obsługi identyfikuje go na podstawie

A. rodzaju nadwozia
B. numeru VIN
C. roku produkcji
D. modelu silnika
Numer VIN to taki unikalny kod, który identyfikuje każdy samochód. Składa się z 17 znaków, w tym literek i cyferek. Dzięki niemu serwisy mogą bez problemu sprawdzić, co się dzieje z autem, czy to potrzebuje jakiejś naprawy. W VIN-ie mamy mnóstwo ważnych info, jak np. kto wyprodukował pojazd, gdzie go zrobiono, jaki jest model i kiedy zejście z linii produkcyjnej miało miejsce. VIN przydaje się też, gdy chcemy poznać historię auta lub sprawdzić, czy nie ma jakichś wezwań do serwisu związanych z bezpieczeństwem. Dodatkowo, dzięki standardom ISO, ten system działa wszędzie na świecie, co ułatwia życie serwisom i producentom. Z mojego doświadczenia, dobrze jest zawsze sprawdzać VIN, bo to daje pewność, że wiemy, z czym mamy do czynienia i jak najlepiej pomóc klientowi.

Pytanie 35

Po przeprowadzeniu analizy amortyzatorów tylnych pojazdu ustalono, że poziom tłumienia prawego wynosi 35%, a lewego 56%. Wyniki te sugerują, że

A. amortyzatory są całkowicie sprawne
B. konieczna jest wymiana obu amortyzatorów
C. prawy amortyzator powinien zostać wymieniony
D. należy zregenerować prawy amortyzator
Musisz wymienić oba amortyzatory, bo ich zdolność tłumienia jest za niska. Standardowo powinno być przynajmniej 50%, a prawy ma tylko 35%. To znacznie obniża jego efektywność, co później może wpłynąć na komfort jazdy i stabilność całego auta. Lewy amortyzator też nie jest idealny, bo choć ma 56%, to wciąż nie spełnia wymagań. W praktyce lepiej jest wymienić oba naraz, bo jak jeden działa słabo, to może to negatywnie wpływać na jazdę i sporadycznie przyspieszać zużycie innych części zawieszenia. Pamiętaj, amortyzatory są mega ważne dla bezpieczeństwa, więc lepiej je mieć w dobrym stanie, żeby nie narażać siebie i innych na drodze. Regularne sprawdzanie i wymiana amortyzatorów to klucz do zachowania dobrego stanu zawieszenia.

Pytanie 36

Przy regulacji geometrii przednich kół pojazdu, w którym można dostosować wszystkie kąty, kolejność przeprowadzania tych ustawień wygląda następująco:

A. Wyprzedzenie sworznia zwrotnicy, kąt pochylenia każdego koła, a później regulacja zbieżności kół
B. Kąt pochylenia każdego koła, wyprzedzenie sworznia zwrotnicy każdego koła, a na końcu regulacja zbieżności kół
C. Wyprzedzenie sworznia zwrotnicy każdego koła, regulacja zbieżności kół, a potem kąt pochylenia każdego koła
D. Najpierw regulacja zbieżności kół, następnie kąt pochylenia każdego koła, a na końcu wyprzedzenie sworznia zwrotnicy każdego koła
Patrząc na błędy, które się pojawiły, to widać kilka rzeczy. Po pierwsze, niektóre odpowiedzi sugerują, że kolejność regulacji nie ma znaczenia, a to nie jest prawda. Jeśli zaczniemy od zbieżności, a nie od wyprzedzenia sworznia zwrotnicy, to możemy mieć naprawdę poważne problemy z prowadzeniem pojazdu. Wyprzedzenie powinno być na pierwszym miejscu, bo stabilność kierowania jest kluczowa dla bezpieczeństwa. Kolejna rzecz, to pochylenie kół – wcale nie można je zaniedbać. Regulując pochylenie przed zbieżnością, nie bierzemy pod uwagę, jak to wszystko działa razem. Z mojego punktu widzenia, brak zrozumienia tych wszystkich kątów może prowadzić do kłopotów, które będą nas kosztować w naprawach. Takie pomyłki naprawdę nie służą jakości jazdy, warto to mieć na uwadze.

Pytanie 37

Ciśnienie podciśnienia to ciśnienie, które jest

A. niższe od ciśnienia atmosferycznego
B. wyższe od ciśnienia atmosferycznego
C. równe ciśnieniu atmosferycznemu
D. równe ciśnieniu atmosferycznemu na poziomie morza
Zrozumienie podciśnienia wymaga przemyślenia, jak ciśnienie działa w różnych kontekstach. Odpowiedzi sugerujące, że podciśnienie jest większe lub równe ciśnieniu atmosferycznemu są nieprawidłowe z kilku powodów. Po pierwsze, podciśnienie definiuje się jako sytuację, w której ciśnienie jest niższe niż ciśnienie otoczenia. Mogłoby to prowadzić do mylnych przekonań, że w warunkach podciśnienia ciśnienie wewnętrzne jakiegoś systemu, np. zbiornika, jest wyższe od atmosferycznego, co jest fizycznie niemożliwe. Ciśnienie atmosferyczne na poziomie morza wynosi około 1013 hPa. Mówiąc o podciśnieniu, mówimy o wartościach ciśnienia, które są znacznie niższe, co prowadzi do różnych zjawisk fizycznych, takich jak wytwarzanie próżni. W praktyce, gdy ciśnienie jest równe ciśnieniu atmosferycznemu, nie mamy do czynienia z podciśnieniem, lecz z równowagą ciśnień, co nie wpływa na żadne procesy, które mogłyby wykorzystywać podciśnienie. Stąd pomylenie podciśnienia z odpowiadającym mu ciśnieniem atmosferycznym może prowadzić do błędnych decyzji w projektowaniu systemów, które wymagają precyzyjnego zarządzania ciśnieniem, jak np. w systemach wentylacyjnych czy eksperymentach laboratoryjnych. Kluczowe jest zrozumienie, że podciśnienie ma charakter niszczący dla niektórych substancji, a jego kontrola jest niezbędna w wielu procesach przemysłowych i laboratoryjnych. Wiedza o tym, jak podciśnienie wpływa na materiały i procesy, jest niezbędna dla inżynierów i technologów.

Pytanie 38

Przyczyną nadmiernego zużycia zewnętrznej części jednej z opon może być

A. zbyt wysokie ciśnienie w oponie
B. niewłaściwy kąt pochylenia koła
C. zbyt niskie ciśnienie w oponie
D. niewłaściwy kąt wyprzedzenia sworznia zwrotnicy
Niewłaściwy kąt pochylenia koła, znany również jako kąt nachylenia, ma kluczowe znaczenie dla równomiernego zużycia opon. Gdy kąt ten jest zbyt duży lub zbyt mały, powoduje to, że zewnętrzna lub wewnętrzna krawędź opony nie jest w pełni w kontakcie z nawierzchnią drogi. W rezultacie dochodzi do nadmiernego zużycia opony po jednej ze stron. W praktyce oznacza to, że pojazd może poruszać się w sposób niezgodny z zamierzonym, co nie tylko wpływa na komfort jazdy, ale przede wszystkim na bezpieczeństwo. Właściwe ustawienie kąta pochylenia koła można osiągnąć poprzez precyzyjne regulacje zawieszenia, co jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. Regularne sprawdzanie i dostosowywanie geometrii zawieszenia powinno być częścią rutynowej konserwacji pojazdu, aby zapewnić optymalne osiągi i wydłużyć żywotność opon.

Pytanie 39

Filtr cząstek stałych jest zazwyczaj wykorzystywany w systemach wydechowych silników o zapłonie

A. iskrowym z wtryskiem pośrednim
B. iskrowym z wtryskiem bezpośrednim
C. samoczynnym z wtryskiem bezpośrednim
D. samoczynnym z wtryskiem pośrednim
Silniki o zapłonie samoczynnym z wtryskiem pośrednim nie są typowymi układami, które wykorzystują filtry cząstek stałych. Wtrysk pośredni charakteryzuje się innym procesem spalania paliwa, co powoduje, że emisja cząstek stałych jest zazwyczaj mniej intensywna, ale wciąż wymaga kontroli, aby spełnić normy emisji. Natomiast silniki iskrowe, zarówno te z wtryskiem pośrednim, jak i bezpośrednim, operują na innej zasadzie – wykorzystują mieszankę powietrza i paliwa, co sprawia, że ich emisje, w tym cząstki stałe, są zupełnie inne niż w przypadku silników Diesla. Wtrysk bezpośredni w silnikach iskrowych może poprawić efektywność spalania, ale nie generuje takiej samej ilości cząstek stałych, co w silnikach Diesla, ponieważ proces spalania jest bardziej kontrolowany i czystszy. Pomijając te różnice, wiele osób myli funkcje filtrów cząstek stałych i katalizatorów, które są powszechnie stosowane w silnikach iskrowych, co prowadzi do nieporozumień w zakresie ich zastosowania. Ważne jest, aby zrozumieć, że filtry cząstek stałych są zaprojektowane głównie do pracy w silnikach Diesla, a ich rola w silnikach iskrowych, a nawet w silnikach o zapłonie samoczynnym z wtryskiem pośrednim, jest znacznie ograniczona.

Pytanie 40

Regulacja silnika spalinowego na stanowisku serwisowym w czasie pracy silnika może być przeprowadzona po

A. podłączeniu odciągu spalin do rury wydechowej
B. zakładaniu okularów ochronnych
C. zakładaniu rękawic roboczych
D. ustawieniu znaków ostrzegawczych
Podłączenie odciągu spalin do rury wydechowej jest kluczowym krokiem w procesie regulacji silnika spalinowego, ponieważ minimalizuje ryzyko narażenia personelu na szkodliwe opary i substancje chemiczne. Spaliny emitowane przez silnik zawierają wiele toksycznych związków, dlatego ich odprowadzanie do atmosfery w sposób kontrolowany jest niezbędne dla zapewnienia bezpieczeństwa. Praktyka ta jest zgodna z normami BHP i ochrony środowiska, które wymagają stosowania odpowiednich systemów wentylacyjnych w miejscach pracy. Ważne jest, aby przed rozpoczęciem jakichkolwiek czynności regulacyjnych upewnić się, że układ odprowadzania spalin jest sprawny, a jego podłączenie nie stwarza dodatkowych zagrożeń. Przykładem dobrych praktyk jest przeprowadzanie regularnych inspekcji systemów wentylacyjnych oraz szkolenie pracowników w zakresie obsługi tych urządzeń, co pozwala na bezpieczne i efektywne wykonywanie prac na silnikach spalinowych.