Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 00:55
  • Data zakończenia: 7 czerwca 2025 01:15

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. ochrony ramienia robota przed kolizjami z operatorem
B. chwytania obiektu z odpowiednią siłą
C. chronienia ramienia robota przed przeciążeniem
D. przemieszczania obiektu w przestrzeni
Wybór innych opcji, takich jak zabezpieczanie ramienia robota przed kolizją z operatorem, przemieszczanie elementu w przestrzeni czy zabezpieczanie ramienia robota przed przeciążeniem, wskazuje na niepełne zrozumienie roli efektora w systemie robotycznym. Zabezpieczanie ramienia przed kolizją z operatorem jest ważnym aspektem bezpieczeństwa, jednak nie jest to funkcjonalność efektora, lecz systemów zabezpieczeń, takich jak czujniki obecności czy osłony, które chronią ludzi w otoczeniu robotów. Przemieszczanie elementów w przestrzeni jest efektem działania robota, ale to nie efektor jest odpowiedzialny za tę funkcję – to ramię robota wykonuje ruchy, natomiast efektor ma jedynie za zadanie uchwycić obiekt. Z kolei zabezpieczanie ramienia przed przeciążeniem to aspekt konstrukcyjny, związany z systemami monitorowania obciążenia i nie jest typową funkcją efektora. Typowym błędem myślowym jest mylenie zadań, jakie pełni efektor z innymi funkcjami robota, co prowadzi do niezrozumienia jego głównej roli, jaką jest chwytanie obiektów, co z kolei jest kluczowe dla efektywności procesów automatyzacji.

Pytanie 6

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu dziewięciożyłowego
B. Skrętki dwuprzewodowej
C. Przewodu koncentrycznego
D. Skrętki czteroparowej, ekranowanej
Wybór nieodpowiedniego przewodu do komunikacji w magistrali CAN może prowadzić do licznych problemów, takich jak zakłócenia sygnału, błędy w transmisji oraz obniżona wydajność całego systemu. Skrętka czteroparowa, mimo że jest popularna w sieciach Ethernet i innych systemach komunikacyjnych, nie jest zoptymalizowana pod kątem wymagań magistrali CAN. System ten wymaga przewodu o specyficznych właściwościach, takich jak niska impedancja i efektywna ochrona przed zakłóceniami, co skrętka czteroparowa nie zapewnia. Przewód koncentryczny stosowany jest w telekomunikacji i nie nadaje się do zastosowania w magistrali CAN, ponieważ jego konstrukcja nie wspiera metod różnicowych, które są kluczowe dla stabilnej komunikacji w tym standardzie. Ponadto, przewód dziewięciożyłowy jest zbyt skomplikowany i nieefektywny do implementacji w systemach CAN, które wykorzystują jedynie dwa przewody do komunikacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często opierają się na mylnej interpretacji zastosowania różnych typów przewodów bez uwzględnienia specyfikacji technicznych i wymagań dotyczących sygnałów CAN. Rekomendacje branżowe jasno wskazują, że dla magistrali CAN najlepszym wyborem jest skrętka dwuprzewodowa, co zapewnia efektywność i niezawodność całego systemu.

Pytanie 7

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. przymiar liniowy
B. kątomierz
C. poziomnicę
D. czujnik zegarowy
Użycie kątomierza, czujnika zegarowego lub przymiaru liniowego do montażu siłowników bramy nie jest właściwe z kilku powodów. Kątomierz, mimo że służy do pomiaru kątów, nie jest narzędziem przeznaczonym do pomiarów poziomu, co sprawia, że nie można nim dokładnie ustawić siłowników w pozycji poziomej. Montaż siłowników w odpowiednim ustawieniu poziomym jest kluczowy dla ich działania, a użycie kątomierza może prowadzić do błędnych interpretacji kątów, co w efekcie zagraża stabilności całej konstrukcji bramy. Czujnik zegarowy, który zazwyczaj służy do precyzyjnego pomiaru odchyleń w urządzeniach mechanicznych, również nie jest odpowiednim narzędziem do poziomowania. W kontekście montażu siłowników, kluczowe jest, aby zastosować narzędzie, które bezpośrednio mierzy poziom, a czujnik zegarowy może jedynie wskazać nieprawidłowości w ruchu, ale nie dostarczy informacji o poziomej orientacji. Przymiar liniowy, choć przydatny do pomiarów długości, nie ma zastosowania w kontekście pomiaru poziomu. Użytkownicy często mylą funkcje tych narzędzi, nie zdając sobie sprawy, że stosowanie niewłaściwych przyrządów pomiarowych może prowadzić do uszkodzenia całego systemu, a także zwiększa ryzyko nieprawidłowego działania bramy, co może stwarzać zagrożenie dla użytkowników. Właściwe narzędzie do poziomowania jest więc kluczowe dla zachowania bezpieczeństwa i funkcjonalności instalacji.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. poprzez schładzanie
B. poprzez podgrzewanie
C. absorcyjny
D. adsorpcyjny
Odpowiedź 'absorpcyjnego' jest prawidłowa, ponieważ proces osuszania przez środek osuszający polega na wchłanianiu wilgoci oraz oleju z powietrza. W procesach absorpcyjnych, substancja osuszająca, zwykle w postaci żelu krzemionkowego lub innych materiałów higroskopijnych, wchłania cząsteczki wody oraz innych zanieczyszczeń z powietrza. Zastosowanie technologii absorpcyjnej jest szczególnie widoczne w przemyśle, gdzie czystość powietrza jest kluczowa dla zachowania wydajności i jakości produkcji. Na przykład, w systemach pneumatycznych stosuje się osuszacze absorpcyjne, które skutecznie redukują wilgoć, co zapobiega korozji elementów mechanicznych oraz uszkodzeniom narzędzi. Ponadto, w standardach branżowych takich jak ISO 8573, podkreśla się znaczenie kontrolowania poziomu wilgoci w sprężonym powietrzu, co potwierdza konieczność stosowania odpowiednich środków osuszających.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √2
B. maksymalna napięcia podzielona przez √3
C. średnia napięcia wyznaczona dla okresu
D. średnia napięcia wyznaczona dla półokresu
Wartości napięcia przemiennego mogą być mylone z różnymi parametrami, co prowadzi do nieprawidłowych konkluzji. Pierwszą z takich koncepcji jest pomylenie średniej wartości napięcia wyznaczonej dla półokresu z wartością skuteczną. Średnia wartość napięcia dla półokresu sinusoidalnego nie odpowiada wartością, która jest używana w praktycznych zastosowaniach elektrycznych, ponieważ nie może odzwierciedlić energii, jaką dostarcza prąd. Dodatkowo, średnia wartość napięcia dla okresu nie jest stosowana w kontekście napięcia przemiennego, ponieważ dla sinusoidy obie wartości powracają do zera, co nie jest użyteczne w inżynierii elektrycznej. Kolejnymi błędami są próby odniesienia maksymalnej wartości napięcia do √3, co w ogóle nie znajduje zastosowania w kontekście typowych obwodów zasilających w zakresie napięcia przemiennego. Zastosowanie √3 odnosi się do napięcia w systemach trójfazowych, a nie jednofazowych, co prowadzi do błędnych obliczeń i niesprawności urządzeń. W praktyce, nieznajomość różnicy między wartościami napięcia skutecznego, maksymalnego i średniego prowadzi do nieprawidłowego doboru urządzeń oraz zagrożeń w instalacjach elektrycznych. Aby uniknąć takich pomyłek, kluczowe jest zrozumienie podstawowych zasad dotyczących parametrów napięcia oraz ich zastosowania w projektowaniu i użytkowaniu systemów elektrycznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Filtr oleju
B. Tłokowy pierścień uszczelniający
C. Zawór bezpieczeństwa
D. Sprężynę zaworu zwrotnego
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 18

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Codzienna wymiana oleju
B. Regularna wymiana filtrów
C. Regularna wymiana rozdzielacza
D. Miesięczny demontaż oraz montaż pomp
Pojęcie okresowej wymiany rozdzielacza, która wydaje się być ważnym działaniem, jest mylnie zinterpretowane jako kluczowy element utrzymania sprawności urządzeń hydraulicznych. Rozdzielacze w systemach hydraulicznych pełnią funkcję kierowania przepływu oleju do odpowiednich obwodów i ich wymiana powinna być ograniczona do sytuacji, gdy występują wyraźne oznaki uszkodzenia, takie jak nieszczelności czy zablokowania. Częsta wymiana rozdzielacza może prowadzić do niepotrzebnych kosztów oraz ryzyka wprowadzenia dodatkowych zanieczyszczeń do systemu. Dodatkowo, nie jest konieczne comiesięczne demontaż i montaż pomp, co jest czasochłonne i może w efekcie spowodować uszkodzenia elementów układu. Prawidłowe działania konserwacyjne powinny być oparte na analizie stanu technicznego urządzania, a nie na sztywnych harmonogramach. Kolejnym błędnym podejściem jest codzienna wymiana oleju, co jest nie tylko niepraktyczne, ale również kosztowne, a w rzeczywistości wymiana oleju powinna być przeprowadzana zgodnie z zaleceniami producentów, które zazwyczaj sugerują długie interwały między wymianami. Właściwe zrozumienie, które komponenty wymagają regularnej konserwacji i w jakim zakresie, jest kluczowe dla efektywności systemu hydraulicznego oraz optymalizacji kosztów jego eksploatacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik optyczny
B. Czujnik indukcyjny
C. Czujnik magnetyczny
D. Czujnik tensometryczny
Czujniki optyczne, indukcyjne i tensometryczne mają swoje specyficzne zastosowania, ale nie są odpowiednie do monitorowania położenia tłoka w metalowym cylindrze siłownika pneumatycznego. Czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obiektów, co może być skuteczne w warunkach, gdzie nie ma przeszkód oraz działań środowiskowych mogących wpływać na sygnał, ale w przypadku tłoka w siłowniku pneumatycznym, mogą napotykać trudności, np. z zabrudzeniem soczewek lub przesłonięciem sygnału. Czujniki indukcyjne, z drugiej strony, są przeznaczone do wykrywania metalowych obiektów, jednak nie zapewniają one informacji o położeniu konkretnego tłoka, a jedynie detekcję obecności metalu. Mogą być używane w aplikacjach, gdzie istnieje potrzeba wykrycia przeszkód, lecz ich zastosowanie w pozycjonowaniu tłoka jest ograniczone. Tensometryczne czujniki mierzą odkształcenie, co sprawia, że są one bardziej odpowiednie do monitorowania siły lub obciążenia, a nie do detekcji położenia. Użycie tych czujników do kontroli pozycji tłoka w siłowniku mogłoby prowadzić do mylnej interpretacji danych, co z kolei może skutkować błędami w procesie sterowania. W praktyce, nieprawidłowy wybór czujnika do konkretnego zastosowania może prowadzić do nieefektywności w systemach automatyki, co jest sprzeczne z najlepszymi praktykami branżowymi, które zalecają dobór czujników zgodnie z ich specyfiką oraz wymaganiami aplikacji.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. suwmiarki
B. średnicówki mikrometrycznej
C. czujnika zegarowego
D. mikrometru
Suwmiarka, choć jest narzędziem pomiarowym, nie jest odpowiednia do precyzyjnego pomiaru bicia wirującej tarczy. Jej głównym przeznaczeniem jest pomiar długości, szerokości i wysokości z dokładnością do dwóch miejsc po przecinku. W przypadku pomiarów dynamicznych, takich jak bicie, suwmiarka ma zbyt niską czułość. Mikrometr jest narzędziem o jeszcze wyższej dokładności, jednak jego zastosowanie ogranicza się głównie do pomiarów liniowych i nie jest przystosowany do rejestrowania dynamicznych zmian, takich jak te, które występują podczas obrotu tarczy. Średnicówka mikrometryczna, podobnie jak mikrometr, służy do pomiarów średnic, co również nie sprawdza się w kontekście pomiaru bicia. Narzędzia te mogą prowadzić do pomyłek, ponieważ ich konstrukcja nie pozwala na uchwycenie dynamiki ruchu i nie są przystosowane do pomiarów w czasie rzeczywistym. Dlatego stosowanie ich do pomiaru nierówności osiowej może wprowadzać w błąd i prowadzić do nieprawidłowych wyników, co jest sprzeczne z zasadami dobrej praktyki inżynieryjnej. W kontekście precyzyjnych pomiarów mechanicznych, zawsze należy wybierać narzędzia zaprojektowane specjalnie do danego celu, co pozwoli uniknąć niepotrzebnych błędów i zapewnić wysoką jakość pracy.

Pytanie 25

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
B. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
C. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
D. wylutowania uszkodzonej diody oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. jednofazowym
B. dwufazowym
C. trójfazowym
D. stałym
Silnik bezszczotkowy (BLDC) zasilany jest napięciem stałym, co jest fundamentalną cechą jego konstrukcji. Ten typ silnika charakteryzuje się brakiem szczotek, co prowadzi do mniejszych strat energii i większej efektywności w porównaniu do tradycyjnych silników komutatorowych. W zastosowaniach przemysłowych, takich jak robotyka, drony czy napędy elektryczne w pojazdach, silniki BLDC zyskują na popularności dzięki swojej niezawodności i długowieczności. Przykładem zastosowania silników bezszczotkowych zasilanych napięciem stałym są napędy w elektrycznych hulajnogach, gdzie wymagane są wysoka wydajność oraz kontrola prędkości. W silnikach BLDC zastosowanie napięcia stałego pozwala na prostotę układów sterujących, które mogą być oparte na zaawansowanych systemach PWM (modulacja szerokości impulsu), co umożliwia precyzyjne dostosowanie momentu obrotowego i prędkości silnika. W praktyce, standardy takie jak IEC 60034 dotyczące maszyn elektrycznych podkreślają znaczenie efektywności energetycznej i niezawodności, które są kluczowe w projektowaniu systemów opartych na silnikach BLDC.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie wzbudzenia
B. Rezystancją w obwodzie twornika
C. Napięciem przyłożonym do obwodu wzbudzenia
D. Napięciem przyłożonym do obwodu twornika
Napięcie przyłożone do obwodu twornika silnika obcowzbudnego prądu stałego jest kluczowym parametrem wpływającym na prędkość obrotową silnika. Zwiększenie napięcia powoduje wzrost prędkości obrotowej, podczas gdy obniżenie napięcia prowadzi do jej zmniejszenia. Taka regulacja jest szczególnie efektywna, gdyż pozwala na uzyskanie szerokiego zakresu prędkości od 0 do nn bez istotnych strat mocy oraz przy zachowaniu wysokiej sprawności energetycznej. W praktyce, ta metoda jest stosowana w aplikacjach takich jak napędy wózków widłowych czy w systemach automatyki, gdzie precyzyjne sterowanie prędkością jest kluczowe. Ponadto, zgodnie z zasadami dobrych praktyk w inżynierii, ta metoda regulacji jest preferowana ze względu na prostotę obsługi i łatwość implementacji w obwodach elektronicznych. Warto zaznaczyć, że stosowanie odpowiednich układów elektronicznych, jak np. falowniki DC, może znacznie ułatwić to zadanie, oferując dodatkowe funkcje, takie jak zabezpieczenia przed przeciążeniami.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. błędną sekwencją faz.
B. zwarciem jednej fazy z obudową.
C. zwarciem dwóch faz.
D. przerwą w jednej z faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.