Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 14 maja 2025 20:41
  • Data zakończenia: 14 maja 2025 21:01

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdy pompa odśrodkowa w instalacji chemicznej przestaje działać, co jest najczęstszą przyczyną?

A. Przegrzanie silnika
B. Zatkanie wirnika
C. Niewystarczające napięcie zasilania
D. Utrata smarowania
Zatkanie wirnika jest jedną z najczęstszych przyczyn awarii pomp odśrodkowych w przemyśle chemicznym. Często dochodzi do tego, gdy w przepływie występują zanieczyszczenia, które mogą blokować wirnik, powodując spadek wydajności lub całkowite zatrzymanie pompy. W praktyce, odpowiednia procedura konserwacyjna obejmująca regularne czyszczenie i filtrowanie cieczy może zminimalizować ryzyko takiego zatkania. Warto zwrócić uwagę, że zatkanie wirnika może prowadzić do innych problemów, takich jak przeciążenie silnika czy uszkodzenie uszczelnień. Właśnie dlatego, z mojego doświadczenia, zawsze warto inwestować w dobre systemy filtracyjne. Zatkanie wirnika może również prowadzić do zwiększonego zużycia energii, co jest niekorzystne z punktu widzenia ekonomii eksploatacji. Dbałość o właściwą eksploatację i monitorowanie stanu technicznego elementów pompy pozwala na uniknięcie wielu problemów i zwiększenie żywotności urządzenia. Pamiętajmy, że w przemyśle chemicznym niezawodność maszyn to klucz do sprawnej i bezpiecznej produkcji.

Pytanie 2

Rysunek przedstawia manometr, który służy do pomiaru ciśnienia w zbiorniku z chlorem. W jakim zakresie ciśnień mierzonego medium powinien pracować ten ciśnieniomierz?

Ilustracja do pytania
A. 0 ± 0,60 MPa
B. 0 ± 0,40 MPa
C. 0 ± 0,45 MPa
D. 0 ± 0,30 MPa
Odpowiedź "0 ± 0,45 MPa" jest prawidłowa, ponieważ manometry są projektowane w taki sposób, aby zapewnić odpowiedni zakres pomiarowy dla medium, które mają mierzyć. W przypadku pomiaru ciśnienia w zbiorniku z chlorem, istotne jest, aby zakres pracy manometru nie tylko obejmował spodziewane ciśnienie, ale także zapewniał pewien zapas bezpieczeństwa. W praktyce przyjmuje się, że manometr powinien mieć zakres pomiarowy wyższy od maksymalnego ciśnienia roboczego o co najmniej 10-20%. W związku z tym wybrany zakres 0 ± 0,45 MPa odpowiada temu wymaganiu, biorąc pod uwagę, że maksymalne ciśnienie wskazywane przez manometr wynosi 0,6 MPa. Dodatkowo, manometry powinny być kalibrowane i testowane pod kątem dokładności w swoim zakresie pracy, co jest zgodne z normami ISO 5170 i ISO 9001, aby zapewnić ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Na przykład, w zakładach chemicznych, przy pomiarze ciśnienia w zbiornikach, użycie manometru z odpowiednim zakresem jest kluczowe dla uniknięcia niebezpiecznych sytuacji związanych z nadciśnieniem.

Pytanie 3

Produkcja kaprolaktamu wynosi 5 ton na godzinę. Jaką liczbę worków polietylenowych o wadze 25 kg oraz palet przemysłowych o maksymalnym udźwigu 1,5 t należy wykorzystać do pakowania i składowania kaprolaktamu w ciągu 24 godzin produkcji?

A. 500 worków i 60 palet
B. 480 worków i 40 palet
C. 4800 worków i 80 palet
D. 5000 worków i 120 palet
Odpowiedź 4800 worków i 80 palet jest prawidłowa, ponieważ obliczenia dotyczące pakowania kaprolaktamu uwzględniają zarówno ilość produkcji, jak i pojemności opakowań. Kaprolaktam produkowany jest w ilości 5 ton na godzinę, co przekłada się na 120 ton w ciągu 24 godzin (5 ton/h * 24 h). Przy pakowaniu tego materiału w worki polietylenowe o pojemności 25 kg, należy obliczyć ilość worków potrzebnych do zapakowania 120000 kg (120 ton * 1000 kg). Dzieląc 120000 kg przez 25 kg, otrzymujemy 4800 worków. Jeśli chodzi o palety, każda z nich ma udźwig 1,5 tony, co odpowiada 1500 kg. Dlatego dzieląc 120000 kg przez 1500 kg, otrzymujemy 80 palet. Takie podejście jest zgodne z praktykami logistycznymi, które zalecają odpowiednie planowanie pakowania i magazynowania, aby zminimalizować straty materiałowe i zoptymalizować przestrzeń magazynową.

Pytanie 4

Aby kontrolować przebieg procesu sulfonowania próbki z mieszaniny reakcyjnej, należy pobierać ją przy użyciu

A. sondy głębinowej
B. kurka probierczego
C. batometru
D. probówki
Wykorzystywanie batometru do pobierania próbek w procesie sulfonowania jest nieprawidłowe, ponieważ batometr jest urządzeniem służącym do pomiaru głębokości w cieczy, a nie do ich pobierania. Nie jest to narzędzie analityczne ani nie umożliwia kontrolowanego dostępu do próbki. Podobnie, probówki mogą być używane do przechowywania próbek, ale ich napełnianie nie zapewnia kontroli nad warunkami pobierania, a także nie jest dostosowane do pracy w reaktorach chemicznych. Z kolei sonda głębinowa, choć może być użyteczna w pomiarach wody gruntowej czy zbiorników, nie jest przeznaczona do pobierania próbek z reakcji chemicznych, gdzie istotne jest zachowanie integralności próbki i minimalizacja ryzyka kontaminacji. W kontekście sulfonowania, proces ten wymaga szczegółowego monitorowania i pobierania próbek w określonych warunkach, co jest możliwe tylko z użyciem kurka probierczego. Często popełnianym błędem jest mylenie zasad funkcjonowania tych urządzeń oraz niezrozumienie ich specyficznych zastosowań w procesach chemicznych, co może prowadzić do niewłaściwych decyzji analitycznych oraz wniosków dotyczących przebiegu reakcji.

Pytanie 5

Na rurociągu o długości 50 m, przeznaczonym do transportu pary wodnej o wysokim ciśnieniu, zainstalowano kilka kolan oraz zaworów. W jaki sposób zmienią się właściwości gazu na końcu rurociągu w porównaniu z jego parametrami na początku rurociągu?

A. Ciśnienie wzrośnie, temperatura spadnie
B. Ciśnienie i temperatura będą niższe
C. Ciśnienie i temperatura będą wyższe
D. Ciśnienie spadnie, temperatura wzrośnie
Odpowiedź, że ciśnienie i temperatura na końcu rurociągu będą niższe, jest poprawna ze względu na zjawiska związane z przepływem cieczy lub gazów w systemach rurociągowych. W miarę przemieszczania się pary wodnej przez rurociąg o długości 50 m, napotyka ona opory, które prowadzą do strat ciśnienia. Kolana i zawory w rurociągu powodują dodatkowe opory, co jeszcze bardziej obniża ciśnienie przy końcu rurociągu. Zgodnie z zasadami hydrauliki, im dłuższy i bardziej złożony rurociąg, tym większe straty ciśnienia. Dodatkowo, w wyniku wymiany ciepła oraz kontaktu z chłodniejszymi powierzchniami zewnętrznymi rurociągu, para wodna może tracić ciepło, a tym samym obniżać swoją temperaturę. Praktycznym przykładem jest zastosowanie takich systemów w przemyśle energetycznym, gdzie muszą być one odpowiednio projektowane, by minimalizować straty i utrzymywać odpowiednie parametry robocze. Zgodnie z normami branżowymi, kluczowe jest także monitorowanie tych parametrów, aby zapewnić efektywność całego systemu.

Pytanie 6

Zidentyfikuj, jakie ryzyko niosą za sobą wycieki z pomp w systemie oczyszczania metanolu?

A. Zagrożenie wybuchem
B. Zagrożenie toksyczne i pożarowe
C. Tylko zagrożenie toksyczne
D. Tylko zagrożenie pożarowe
Wycieki z pomp w instalacji oczyszczania metanolu stanowią poważne zagrożenie zarówno toksyczne, jak i pożarowe. Metanol jest substancją łatwopalną i toksyczną, co oznacza, że jego uwolnienie do środowiska może prowadzić do niebezpiecznych sytuacji. Zagrożenie toksyczne wynika z możliwości wdychania par metanolu, co ma negatywny wpływ na zdrowie ludzi, a także z możliwości kontaktu ze skórą. Przykładowo, w przypadku awarii pompy, uwolniony metanol może zanieczyścić powietrze w miejscu pracy, co może prowadzić do zatrucia pracowników. W aspekcie pożarowym, metanol ma niską temperaturę zapłonu, co czyni go podatnym na zapłon w obecności źródeł ciepła. W przypadku wycieku, opary metanolu mogą tworzyć mieszanki wybuchowe z powietrzem. Przykłady dobrych praktyk w branży obejmują regularne serwisowanie pomp, stosowanie odpowiednich materiałów uszczelniających, a także wprowadzenie systemów detekcji wycieków oraz szkoleń dla pracowników. Zgodnie z normami OSHA i NFPA, instalacje muszą być projektowane z uwzględnieniem takich zagrożeń, aby minimalizować ryzyko incydentów.

Pytanie 7

Jak należy pozyskiwać próbkę strumienia zawracanego na wierzchołku kolumny rektyfikacyjnej w trakcie prowadzenia rektyfikacji z użyciem deflegmatora częściowo skraplającego?

A. Przez aspirator
B. Przez kurka probierczego
C. Przez sondę probierczą
D. Przez batometr
Stosowanie batometru do pobierania próbek w kontekście rektyfikacji jest nieodpowiednie, ponieważ batometr jest narzędziem przeznaczonym do pomiaru gęstości cieczy na podstawie ich ciśnienia hydrostatycznego. Nie jest on zaprojektowany do pobierania próbek, a jedynie do analizy fizykochemicznej medium. Zastosowanie batometru w tym kontekście może prowadzić do błędnych wniosków, ponieważ nie zapewnia on reprezentatywnej próbki procesu rektyfikacji. Podobnie, aspirator, który służy do tworzenia podciśnienia w celu zasysania cieczy, nie jest odpowiedni do pobierania próbek z kolumny rektyfikacyjnej, gdyż może zakłócić równowagę procesową oraz zmienić właściwości chemiczne próbki, co skutkuje nieprawidłowymi wynikami analizy. Użycie sondy probierczej, chociaż bardziej odpowiednie niż wcześniej wymienione metody, może również prowadzić do problemów, jeżeli nie jest prawidłowo skalibrowana lub nie uwzględnia warunków panujących w kolumnie. Krytyczne jest, aby zrozumieć, że każda metoda pobierania próbek powinna być dostosowana do specyfiki procesu i powinna być zgodna z obowiązującymi normami oraz dobrymi praktykami, aby zapewnić uzyskanie wiarygodnych danych do dalszej analizy. Wykonywanie analizy z nieodpowiednich miejsc lub za pomocą niewłaściwych narzędzi może prowadzić do błędnych interpretacji procesu, co może znacząco wpłynąć na jakość końcowego produktu oraz bezpieczeństwo operacji.”

Pytanie 8

Jak należy pobrać próbkę 98 % roztworu kwasu siarkowego(VI) do badań laboratoryjnych, aby zbadać jego stężenie?

A. Za pomocą wgłębnika spiralnego
B. Za pomocą pipety
C. Za pomocą kurka probierczego
D. Za pomocą aspiratora
Pobieranie próbki kwasu siarkowego(VI) z roztworu 98% wymaga zastosowania narzędzi, które zapewnią bezpieczeństwo i precyzję. Kurki probiercze są standardowym rozwiązaniem w laboratoriach chemicznych, które umożliwiają kontrolowane pobieranie cieczy bez ryzyka jej rozlania czy zanieczyszczenia. Dzięki zastosowaniu kurka, można pobrać dokładną ilość kwasu, co jest kluczowe dla dalszych analiz, w tym określenia stężenia roztworu. W przypadku kwasu siarkowego(VI), który jest substancją żrącą, kluczowe jest również, aby wszelkie operacje przeprowadzać z zachowaniem odpowiednich procedur BHP, w tym użycie rękawic, okularów ochronnych oraz pracy w dobrze wentylowanym pomieszczeniu. Tego typu próbki są często używane do badań jakościowych i ilościowych, a ich prawidłowe pobranie wpływa na wyniki analizy. Warto również pamiętać, że standardy laboratoryjne, takie jak ISO, zalecają stosowanie odpowiednich narzędzi do pobierania próbek, co dodatkowo potwierdza zasadność wyboru kurka probierczego.

Pytanie 9

Aby przetransportować żwir na wysokość około 20 m, należy zastosować przenośnik

A. ślimakowy
B. zgarniakowy
C. taśmowy
D. kubełkowy
Przenośniki kubełkowe są idealnym rozwiązaniem do transportu materiałów sypkich, takich jak żwir, na dużą wysokość, w tym przypadku około 20 metrów. Zasada działania przenośników kubełkowych opiera się na wykorzystaniu kubełków zamocowanych na taśmie, które napełniają się materiałem na dole przenośnika i są następnie podnoszone w górę przez system taśmowy. Dzięki swojej konstrukcji, przenośniki te są w stanie efektywnie transportować materiały, minimalizując straty i zapobiegając ich uszkodzeniu. W branży budowlanej oraz górniczej przenośniki kubełkowe są powszechnie stosowane nie tylko do transportu żwiru, ale także piasku czy kamieni. Warto zaznaczyć, że ich wydajność i elastyczność w zastosowaniach sprawiają, że są preferowanym wyborem w zakładach zajmujących się przetwarzaniem surowców, gdzie konieczne jest podnoszenie materiałów na znaczne wysokości. Dobrą praktyką jest również regularne serwisowanie tych urządzeń, co zapewnia ich długotrwałe i niezawodne działanie w trudnych warunkach operacyjnych.

Pytanie 10

Jakie elementy składają się na niezbędne wyposażenie reaktora, w którym prowadzi się proces polimeryzacji chlorku winylu w autoklawie z chłodzącym płaszczem?

A. Manometr, termometr, mieszadło
B. Manometr, wężownica, pehametr
C. Termometr, bełkotka, pehametr
D. Mieszadło, termometr, wężownica
Wszystkie odpowiedzi inne niż poprawna nie spełniają kluczowych wymagań dotyczących oprzyrządowania autoklawu do polimeryzacji chlorku winylu. Mieszadło jest fundamentalnym elementem, ale wśród innych propozycji niektóre z nich zawierają nieodpowiednie komponenty. Na przykład, pehametr, choć przydatny w wielu procesach chemicznych, nie jest kluczowy w kontekście polimeryzacji chlorku winylu, gdzie pH nie zmienia się znacząco w trakcie reakcji. Użycie bełkotki, która jest rodzajem mieszadła, nie jest standardem w autoklawach, ponieważ nie zapewnia takiej samej efektywności mieszania jak dedykowane mieszadła mechaniczne. Co więcej, zastosowanie manometru i termometru w odpowiedzi, która nie zawiera mieszadła, zignorowałoby znaczenie jednorodnego rozprowadzenia reagentów, co jest kluczowe dla jakości produktu. W praktyce, błędna identyfikacja zasady funkcjonowania tych urządzeń może prowadzić do nieefektywnego procesu, a w konsekwencji do obniżonej jakości polimerów. Właściwe zrozumienie i identyfikacja odpowiednich elementów wyposażenia reaktora są kluczowe dla sukcesu procesu polimeryzacji, co wspiera efektywność produkcji i zgodność z normami branżowymi.

Pytanie 11

Jaką powinna mieć przybliżoną temperaturę czynnik grzewczy dostarczany do wyparki Roberta, w której zachodzi proces zatężania roztworu o temperaturze wrzenia 86°C?

A. W okolicach 140°C
B. W okolicach 88°C
C. W okolicach 75°C
D. W okolicach 120°C
Temperatura czynnika grzewczego, który leci do wyparki Roberta, powinna być w okolicach 88°C. To jest blisko temperatury wrzenia roztworu, co sprawia, że cały proces zatężania działa lepiej. Kluczowe jest, by ta temperatura była wystarczająco wysoka, bo wtedy rozpuszczalnik odparowuje, ale nie może być za wysoka, bo to może prowadzić do intensywnego wrzenia, a to z kolei powoduje różne straty. No i też zmniejsza efektywność całego procesu. Trzymanie się temperatury blisko 88°C to jakby najlepsze warunki do pracy. W przemyśle chemicznym i farmaceutycznym często widzi się takie temperatury w procesach zatężania, żeby wszystko szło gładko i produkt był dobrej jakości. Pamiętaj, że kontrola temperatury to mega ważna rzecz, zgodna z zasadami dobrych praktyk produkcyjnych (GMP), które mówią, że trzeba monitorować i regulować parametry procesu, bo to naprawdę ważne dla jakości końcowego produktu.

Pytanie 12

Jakie jest zamierzenie procesu mielenia fosforytu w przygotowaniu surowca stałego do produkcji superfosfatu?

A. uproszczenia transportu fosforytu przenośnikami do komory wytwórczej
B. uzyskania superfosfatu w formie pyłowej
C. uprzedzenia załadunku fosforytu do komory wytwórczej
D. zwiększenia powierzchni styku surowca z kwasem siarkowym
Odpowiedź wskazująca na zwiększenie powierzchni kontaktu surowca z kwasem siarkowym jest prawidłowa, ponieważ proces mielenia fosforytu ma kluczowe znaczenie w produkcji superfosfatu. Zmielenie surowca prowadzi do znacznego powiększenia jego powierzchni, co z kolei umożliwia bardziej efektywną reakcję chemiczną z kwasem siarkowym. W praktyce, im większa powierzchnia cząstek, tym intensywniejsza reakcja, co przekłada się na wyższą wydajność procesu produkcji nawozów. Ostatecznie, zwiększona powierzchnia kontaktu minimalizuje czas reakcji oraz zwiększa stopień przekształcenia fosforytu w superfosfat. Dobre praktyki w branży nawozowej wskazują, że efektywność procesu produkcji nawozów fosforowych, takich jak superfosfat, jest ściśle związana z wielkością cząstek surowca, co potwierdzają wyniki badań eksperymentalnych. Właściwe przygotowanie surowca jest więc niezbędne dla spełnienia norm jakościowych i uzyskania produktu o wysokiej rozpuszczalności, co jest istotne z punktu widzenia upraw rolnych i zastosowania nawozów w praktyce.

Pytanie 13

W trakcie funkcjonowania mieszalnika bębnowego występują nadmierne drgania oraz hałas. Jakie kroki powinna podjąć obsługa, aby zapewnić właściwe działanie maszyny?

A. Zatrzymać mieszalnik i wymienić rolki napędzające
B. Zatrzymać mieszalnik i wymienić silnik
C. Schłodzić rolki napędzające wodą
D. Obniżyć prędkość obrotową oraz obciążenie mieszalnika
Zatrzymanie mieszalnika i wymiana rolek napędzających to kluczowe działania w sytuacji, gdy maszyna wykazuje nadmierne drgania i hałas. Drgania mogą być wynikiem zużycia lub uszkodzenia rolek, co prowadzi do niewłaściwego przenoszenia napędu oraz zwiększonego obciążenia silnika. Wymiana uszkodzonych rolek jest zgodna z zasadami utrzymania ruchu, które nakładają obowiązek regularnej inspekcji i wymiany elementów eksploatacyjnych. W praktyce, po zauważeniu nieprawidłowości, operator powinien niezwłocznie wyłączyć urządzenie, aby zapobiec dalszym uszkodzeniom. Właściwa konserwacja rolek i ich regularna wymiana mogą znacznie wydłużyć żywotność mieszalnika oraz poprawić jego efektywność operacyjną. Ponadto, takie działania są zgodne z zaleceniami producentów sprzętu, którzy często podkreślają znaczenie terminowej wymiany zużytych części dla zapewnienia bezpieczeństwa i wydajności urządzeń.

Pytanie 14

Energia uwalniająca się w wyniku reakcji chemicznych jest zazwyczaj stosowana do wstępnego podgrzewania surowców wprowadzanych do reaktorów lub do wytwarzania pary wodnej w dedykowanych kotłach utylizacyjnych. Jaką zasadą technologiczną uzasadnia się takie podejście?

A. Optymalnego wykorzystania energii
B. Optymalnego wykorzystania różnic potencjałów
C. Optymalnego wykorzystania surowców
D. Optymalnego wykorzystania aparatury
Poprawna odpowiedź "Najlepszego wykorzystania energii" odnosi się do zasadności wykorzystania ciepła generowanego w procesach chemicznych do efektywnego zarządzania energią w instalacjach przemysłowych. W procesach reakcyjnych, ciepło to może być odzyskiwane i używane do wstępnego ogrzewania surowców, co zmniejsza zapotrzebowanie na dodatkowe źródła energii, takie jak paliwa kopalne. Przykładem takiego zastosowania jest przemysł petrochemiczny, gdzie ciepło z reakcji krakingu jest wykorzystywane do podgrzewania surowców przed dalszymi procesami. Wykorzystanie energii w sposób efektywny nie tylko obniża koszty operacyjne, ale również przyczynia się do zmniejszenia emisji gazów cieplarnianych, co jest zgodne z najlepszymi praktykami zrównoważonego rozwoju. Utrzymanie wysokiej efektywności energetycznej jest kluczowe w kontekście globalnych dążeń do ograniczenia zużycia energii oraz zminimalizowania wpływu na środowisko. Ponadto, standardy ISO 50001 dotyczące zarządzania energią podkreślają znaczenie monitorowania i optymalizacji procesów energetycznych, co jest zgodne z omawianą zasadą.

Pytanie 15

Proces wymiany ciepła w wymienniku płaszczowo-rurowym jest najbardziej efektywny, gdy:

A. przepływy są równoległe
B. przepływy są przeciwprądowe
C. przepływy są turbulentne
D. przepływy są laminarnie
Przepływ przeciwprądowy w wymienniku ciepła charakteryzuje się tym, że gorący czynnik płynie w przeciwnym kierunku niż zimny. Dzięki temu różnica temperatur pomiędzy tymi czynnikami jest utrzymywana na wyższym poziomie na całej długości wymiennika niż w układach równoległych. W efekcie, zgodnie z zasadami termodynamiki, wymiana ciepła jest bardziej intensywna i efektywna. Tego typu układ pozwala na osiągnięcie większej różnicy temperatur końcowych, co jest pożądane w wielu procesach przemysłowych, gdzie wymagane jest maksymalne wykorzystanie energii cieplnej. Z mojego doświadczenia, w przemyśle chemicznym takie rozwiązania są kluczowe, zwłaszcza w procesach wymagających precyzyjnej kontroli temperatury, jak w reaktorach czy chłodnicach. Praktyczne zastosowanie przepływu przeciwprądowego można zauważyć w wymiennikach ciepła w instalacjach petrochemicznych, gdzie optymalizacja wymiany ciepła przekłada się na znaczące oszczędności energetyczne i redukcję kosztów operacyjnych. To sprawia, że przepływy przeciwprądowe są standardem w wielu nowoczesnych instalacjach.

Pytanie 16

Podaj etapy, które należy przeprowadzić, aby pozbyć się przebarwień termicznych, naprężeń międzykrystalicznych oraz rdzawych osadów na powierzchni elementów wykonanych ze stali nierdzewnej?

A. Odtłuścić, nałożyć żel lub pianę trawiącą na oczyszczone powierzchnie, a następnie dokładnie spłukać wodą
B. Odtłuścić, na oczyszczone powierzchnie nałożyć żel lub pianę trawiącą i wypolerować
C. Spłukać wodą, oczyścić powierzchnie mechanicznie i usunąć rdzę
D. Rozpylić żel lub pianę trawiącą na oczyszczonych powierzchniach, usunąć rdzę, a następnie dokładnie spłukać wodą
Niektóre z zaproponowanych odpowiedzi opierają się na błędnych założeniach dotyczących procesu usuwania rdzy i zanieczyszczeń z powierzchni stali nierdzewnej. W przypadku wyszlifowania czyszczonych powierzchni, jak sugerowano w jednej z odpowiedzi, istnieje ryzyko uszkodzenia wierzchniej warstwy ochronnej stali, co może prowadzić do przyspieszonej korozji. Szlifowanie mechaniczne może usunąć widoczne naleciałości, jednak nie eliminuje on chemicznych reakcji, które są niezbędne do skutecznego usunięcia rdzy. Dodatkowo, proces odrdzewiania powinien być przeprowadzany po nałożeniu odpowiednich środków czyszczących, a nie przed, gdyż kluczowe jest, aby najpierw usunąć wszelkie zanieczyszczenia powierzchniowe. Warto także zauważyć, że spłukiwanie wodą przed pełnym odtłuszczeniem może prowadzić do rozproszenia zanieczyszczeń, co będzie miało negatywny wpływ na efektywność kolejnych kroków. Kluczowe jest, aby działania były realizowane w odpowiedniej kolejności i zgodnie z ustalonymi standardami branżowymi, aby zapewnić długotrwałe efekty oraz ograniczyć ryzyko korozji stali nierdzewnej.

Pytanie 17

Reaktory, w których przebiega proces nitrowania, są wyposażone w automatyczną blokadę dostępu do mieszaniny nitrującej. Co należy zrobić po aktywacji tej blokady?

A. Stopniowo zwiększać temperaturę w reaktorze
B. Ręcznie aktywować dozowanie mieszaniny nitrującej
C. Opróżnić zawartość reaktora do zbiornika bezpieczeństwa
D. Jak najszybciej obniżyć temperaturę w reaktorze
Odpowiedź "Jak najszybciej obniżyć temperaturę w reaktorze" jest mega ważna, jak chodzi o bezpieczeństwo w procesach chemicznych. Szczególnie w reaktorach nitrowania, gdzie reakcje mogą być naprawdę ekscytujące, ale też niebezpieczne. Kiedy uruchamiasz blokadę dopływu mieszaniny nitrującej, to znaczy, że coś może pójść nie tak, a przegrzanie reaktora to już gruba sprawa – może prowadzić do wybuchu i innych nieprzyjemnych sytuacji. Dlatego potrzebujemy jak najszybciej schłodzić reaktor, żeby nie pozwolić na niekontrolowane reakcje. W praktyce używamy różnych mediów chłodzących, jak woda, co jest zgodne z tym, co powinno się robić w zakładach chemicznych. Międzynarodowe standardy, takie jak ISO 45001, podkreślają, jak ważne jest zarządzanie ryzykiem i posiadanie procedur awaryjnych, które mówią, co robić w przypadku problemów. Fajnie jest też, jak personel jest przeszkolony w sytuacjach kryzysowych, bo to dodatkowo zwiększa bezpieczeństwo w zakładzie.

Pytanie 18

Węgiel rozdrobniony i zmieszany w odpowiednich ilościach, pochodzący z określonych gatunków, przeznaczony na wsad do pieców koksowniczych powinien być poddany analizie

A. na zawartość siarki
B. na zawartość popiołu
C. organoleptycznej
D. sitowej
Analiza sitowa jest kluczowym procesem w ocenie jakości wsadu do komór koksowniczych. Polega na określeniu rozkładu ziarnowego węgla, co ma bezpośredni wpływ na wydajność procesu koksowania. Odpowiednie proporcje frakcji węglowych są istotne, ponieważ zbyt duża ilość zbyt drobnych cząstek może prowadzić do zmniejszenia efektywności procesu, a także wpływać na jakość otrzymanego koksu. Zastosowanie analizy sitowej pozwala na optymalizację procesu produkcji koksu, co jest zgodne z dobrymi praktykami stosowanymi w przemyśle węglowym. W praktyce oznacza to, że nieprawidłowa frakcja ziarnowa może prowadzić do problemów technologicznych, takich jak zatykanie komór koksowniczych czy nieefektywne spalanie. W związku z tym, regularne wykonywanie analizy sitowej węgla stanowi element zapewnienia wysokiej jakości produktu końcowego oraz efektywności operacyjnej zakładów koksowniczych. Ponadto, zgodnie z normami ISO, analiza ziarnowości jest jednym z podstawowych wymogów w kontroli jakości surowców w przemyśle metalurgicznym i energetycznym.

Pytanie 19

Przeprowadzając okresowy przegląd filtra tarczowego w warunkach próżniowych, jakie czynności należy wykonać?

A. wymiana siatki filtracyjnej
B. przedmuchanie przegrody porowatej
C. sprawdzenie tkaniny filtracyjnej
D. kontrola odstępów pomiędzy tarczami
Odpowiedzi, które nie koncentrują się na kontroli tkaniny filtracyjnej, mogą prowadzić do niepełnego zrozumienia procesu przeglądu filtra tarczowego. Na przykład, przedmuchanie przegrody porowatej, choć może być użyteczne w kontekście usuwania zanieczyszczeń, nie odnosi się bezpośrednio do stanu samej tkaniny filtracyjnej, co jest kluczowym aspektem jej efektywności. Z kolei wymiana siatki filtracyjnej nie jest standardowym elementem przeglądów okresowych, ponieważ siatki powinny być wymieniane tylko w przypadku ich uszkodzenia, a nie rutynowo. Sprawdzanie odstępów między tarczami również nie jest częścią standardowej procedury przeglądu, ponieważ odstępy te powinny być ustalane i kontrolowane w czasie instalacji filtra. Takie podejścia mogą prowadzić do mylnych wniosków, które ignorują kluczowe aspekty konserwacji filtrów. W branży filtracji, zdolność do identyfikacji i konserwacji kluczowych elementów, takich jak tkanina filtracyjna, jest fundamentalna dla zapewnienia nieprzerwanego i efektywnego działania systemu.

Pytanie 20

Aby precyzyjnie określić temperatury topnienia i krzepnięcia roztworów, powinno się użyć

A. pirometru optycznego
B. ebuliometru
C. kriometru
D. bomby kalorymetrycznej
Kriometr jest narzędziem specjalistycznym, które służy do precyzyjnego pomiaru temperatury topnienia i krzepnięcia roztworów. Działa na zasadzie analizy zmiany temperatury, gdy substancja przechodzi ze stanu ciekłego w stały (topnienie) lub odwrotnie (krzepnięcie). W praktyce kriometr wykorzystuje się w chemii analitycznej, w procesach badań materiałowych oraz w przemyśle spożywczym, gdzie kontrola temperatury ma kluczowe znaczenie dla zapewnienia jakości produktów. Dzięki zastosowaniu kriometru, można uzyskać dokładne wyniki, co jest niezbędne do oceny czystości chemikaliów oraz do określenia właściwości fizykochemicznych substancji. W branży chemicznej standardy, takie jak ISO, podkreślają znaczenie precyzyjnych pomiarów w badaniach laboratoryjnych, co czyni kriometr narzędziem o wysokiej wartości. Przykładem zastosowania kriometru jest analiza roztworów soli, gdzie znajomość temperatury krzepnięcia jest kluczowa dla uzyskania informacji o stężeniu roztworu i jego właściwościach. Współczesne kriometry są zautomatyzowane, co zwiększa dokładność i powtarzalność pomiarów.

Pytanie 21

Na czym głównie polega obsługa cyklonu?

A. Na regulacji prędkości wlotowej zapylonego gazu
B. Na utrzymywaniu stałej odległości pomiędzy płytami osadczymi
C. Na kontrolowaniu temperatury gazu wchodzącego do systemu
D. Na zachowywaniu stałej różnicy potencjałów pomiędzy elektrodami
Obsługa cyklonu polega przede wszystkim na regulacji prędkości wlotowej zapylonego gazu, co ma kluczowe znaczenie dla efektywności procesu separacji cząstek stałych. Cyklony są wykorzystywane w różnych branżach, takich jak przemysł chemiczny, metalurgiczny czy energetyka, gdzie zachodzi potrzeba oddzielania cząstek z gazów. Utrzymanie odpowiedniej prędkości wlotowej zapewnia optymalne warunki do wytworzenia siły odśrodkowej, która działa na cząstki stałe, powodując ich oddzielenie od gazu. Praktyczne zastosowanie tej regulacji może obejmować kontrolę wydajności cyklonów w instalacjach odpylających, gdzie zarządzanie parametrami gazu wlotowego jest podstawą do osiągnięcia wysokiej efektywności oczyszczania. Zgodnie z dobrą praktyką, zaleca się regularne monitorowanie i dostosowywanie prędkości wlotowej, co pozwala na zoptymalizowanie procesu oraz zmniejszenie zużycia energii. Dzięki temu, cyklony mogą pracować na maksymalnej wydajności, co przekłada się na oszczędności oraz lepszą jakość procesu technologicznego.

Pytanie 22

Który z wymienionych parametrów procesu destylacji prostej powinien być kontrolowany i odnotowywany w dokumentacji przebiegu tego procesu?

A. Masa surowca w kotle do destylacji
B. Temperatura wody chłodzącej na wyjściu z chłodnicy
C. Temperatura roztworu oraz oparów nad roztworem
D. Czas trwania procesu
Temperatura roztworu i oparów nad roztworem jest kluczowym parametrem w procesie destylacji prostej, ponieważ bezpośrednio wpływa na efektywność separacji składników mieszaniny. Kontrola tej temperatury pozwala na określenie momentu przejścia od frakcji o wyższej temperaturze wrzenia do frakcji o niższej temperaturze wrzenia, co jest istotne dla uzyskania czystych produktów. W praktyce, stosując termometry umieszczone w odpowiednich miejscach kolumny destylacyjnej, operatorzy mogą na bieżąco monitorować proces, co zgodne jest z najlepszymi praktykami w branży chemicznej i farmaceutycznej. Przykładowo, w procesach przemysłowych takich jak destylacja etanolu, dokładne pomiary temperatury umożliwiają optymalizację procesu, co prowadzi do zwiększenia wydajności i jakości otrzymywanych produktów. Jest to zgodne z normami ISO oraz wytycznymi Good Manufacturing Practice (GMP), które podkreślają znaczenie dokumentacji i kontroli kluczowych parametrów w procesach technologicznych.

Pytanie 23

Szczęki w urządzeniu do łamania szczęk wytwarza się ze stali

A. wanadowej
B. manganowej
C. niklowo-molibdenowej
D. chromowo-niklowej
Stal niklowo-molibdenowa jest często stosowana w przemyśle ze względu na swoje właściwości mechaniczne, jednak jej głównym zastosowaniem są elementy wymagające wysokiej twardości i odporności na korozję, a nie narzędzia takie jak łamacze szczękowe. Wybór tego materiału do produkcji szczęk łamacza byłby niewłaściwy, ponieważ nie zapewnia on oczekiwanej odporności na ścieranie, co jest kluczowym wymogiem. Stal wanadowa, z kolei, jest ceniona za swoje właściwości wytrzymałościowe, jednak w zastosowaniach wymagających dużych obciążeń i odporności na ścieranie nie odpowiada potrzebom narzędzi skrawających. Również stal chromowo-niklowa, znana ze swojej odporności na korozję, nie jest idealnym wyborem dla szczęk łamaczy, które muszą sprostać dużym siłom i wibracjom. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych materiałów, wiążą się z niepełnym zrozumieniem specyfiki zastosowania i wymagań mechanicznych. W praktyce inżynieryjnej kluczowe jest uwzględnienie specyficznych właściwości materiałów oraz ich odpowiedniości do zamierzonych funkcji, co w przypadku łamańców wymaga szczegółowej analizy ich zastosowania oraz właściwości mechanicznych. Wybierając materiał, należy zwrócić uwagę na jego odporność na zmęczenie, ścieranie oraz wytrzymałość na uderzenia, co w przypadku szczęk łamaczy jest fundamentalne.

Pytanie 24

Jakie urządzenie powinno być użyte do pakowania saletry amonowej przekazywanej do klientów?

A. Dozator rotacyjny
B. Podajnik ślimakowy
C. Wagę dozującą
D. Dozator pojemnościowy
Waga dozująca to naprawdę istotny sprzęt w pakowaniu saletry amonowej. Dzięki niej możemy bardzo dokładnie odmierzć masę tego nawozu, co jest super ważne, aby wszystko było zgodne z normami i miało dobrą jakość. Saletra amonowa jako nawóz w rolnictwie potrzebuje konkretnej ilości do efektywnego działania i bezpieczeństwa. Jak mamy wagę dozującą, to automatyzujemy cały proces pakowania, a to znacząco zmniejsza szansę na błędy ze strony ludzi. Często waga dozująca współpracuje z systemami transportu pneumatycznego lub innymi dozownikami, co sprawia, że pakowanie staje się proste i szybkie, bez obaw o przekroczenie norm. Waga dozująca jest w pełni zgodna z zasadami GMP, co jest istotne dla bezpieczeństwa operatorów i końcowych użytkowników produktu.

Pytanie 25

Wydajność finalnych produktów otrzymywanych w procesie pirolizy różnych surowców w % masowych Wskaż surowiec, który należy poddać pirolizie, aby otrzymać możliwie najwyższą ilość propenu (propylenu) przy wydajności butadienu powyżej 4,0% masowych.

Surowiec poddany pirolizieWydajność produktów pirolizy
etylenpropylenbutadien
Etan81,62,03,0
Propan46,918,72,9
n-Butan44,517,24,4
Benzyna lekka42,315,94,7
Benzyna ciężka34,116,04,9
Lekki olej napędowy29,414,010,6

A. Benzyna ciężka.
B. Benzyna lekka.
C. n-Butan.
D. Propan.
n-Butan jest surowcem, który przy procesie pirolizy osiąga najwyższą wydajność propylenu na poziomie 17,2% masowych. To znacząco przewyższa inne badane surowce. Dla praktyków zajmujących się produkcją chemiczną, właściwy dobór surowców do procesów pirolizy jest kluczowy dla maksymalizacji wydajności oraz redukcji kosztów operacyjnych. Wydajność butadienu z n-Butanu wynosząca 4,4% masowych spełnia wymagania, co czyni go bardzo atrakcyjnym surowcem w kontekście produkcji chemikaliów. W praktyce, n-Butan jest często wykorzystywany w branży petrochemicznej do produkcji różnych związków organicznych, a jego zastosowanie w pirolizie sprzyja uzyskaniu nie tylko propylenu, ale także innych cennych produktów. Przemysł chemiczny dąży do efektywności, dlatego znajomość właściwości surowców oraz ich wydajności w różnych procesach jest niezbędna, aby optymalizować cały cykl produkcji oraz dostosowywać go do potrzeb rynku.

Pytanie 26

Ilość odsiarczonego gazu syntezowego, wynosząca 1800 m3, przepływa przez reaktor do syntezy metanolu co godzinę. Jaką objętość gazu m3 przemieszcza się przez reaktor w czasie 1 minuty?

A. 18 m3
B. 30 m3
C. 180 m3
D. 60 m3
Poprawna odpowiedź to 30 m³, co można obliczyć, dzieląc ilość gazu syntezowego przepływającego przez reaktor w ciągu godziny przez liczbę minut w godzinie. W ciągu godziny przepływa 1800 m³ gazu, a ponieważ godzina ma 60 minut, obliczenie wygląda następująco: 1800 m³ / 60 min = 30 m³/min. Tego typu obliczenia są kluczowe w przemyśle chemicznym i energetycznym, gdzie precyzyjne zarządzanie przepływem gazów jest niezbędne do optymalizacji procesów produkcyjnych, takich jak synteza metanolu. W praktyce, zrozumienie przepływów gazów i ich pomiarów jest fundamentem dla inżynierów zajmujących się projektowaniem reaktorów, co pozwala na efektywne zarządzanie procesami i zapewnienie bezpieczeństwa operacji. Dodatkowo, stosowanie narzędzi takich jak diagramy przepływu i analizy procesów stanowi standard w branży, co umożliwia bieżące monitorowanie i optymalizację wydajności.

Pytanie 27

Które pomieszczenia będą odpowiednie na magazyn styrenu?

Styren (wybrane właściwości)
  • Ciecz bezbarwna
  • Temperatura zapłonu tz = 31°C
  • Temperatura samozapłonu tsz = 490°C
  • Utlenia się pod wpływem tlenu z powietrza tworząc wybuchowe nadtlenki
  • Łatwo polimeryzuje pod wpływem ogrzewania i światła
  • Niekontrolowana polimeryzacja może przebiegać wybuchowo

A. Dobrze ogrzewane i bardzo dobrze oświetlone.
B. Chłodne i zaciemnione.
C. Chłodne i bardzo dobrze oświetlone.
D. Dobrze ogrzewane i zaciemnione.
Pomieszczenia chłodne i zaciemnione stanowią optymalne warunki do przechowywania styrenu, ponieważ zapobiegają niekontrolowanej polimeryzacji, która może wystąpić w wyniku podgrzewania i ekspozycji na światło. Styren, jako ciecz łatwopalna o temperaturze zapłonu wynoszącej 31°C, wymaga szczególnych środków ostrożności. Przechowywanie go w chłodnych warunkach ogranicza ryzyko samozapłonu, a zaciemnienie chroni przed działaniem promieniowania UV, które może przyspieszyć reakcje polimeryzacyjne. W branży chemicznej i przemysłowej przestrzeganie zasad przechowywania substancji niebezpiecznych jest kluczowe dla bezpieczeństwa. Zgodnie z normami takimi jak NFPA (National Fire Protection Association), pomieszczenia do składowania substancji chemicznych powinny być dostosowane do specyficznych właściwości fizycznych i chemicznych przechowywanych materiałów. Przykładem praktycznym może być zastosowanie chłodziarek przemysłowych lub magazynów chłodniczych, które spełniają wszystkie wymagania dotyczące bezpieczeństwa. Warto zwrócić uwagę na odpowiednie oznaczenia i systemy wentylacyjne, które dodatkowo zabezpieczają przed gromadzeniem się niebezpiecznych oparów.

Pytanie 28

W procesie rafinacji ropy naftowej, która frakcja jest oddzielana jako pierwsza?

A. Olej opałowy
B. Olej napędowy
C. Gazy lekkie
D. Asfalt
W procesie rafinacji ropy naftowej, pierwszą frakcją oddzielaną podczas destylacji jest frakcja gazów lekkich. Proces ten odbywa się w kolumnach destylacyjnych, gdzie ropa naftowa jest podgrzewana i wprowadzana do kolumny. Ze względu na różnice w temperaturze wrzenia składników ropy, poszczególne frakcje są oddzielane na różnych wysokościach kolumny. Gazy lekkie, takie jak metan, etan, propan i butan, charakteryzują się najniższymi temperaturami wrzenia, dlatego są one oddzielane jako pierwsze w górnej części kolumny destylacyjnej. Proces ten jest kluczowy dla przemysłu petrochemicznego, ponieważ umożliwia uzyskanie podstawowych składników do dalszej produkcji chemicznej i energetycznej. Gazy lekkie znajdują szerokie zastosowanie jako paliwa, surowce do produkcji chemicznej oraz w procesach syntezy. Właściwe zarządzanie tym procesem jest kluczowe dla efektywności i rentowności rafinerii. Dlatego też zrozumienie tego etapu jest fundamentalne dla każdego, kto pracuje w branży chemicznej, szczególnie w dziedzinie eksploatacji maszyn i urządzeń rafineryjnych.

Pytanie 29

Podczas przeprowadzania konserwacji okresowej wirówki filtracyjnej konieczne jest między innymi

A. wymienić siatkę lub materiał filtracyjny
B. zweryfikować położenie noża zgarniającego osad
C. wyczyścić przewody odprowadzające ciecze rozdzielone
D. dostosować ustawienie talerzy separacyjnych
W trakcie konserwacji wirówki filtracyjnej kluczowe jest zrozumienie, że różne komponenty maszyny pełnią specyficzne funkcje, a nie wszystkie działania są równie istotne w kontekście efektywności procesu filtracji. Skorygowanie ustawienia talerzy separacyjnych, chociaż może mieć wpływ na efektywność, jest krokiem, który w praktyce wykonuje się rzadziej, ponieważ ich ustawienia są zwykle stabilne i wymagają wyłącznie korekty w przypadku zauważalnych problemów z separacją. Również sprawdzenie położenia noża zgarniającego osad jest ważne, ale nie zawsze musi być częścią standardowej konserwacji okresowej, gdyż nóż ten nie ulega częstym zmianom i jego położenie można oceniać w momencie, gdy zauważone są problemy z wydajnością. Oczyszczanie przewodów odprowadzających ciecze rozdzielone jest istotne, ale w kontekście konserwacji siatki lub tkaniny filtracyjnej, te działania nie mają bezpośredniego wpływu na jakość filtracji. Nieprawidłowe podejście do konserwacji może prowadzić do błędnego wniosku, że sporadyczne działania na mniej krytycznych elementach mają równoważny wpływ na efektywność całego procesu, co w rzeczywistości może prowadzić do pominięcia kluczowych zadań, jakimi są regularne kontrole i wymiany materiałów filtracyjnych. Zrozumienie hierarchii zadań w konserwacji jest niezbędne do utrzymania optymalnej wydajności urządzeń filtracyjnych.

Pytanie 30

Możliwość przeprowadzenia jednorazowej analizy stężenia tlenku węgla w gazach spalinowych uzyskuje się dzięki

A. aparatu Orsata
B. kalorymetrowi Junkersa
C. refraktometrowi Abbego
D. urządzeniu Marcussona
Aparat Orsata jest urządzeniem używanym do pomiaru zawartości tlenku węgla (CO) w gazach spalinowych, co jest kluczowe w analizie emisji oraz w ocenie efektywności procesów spalania. Zasada działania aparatu opiera się na reakcji chemicznej, w której tlenek węgla reaguje z reagentem, co skutkuje powstaniem zmiany barwy, umożliwiającej ilościowe określenie stężenia CO. W praktyce, aparat Orsata znajduje zastosowanie w branży energetycznej, motoryzacyjnej oraz w przemysłowych instalacjach grzewczych, gdzie regularne monitorowanie emisji gazów jest wymagane przez przepisy ochrony środowiska. Stosowanie tego urządzenia pozwala na szybką i precyzyjną analizę, co jest niezbędne dla oceny wpływu na jakość powietrza oraz dla zapewnienia zgodności z normami emisji. W przypadku wykrycia wysokiego stężenia tlenku węgla, operatorzy mogą podjąć odpowiednie działania korygujące, co przekłada się na zmniejszenie negatywnego wpływu na zdrowie ludzi i środowisko.

Pytanie 31

Jaka jest funkcja zaworu redukcyjnego w instalacjach chemicznych?

A. Podnoszenie temperatury medium
B. Obniżanie ciśnienia w systemie
C. Zmniejszanie objętości gazu
D. Przyspieszanie przepływu cieczy
Zawór redukcyjny, jak sama nazwa wskazuje, służy do redukcji ciśnienia w systemach instalacji chemicznych. Jego główną funkcją jest zapewnienie, że ciśnienie w określonym obszarze instalacji zostanie utrzymane na bezpiecznym i stabilnym poziomie. Jest to kluczowe z perspektywy bezpieczeństwa, ponieważ zbyt wysokie ciśnienie może prowadzić do uszkodzenia sprzętu, awarii lub nawet eksplozji. W praktyce, zawory te są używane tam, gdzie konieczne jest obniżenie ciśnienia z wyższego poziomu na niższy w celu dostosowania do wymogów pracy konkretnego urządzenia lub procesu technologicznego. Przykładowo, w instalacjach parowych zawory redukcyjne są stosowane do obniżenia ciśnienia pary, zanim zostanie ona doprowadzona do obszarów, które wymagają niższego ciśnienia. Dobre praktyki branżowe wskazują na konieczność regularnej konserwacji tych zaworów, aby zapewnić ich bezawaryjność i długą żywotność. Warto również zauważyć, że prawidłowe działanie zaworów redukcyjnych może prowadzić do zwiększenia efektywności energetycznej całego systemu.

Pytanie 32

Jakie jest stężenie roztworu uzyskanego przez zmieszanie 1250 kg NaCl z 3750 kg wody?

A. 75,0 % (m/m)
B. 50,5 % (m/m)
C. 25,0 % (m/m)
D. 12,5 % (m/m)
Odpowiedź 25,0 % (m/m) jest jak najbardziej w porządku. Żeby obliczyć stężenie masowe roztworu, trzeba podzielić masę substancji rozpuszczonej przez całkowitą masę roztworu, a potem pomnożyć przez 100%. W tym przypadku mamy 1250 kg NaCl i 3750 kg wody, więc łączna masa roztworu to 5000 kg. Jak to policzymy? (1250 kg / 5000 kg) * 100% = 25,0 %. To ważne, bo stężenie masowe jest kluczowe w chemii – używa się go na przykład w laboratoriach czy podczas analiz chemicznych. Dlatego warto zawsze dobrze liczyć stężenie, żeby przygotowanie roztworów było trafne i zgodne z normami, jak chociażby ISO 8655.

Pytanie 33

Jaką metodę analizy klasycznej powinno się zastosować do oznaczenia stężenia kwasu siarkowego(VI), który jest przygotowywany do produkcji superfosfatu?

A. Miareczkowanie manganometryczne
B. Miareczkowanie argentometryczne
C. Miareczkowanie alkacymetryczne
D. Miareczkowanie kompleksometryczne
Miareczkowanie alkacymetryczne to technika analityczna, która polega na określaniu stężenia kwasów i zasad poprzez pomiar zmiany pH podczas dodawania titranta. W przypadku stężenia kwasu siarkowego(VI), który jest silnym kwasem, miareczkowanie alkacymetryczne jest najbardziej odpowiednią metodą. Proces ten polega na stopniowym dodawaniu zasady, zazwyczaj wodorotlenku sodu, do próbki kwasu siarkowego, aż do momentu osiągnięcia punktu równoważności, co jest sygnalizowane zmianą pH. W praktyce, zastosowanie wskaźników pH lub pH-metrów pozwala na precyzyjne określenie momentu zakończenia reakcji. Metoda ta jest uznawana za standardową w laboratoriach chemicznych, co zapewnia jej wysoką wiarygodność i dokładność. W kontekście produkcji superfosfatu, precyzyjne określenie stężenia kwasu siarkowego jest kluczowe, ponieważ wpływa na efektywność procesu produkcyjnego oraz jakość końcowego produktu. W związku z tym, miareczkowanie alkacymetryczne jest zgodne z dobrymi praktykami analitycznymi i zaleceniami branżowymi. Dodatkowo, znajomość tej metody jest niezbędna dla chemików zajmujących się analizą jakościową i ilościową substancji chemicznych.

Pytanie 34

Napawanie to sposób na

A. czyszczenie
B. montaż
C. demontaż
D. regenerację
Napawanie to taki proces technologiczny, który polega na dodawaniu i odbudowywaniu materiału na powierzchni różnych elementów. Większość z nas pewnie kojarzy je z regenerowaniem zużytych części maszyn, które z czasem się erodują lub uszkadzają. Na przykład, napawanie wałów, które są już mocno zużyte od długiego używania, to świetny sposób na przedłużenie ich żywotności. W praktyce możemy używać różnych metod napawania, jak gazowo-łukowe, MIG, TIG czy nawet laserowe, w zależności od tego, co mamy do naprawy i jakie właściwości chcemy uzyskać. Osobiście uważam, że dobrze jest znać te różne metody, bo wybór zależy od materiału, z jakiego robimy napawanie, oraz od tego, jakie cechy chcemy osiągnąć. Ważne jest też, żeby przed tym wszystkim zrobić analizę materiałową, żeby zapewnić dobrą przyczepność i zminimalizować naprężenia, co naprawdę wpływa na żywotność końcowego produktu. Także, warto o tym pamiętać w kontekście technologii obróbczej.

Pytanie 35

Jakie jest zastosowanie wirówek talerzowych?

A. rozdzielania emulsji
B. oczyszczania powietrza
C. rozdrabniania materiałów włóknistych
D. mieszania materiałów sypkich
Wirówki talerzowe, znane również jako wirówki dekantacyjne, są specjalistycznymi urządzeniami stosowanymi do rozdzielania emulsji, czyli układów, w których jedna ciecz jest rozproszona w drugiej. Proces ten zachodzi przy użyciu siły odśrodkowej, która oddziela składniki na podstawie ich gęstości. Dzięki swojej konstrukcji i wydajności, wirówki talerzowe są szeroko stosowane w przemyśle chemicznym, spożywczym oraz farmaceutycznym. Przykładowo, w przemyśle mleczarskim mogą być wykorzystywane do oddzielania tłuszczu od mleka, a w przemysłach chemicznych – do separacji cieczy i stałych w procesach produkcyjnych. W kontekście dobrych praktyk, ważne jest, aby przed użyciem wirówki zrozumieć właściwości przetwarzanych substancji oraz parametry procesu, takie jak prędkość obrotowa i czas separacji, co wpływa na efektywność rozdzielania emulsji.

Pytanie 36

Reakcja absorpcji tlenku azotu(IV) w wodzie została przedstawiona równaniem
3NO2 + H2O ↔ 2HNO3 + NO ΔH < 0 Zgodnie z zasadą Le Chateliera - Brauna efektywność reakcji wzrośnie, jeśli

A. zmniejszy się temperatura i zwiększy się ciśnienie
B. zwiększy się temperatura i zmniejszy się ciśnienie
C. zmniejszy się temperatura i zmniejszy się ciśnienie
D. zwiększy się temperatura i zwiększy się ciśnienie
Obniżenie temperatury w przypadku reakcji egzotermicznych, takich jak ta opisana równaniem 3NO2 + H2O ↔ 2HNO3 + NO, prowadzi do przesunięcia równowagi reakcji w stronę produktów, co zwiększa jej wydajność. Zgodnie z zasadą Le Chateliera, system dąży do zminimalizowania skutków zmian warunków. Ponadto, podwyższenie ciśnienia w reakcjach gazowych, w których liczba moli gazów w produktach jest mniejsza niż w reagentach, również sprzyja zwiększeniu wydajności reakcji. W przypadku omawianej reakcji, po lewej stronie równania mamy 3 mole NO2, a po prawej stronie 1 mol NO plus 2 mole HNO3, co w sumie daje 3 mole gazu. Zwiększenie ciśnienia sprzyja zatem powstawaniu produktów. Praktycznie, zastosowanie tej zasady jest widoczne w procesach przemysłowych, takich jak produkcja kwasu azotowego, gdzie kontrola temperatury i ciśnienia jest kluczowa dla zwiększenia wydajności procesu i optymalizacji kosztów operacyjnych.

Pytanie 37

Podaj właściwą sekwencję działań laboratoryjnych realizowanych podczas określania zawartości azotu w związkach organicznych za pomocą metody Kjeldahla.
miareczkowanie nadmiaru kwasu.

A. Mineralizacja próbki na mokro, oddestylowanie amoniaku, alkalizacja próbki, miareczkowanie nadmiaru kwasu
B. Alkalizacja próbki, oddestylowanie amoniaku, mineralizacja próbki na mokro, miareczkowanie nadmiaru kwasu
C. Alkalizacja próbki, mineralizacja próbki na mokro, oddestylowanie amoniaku
D. Mineralizacja próbki na mokro, alkalizacja próbki, oddestylowanie amoniaku, miareczkowanie nadmiaru kwasu
Wybrałeś prawidłową odpowiedź, co jest super, bo pokazuje, że rozumiesz, jak działa metoda Kjeldahla. Cały proces zaczyna się od mineralizacji próbki na mokro. To znaczy, że rozkładamy te organiczne związki w kwasie siarkowym, a w ten sposób uwalniamy azot jako amoniak. Potem alkalizujemy próbkę, żeby przekształcić amoniak w związek amonowy, który później destylujemy. Na sam koniec miareczkujemy nadmiar kwasu, co pozwala nam dokładnie określić, ile azotu jest w próbce. To wszystko jest zgodne z dobrymi praktykami w laboratoriach i normami międzynarodowymi, przez co wyniki są wiarygodne. Metoda ta ma naprawdę szerokie zastosowanie, zwłaszcza w chemii, rolnictwie czy w badaniach środowiskowych, gdzie musimy znać dokładną zawartość azotu, żeby móc ocenić jakość próbek.

Pytanie 38

W skład niezbędnego wyposażenia reaktora do kontaktowej syntezy amoniaku, która zachodzi w temperaturze 700 K i pod ciśnieniem 10 MPa, powinny wchodzić

A. rotametr, barometr i termometr szklany
B. zawór zwrotny, manometr i termometr oporowy
C. wakuometr, manometr i termometr oporowy
D. zawór bezpieczeństwa, manometr i termometr kontaktowy
Zawór bezpieczeństwa, manometr i termometr kontaktowy to kluczowe elementy oprzyrządowania reaktora chemicznego, szczególnie w procesie syntezy amoniaku. Zawór bezpieczeństwa jest niezbędny, aby zapobiec niebezpiecznym wzrostom ciśnienia wewnątrz reaktora, co może prowadzić do awarii lub eksplozji. Zgodnie z normami bezpieczeństwa, każdy system pod ciśnieniem musi być wyposażony w odpowiednie mechanizmy ochronne. Manometr pozwala na bieżąco monitorować ciśnienie w reaktorze, co jest kluczowe dla utrzymania optymalnych warunków reakcji, zwłaszcza w przypadku syntezy amoniaku, gdzie działanie pod wysokim ciśnieniem zwiększa efektywność procesu. Termometr kontaktowy umożliwia precyzyjne pomiary temperatury we wnętrzu reaktora, co jest istotne dla kontroli parametrów reakcji oraz zapobiegania niepożądanym efektom, takim jak przegrzanie. Użycie tych komponentów jest zgodne z najlepszymi praktykami inżynieryjnymi, które skupiają się na bezpieczeństwie i efektywności procesów chemicznych.

Pytanie 39

Nadzór nad działaniem rurociągu transportującego ciekłą siarkę obejmuje między innymi weryfikację poprawności funkcjonowania

A. systemu chłodnic ociekowych
B. systemu grzewczego oraz kontroli szczelności izolacji
C. systemu chłodzącego oraz kontroli zaworów bezpieczeństwa
D. systemu transportu pneumatycznego
Rurociągi do transportu ciekłej siarki to temat, który wymaga sporo uwagi, ale niektóre odpowiedzi mogą wydawać się okej na pierwszy rzut oka, a w praktyce są nie na miejscu. Na przykład, system transportu pneumatycznego dotyczy zupełnie innego rodzaju transportu – to jest do ciał stałych, a nie cieczy, więc tutaj w ogóle nie pasuje. Pneumatyka jest spoko do transportu sypkiego, ale cieczy, jak siarka, potrzebują stabilnych warunków, takich jak ciśnienie i temperatura. System chłodzący i kontrola zaworów bezpieczeństwa też nie są kluczowe dla transportu siarki; chłodzenie nie jest priorytetowe, a zawory bezpieczeństwa, choć ważne, nie są tym, co powinno być najpierw na liście rzeczy do monitorowania. Na dodatek, systemy chłodnic ociekowych nie mają zastosowania w tym procesie, bo nie odpowiadają wymogom transportu cieczy. Czasami łatwo jest się pomylić, myśląc o różnych systemach transportowych i ich zastosowaniach, dlatego bardzo ważne jest, żeby rozumieć specyfikę materiału i warunki jego transportu, bo to klucz do oceny, jakie rozwiązania technologiczne są najlepsze. Wiedza o monitorowaniu jest niezbędna, bo to zapewnia efektywność i bezpieczeństwo całego procesu.

Pytanie 40

W jaki sposób powinien zachowywać się pracownik nadzorujący działanie autoklawu?

A. Kontrolować wskazania manometru i zmniejszać temperaturę procesu, kiedy wartość ciśnienia przekroczy normę
B. Monitorować temperaturę procesu i regulować ją tak, aby nie przekroczyła normy o więcej niż 20%
C. Śledzić wskazania manometru i zwiększać temperaturę procesu, gdy wartość ciśnienia przekroczy normę
D. Obserwować temperaturę procesu i systematycznie ją zwiększać, aż do osiągnięcia 150°C
Odpowiedź polegająca na obserwacji wskazań manometru i obniżaniu temperatury prowadzenia procesu, gdy wartość ciśnienia przekracza normę, jest kluczowa w kontekście bezpiecznej eksploatacji autoklawu. Wysokie ciśnienie może prowadzić do niebezpiecznych sytuacji, takich jak eksplozje lub awarie sprzętu. W praktyce, podczas procesu sterylizacji, ważne jest, aby monitorować zarówno temperaturę, jak i ciśnienie, ponieważ te dwa parametry są ze sobą ściśle powiązane. Zmiany w ciśnieniu mogą wskazywać na problemy w procesie, takie jak nieszczelności w obiegu. Dlatego, obniżając temperaturę, można skutecznie zredukować ciśnienie, co jest zgodne z zaleceniami standardów dotyczących bezpieczeństwa w laboratoriach i placówkach medycznych. Taka praktyka jest zgodna z wytycznymi Organizacji Zdrowia oraz krajowymi normami dotyczącymi sterylizacji, co zapewnia bezpieczeństwo i skuteczność procesu.