Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 16 maja 2025 15:23
  • Data zakończenia: 16 maja 2025 15:42

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. prasy hydraulicznej
B. ściągacza do sprężyn
C. specjalnie uformowanej dźwigni
D. ręcznej prasy
Użycie specjalnie wyprofilowanej dźwigni do demontażu kolumny McPhersona, choć może wydawać się logiczne, w rzeczywistości nie jest zalecanym podejściem. Dźwignie te są projektowane do zastosowań, które nie wymagają precyzyjnego kontrolowania siły działającej na elementy sprężynowe. W przypadku kolumny McPhersona, sprężyna jest pod dużym ciśnieniem, co sprawia, że niewłaściwe użycie dźwigni może prowadzić do niebezpiecznych sytuacji, w tym do niekontrolowanego wystrzału sprężyny. Takie zdarzenia mogą zagrażać zdrowiu i życiu osoby pracującej przy pojeździe. Prasa ręczna, mimo że jest przydatna w wielu zastosowaniach, nie jest idealnym narzędziem do demontażu sprężyn zwłaszcza w kontekście kolumny McPhersona, ponieważ brakuje jej precyzji oraz możliwości dostosowania siły nacisku do wymagań konkretnego zadania. Prasa hydrauliczna może wydawać się bardziej odpowiednia, ale jej użycie w kontekście demontażu sprężyn może prowadzić do zbyt dużego ciśnienia, a co za tym idzie, do uszkodzenia elementów zawieszenia. Dzięki wiedzy o prawidłowych narzędziach i metodach demontażu można zredukować ryzyko i zwiększyć efektywność pracy w serwisach motoryzacyjnych.

Pytanie 2

Sonda lambda stanowi element, który znajduje się w systemie

A. wydechowym
B. zasilania
C. chłodzenia
D. hamulcowym
Sonda lambda, znana również jako czujnik tlenu, jest kluczowym elementem układu wydechowego w pojazdach. Jej głównym zadaniem jest monitorowanie stężenia tlenu w spalinach, co pozwala na optymalizację procesu spalania w silniku. Dzięki pomiarom sondy lambda, system zarządzania silnikiem (ECU) może dostosować proporcje paliwa i powietrza, co prowadzi do zredukowania emisji spalin i poprawy efektywności paliwowej. Współczesne pojazdy często wykorzystują sondy lambda w systemach z jednoczesnym monitorowaniem i regulowaniem procesu spalania, co jest zgodne z normami emisji spalin, takimi jak Euro 6. Przykładowo, w silnikach benzynowych sonda lambda pozwala na osiągnięcie tzw. 'stoichiometric ratio', co jest optymalnym współczynnikiem powietrza do paliwa. Ponadto, regularne sprawdzanie stanu sondy lambda jest istotne dla utrzymania sprawności układu wydechowego oraz zapobiegania potencjalnym problemom z działaniem silnika.

Pytanie 3

Jakie narzędzie stosuje się do pomiaru wewnętrznych średnic cylindra?

A. średnicówki mikrometrycznej
B. średnicówki czujnikowej
C. suwmiarki uniwersalnej
D. sprawdzianu do otworów
Średnicówka mikrometryczna jest narzędziem pomiarowym, które umożliwia precyzyjny pomiar średnic wewnętrznych cylindrycznych otworów. Jej konstrukcja opiera się na użyciu mikrometrycznej skali, co pozwala na osiągnięcie wysokiej dokładności pomiaru, często do setnych części milimetra. Użycie średnicówki mikrometrycznej w inżynierii mechanicznej i produkcji jest zgodne z aktualnymi standardami metrologicznymi, które wymagają precyzyjnych pomiarów w procesach wytwarzania i kontroli jakości. W praktyce, średnicówki mikrometryczne są stosowane do pomiaru otworów w elementach takich jak wały, łożyska czy cylindry hydrauliczne. Przykładowo, w przypadku produkcji elementów silnikowych, dokładność pomiarów średnicowych jest kluczowa dla zapewnienia prawidłowego osadzenia i funkcjonowania części. Dodatkowo, średnicówki mikrometryczne mogą być wyposażone w różne końcówki pomiarowe, co zwiększa ich wszechstronność i zastosowanie w różnych materiałach oraz geometriach otworów.

Pytanie 4

Na kloszu lampy światła do jazdy dziennej powinno być umieszczone oznaczenie

A. G
B. RL
C. B
D. F
Odpowiedź RL oznacza "Światła do jazdy dziennej" i jest zgodna z przepisami obowiązującymi w wielu krajach, w tym w Unii Europejskiej. Światła do jazdy dziennej, często określane jako DRL (Daytime Running Lights), mają za zadanie zwiększenie widoczności pojazdu w ciągu dnia, co przyczynia się do poprawy bezpieczeństwa na drogach. Zgodnie z normami EN 12368, które dotyczą sygnalizacji drogowej, stosowanie świateł do jazdy dziennej powinno być zgodne z odpowiednimi oznaczeniami, aby ułatwić identyfikację ich funkcji zarówno dla kierowców, jak i innych uczestników ruchu. Przykładowo, samochody wyposażone w takie światła mogą być lepiej widoczne na drodze, co jest szczególnie istotne w warunkach złej pogody lub w miejscach o ograniczonej widoczności. Właściwe oznaczenie RL pozwala również na efektywniejsze przeprowadzanie kontroli technicznych pojazdów, co jest praktyką stosowaną w wielu krajach, aby zapewnić bezpieczeństwo na drogach.

Pytanie 5

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze niż kolejny wymiar naprawczy, poddaje się ją regeneracji poprzez

A. hartowanie
B. nawęglanie
C. roztaczanie
D. azotowanie
Nawęglanie, azotowanie i hartowanie to techniki obróbcze, które nie są odpowiednie do regeneracji tulei cylindrowych, zwłaszcza gdy ich zużycie jest mniejsze od kolejnego wymiaru naprawczego. Nawęglanie polega na wzbogaceniu powierzchni materiału w węgiel, co zwiększa twardość, ale nie przywraca oryginalnych wymiarów. Proces ten stosuje się w przypadku osiągania podwyższonej odporności na zużycie, jednak dla regeneracji elementów wymagających precyzyjnego dopasowania jest niewłaściwy. Azotowanie z kolei polega na wprowadzeniu azotu do powierzchni stali, co również ma na celu poprawę twardości i odporności na korozję, ale w żadnym wypadku nie koryguje wymiarów. Hartowanie to proces obróbczy, który polega na nagrzewaniu materiału, a następnie szybkim chłodzeniu, co prowadzi do osiągnięcia wysokiej twardości. Mimo że hartowanie może zwiększyć wytrzymałość materiału, nie ma zastosowania w kontekście przywracania wymiarów zużytych elementów. Typowym błędem myślowym w takich przypadkach jest mylenie procedur twardnienia z procesami regeneracji, co prowadzi do nieprawidłowych wniosków i wyboru niewłaściwej metody. Regeneracja wymaga precyzyjnego podejścia i zrozumienia specyfiki materiałów oraz wymagań obróbczych, co jest kluczowe dla zapewnienia długotrwałej funkcjonalności elementów maszyn.

Pytanie 6

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt ubogą mieszankę paliwową
B. zbyt wysoki poziom oleju
C. zbyt bogatą mieszankę paliwową
D. uszkodzenie zaworów silnikowych
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 7

Chromowanie nie jest stosowane w przypadku naprawy

A. wału korbowego silnika.
B. gładzi cylindra silnika chłodzonego powietrzem.
C. czopów zwrotnic.
D. sworzni tłokowych.
Często rodzaje zastosowania chromowania w naprawach silników są źle rozumiane, co prowadzi do złych wyborów. Wał korbowy, sworznie tłokowe i czoła zwrotnic to elementy, które muszą być bardzo mocne i odporne na ścieranie. W takich przypadkach chromowanie może wydawać się korzystne, bo ta warstwa chromu pomaga w walce z korozją i zużyciem. Dla wału korbowego, chromowanie powierzchni może pomóc mu wytrzymać większe obciążenia, co jest ważne w mocniejszych silnikach. A jeśli mówimy o sworzni tłokowych, to chrom może obniżyć tarcie, co z kolei daje lepszą efektywność i mniej strat energii. Czoła zwrotnic też potrzebują precyzyjnych wymiarów i niskiego tarcia, a to może się zrobić przez chromowanie. Dlatego mylenie, kiedy i jak używać chromu, jest kluczowe. Jak się zrobi błędne wnioski, to przez ogólnikowe podejście do chromowania można przeoczyć specyficzne potrzeby różnych elementów silnika oraz ich funkcje. Naprawiając silniki, warto korzystać z metod zgodnych z aktualnymi normami technicznymi i branżowymi praktykami, żeby zapewnić jak najlepszą wydajność i długowieczność części mechanicznych.

Pytanie 8

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Olej silnikowy
B. Płyn do hamulców
C. Płyn chłodzący do silnika
D. Płyn do spryskiwaczy
Odpowiedź, że płyn eksploatacyjny oznaczany symbolem 10W/40 to olej silnikowy, jest poprawna. Symbol 10W/40 odnosi się do klasy lepkości oleju silnikowego, podlegającej normom SAE (Society of Automotive Engineers). Liczba '10W' wskazuje na lepkość oleju w niskich temperaturach (W oznacza 'winter'), co oznacza, że olej zachowuje odpowiednią płynność w zimnych warunkach, co jest kluczowe przy uruchamianiu silnika w niskich temperaturach. Druga liczba '40' odnosi się do lepkości w wysokich temperaturach, co czyni olej odpowiednim do użycia w wyższych temperaturach roboczych silnika. Dzięki tym właściwościom, olej 10W/40 zapewnia odpowiednią ochronę silnika, zmniejsza tarcie i zużycie komponentów, a także minimalizuje ryzyko przegrzania. Jest to jeden z najczęściej stosowanych rodzajów olejów silnikowych, szczególnie w pojazdach osobowych oraz dostawczych, co wynika z ich uniwersalności i efektywności w szerokim zakresie warunków eksploatacyjnych.

Pytanie 9

Jakie jest zadanie cewki zapłonowej?

A. produkcja wysokiego natężenia prądu
B. wytwarzanie wysokiego napięcia
C. ochrona przed przepięciem
D. generowanie iskry zapłonowej
Nieprawidłowe formułowanie odpowiedzi prowadzi do nieporozumień dotyczących działania cewki zapłonowej. Może pojawić się mylne przekonanie, że cewka zapłonowa wytwarza jedynie iskry zapłonowe. W rzeczywistości iskra jest efektem końcowym procesu indukcji napięcia, a nie bezpośrednim zadaniem cewki. Istotne jest rozróżnienie między pojęciem wysokiego napięcia a wysokiego natężenia prądu, które są często mylone. Cewka zapłonowa generuje wysokie napięcie, a nie wysokie natężenie prądu, co jest kluczowe dla prawidłowego funkcjonowania układu zapłonowego. Ponadto, cewka nie pełni funkcji zabezpieczających przed przepięciem, gdyż jej głównym celem jest dostarczenie energii do zapłonu, a nie ochrona systemu przed nadmiarowym napięciem. Właściwe zrozumienie zasad działania cewki zapłonowej jest kluczowe dla diagnostyki i naprawy układów zapłonowych, co w praktyce oznacza, że technicy muszą umieć rozpoznać, jak i dlaczego cewka wytwarza wysokie napięcie oraz jakie są implikacje dla pracy silnika. Ignorowanie tych faktów może prowadzić do błędnych diagnoz i niewłaściwych napraw, co w konsekwencji wpływa na wydajność i żywotność silnika.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Metaliczne stuki z obszaru głowicy silnika mogą być spowodowane

A. nieszczelną uszczelką pod głowicą
B. nieszczelnością zaworów
C. niskim ciśnieniem sprężania
D. zbyt dużym luzem zaworowym
Nieszczelna uszczelka pod głowicą, niskie ciśnienie sprężania oraz nieszczelność zaworów to problemy, które mogą wpływać na ogólną wydajność silnika, ale nie są one bezpośrednią przyczyną metalicznych stuków z okolic głowicy silnika. W przypadku nieszczelnej uszczelki pod głowicą, głównie dochodzi do przedostawania się płynów chłodzących lub oleju silnikowego do komory spalania, co może prowadzić do dymienia lub przegrzewania silnika, ale nie generuje charakterystycznych stuków. Niskie ciśnienie sprężania natomiast najczęściej objawia się utratą mocy silnika oraz jego nieprawidłowym funkcjonowaniem, a nie metalicznymi dźwiękami. W sytuacji, gdy zawory są nieszczelne, również możemy mieć do czynienia z problemami w pracy silnika, ale efekty te najczęściej manifestują się poprzez spadek mocy lub niestabilną pracę na biegu jałowym, niekoniecznie przez metalliczne stuki. Kluczowym błędem w myśleniu może być utożsamianie hałasów silnikowych z każdym z wymienionych problemów. W rzeczywistości każdy z tych problemów wymaga innego podejścia naprawczego oraz diagnostycznego, a ich wpływ na silnik jest znacznie bardziej złożony niż tylko generowanie hałasu."

Pytanie 13

Który płyn eksploatacyjny jest określany symbolem 10W/40?

A. Płyn do hamulców
B. Płyn do chłodzenia silnika
C. Płyn do spryskiwaczy
D. Olej silnikowy
Odpowiedź 'Olej silnikowy' jest poprawna, ponieważ symbol 10W/40 odnosi się do klasyfikacji oleju silnikowego według normy SAE (Society of Automotive Engineers). Liczba przed literą 'W' oznacza lepkość oleju w niskich temperaturach (Winter), co wskazuje na jego zdolność do pracy w zimnych warunkach. Wartość '40' odnosi się do lepkości oleju w wysokich temperaturach, co jest kluczowe dla zapewnienia odpowiedniego smarowania silnika podczas jego pracy w podwyższonych warunkach. Olej 10W/40 jest często stosowany w silnikach benzynowych i diesla, gdzie wymagana jest dobra wydajność zarówno w niskich, jak i wysokich temperaturach. Dzięki swojej uniwersalności, oleje tego typu są popularne w pojazdach osobowych oraz dostawczych, a ich stosowanie wspiera prawidłową pracę silnika oraz minimalizuje zużycie komponentów, co wydłuża żywotność silnika. Zgodnie z zaleceniami producentów pojazdów, regularna wymiana oleju jest niezbędna dla utrzymania optymalnej wydajności i ochrony silnika.

Pytanie 14

Zbyt niskie ciśnienie powietrza w oponie jednego z kół osi przedniej może prowadzić do

A. zużycia środkowej części bieżnika
B. ściągania pojazdu w stronę koła z wyższym ciśnieniem
C. ściągania pojazdu w kierunku koła z niższym ciśnieniem
D. zużycia lewej strony bieżnika koła lewego lub prawej strony bieżnika koła prawego
Zrozumienie wpływu ciśnienia w oponach na zachowanie pojazdu jest kluczowe dla bezpieczeństwa jazdy. Pomimo tego, niepoprawne odpowiedzi mogą wynikać z nieporozumień dotyczących podstawowych zasad fizyki ruchu oraz reakcji pojazdu na działanie sił. Na przykład, zużycie środkowej części bieżnika (odpowiedź 2) sugeruje, że ciśnienie w oponach wpływa na równomierne zużycie opon, co jest mylnym wnioskiem. W rzeczywistości, zbyt wysokie ciśnienie może prowadzić do nadmiernego zużycia środka bieżnika, ponieważ opona w takiej sytuacji nie dotyka w wystarczającym stopniu nawierzchni. Podobnie, odpowiedź sugerująca, że ciśnienie wpływa na zużycie lewej lub prawej strony bieżnika (odpowiedź 3), również jest nieprawidłowa. Jeśli jedno z kół na przedniej osi ma niskie ciśnienie, wpływa to na ogólną stabilność pojazdu, a nie na jednostronne zużycie. Wreszcie, twierdzenie, że pojazd ściąga w stronę koła z wyższym ciśnieniem (odpowiedź 4) jest zupełnie sprzeczne z zasadami fizyki. W rzeczywistości, wyższe ciśnienie w jednym kole prowadzi do nieproporcjonalnego rozkładu sił, co zwiększa ryzyko niebezpiecznych sytuacji na drodze. Zrozumienie tych zasad oraz ich praktyczne zastosowanie są niezbędne do zapewnienia bezpieczeństwa na drogach oraz długotrwałego użytkowania opon.

Pytanie 15

Parametrem związanym z geometrią kół nie jest

A. ciśnienie w ogumieniu
B. kąt nachylenia sworznia zwrotnicy
C. zbieżność kół
D. kąt wyprzedzenia sworznia zwrotnicy
Ciśnienie w ogumieniu nie jest parametrem geometrii kół, ponieważ dotyczy jedynie stanu opon, a nie ich ustawienia czy kątów. Parametry geometrii, takie jak kąt pochylenia sworznia zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznia zwrotnicy, mają kluczowe znaczenie dla właściwego prowadzenia pojazdu oraz jego stabilności na drodze. Kąt pochylenia sworznia zwrotnicy wpływa na kąt, pod jakim opona styka się z nawierzchnią, co z kolei ma wpływ na przyczepność i zużycie opon. Zbieżność kół odnosi się do ustawienia osi kół względem siebie oraz do kierunku jazdy, co jest istotne dla prawidłowego zachowania się pojazdu podczas skrętów. Kąt wyprzedzenia sworznia zwrotnicy, określający kąt, pod jakim oś obrotu koła jest ustawiona względem pionu, ma znaczenie dla stabilności jazdy i samoczynnego wracania kierownicy do pozycji neutralnej po skręcie. Dlatego znajomość tych parametrów jest kluczowa dla zapewnienia bezpieczeństwa, a ich regularna kontrola jest zalecana w praktyce motoryzacyjnej.

Pytanie 16

Akronim ASR w zakresie parametrów technicznych pojazdu wskazuje, że pojazd jest wyposażony w

A. system przeciwdziałania poślizgowi kół spowodowanemu przenoszeniem przez nie siły napędowej
B. napęd na cztery koła
C. układ recyrkulacji spalin
D. reaktor katalityczny oraz sondę lambda w systemie wydechowym pojazdu
Wybrane odpowiedzi odnosiły się do różnych systemów i technologii, które choć są istotne w kontekście funkcjonowania pojazdów, nie mają związku ze skrótem ASR. Reaktor katalityczny i sonda lambda, wymienione w jednej z odpowiedzi, dotyczą systemu oczyszczania spalin, który ma na celu redukcję emisji szkodliwych substancji. Te elementy są kluczowe dla spełnienia norm ekologicznych, ale nie mają związku z kontrolą trakcji, co jest głównym celem ASR. Układ recyrkulacji spalin, również wymieniony, działa w celu zmniejszenia emisji tlenków azotu, ale nie wpływa na zdolność pojazdu do radzenia sobie z poślizgiem kół. Z kolei napęd na 4 koła ma swoje zalety w kontekście lepszej przyczepności, jednak nie jest to to samo, co system ASR, który skupia się na prewencji poślizgu na poziomie indywidualnych kół. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to mylenie funkcji różnych systemów bezpieczeństwa i ich zastosowania w praktyce. Kluczowe jest zrozumienie, że ASR to system, który działa w czasie rzeczywistym, aby dostosować moc silnika w odpowiedzi na warunki drogowe, co nie jest celem wymienionych technologii.

Pytanie 17

Maksymalna dopuszczalna zawartość CO (tlenku węgla) w spalinach dla silników benzynowych wyprodukowanych po 2004 roku, w czasie biegu jałowego, nie powinna być większa niż

A. 0,3% objętości spalin
B. 1,5% objętości spalin
C. 3,5% objętości spalin
D. 2,5% objętości spalin
Wybór odpowiedzi innych niż 0,3% objętości spalin wskazuje na brak zrozumienia norm emisji zanieczyszczeń oraz regulacji dotyczących silników spalinowych. Na przykład, podanie wartości 1,5% lub 2,5% nie tylko przekracza aktualne normy, ale także nie uwzględnia technologii, które zostały wprowadzone do silników po 2004 roku. Silniki współczesne są wyposażone w zaawansowane systemy oczyszczania spalin, które skutecznie redukują emisję tlenku węgla do poziomów znacznie poniżej 0,3%. Również warto zauważyć, że normy emisji takich jak Euro 5, które zaczęły obowiązywać od 2009 roku, wymuszają dalsze ograniczenie emisji dla nowych pojazdów. Wybierając wartości 3,5% lub inne, można wskazać na typowe błędy myślowe, takie jak mylenie biegu jałowego z innymi warunkami pracy silnika. W rzeczywistości na biegu jałowym emisja powinna być monitorowana w bardzo kontrolowanych warunkach, a wartości przekraczające 0,3% stanowią poważne naruszenie przepisów, które mogą skutkować koniecznością przeprowadzenia naprawy lub modyfikacji układu wydechowego. Należy pamiętać, że zrozumienie tych norm jest kluczowe dla wszystkich, którzy pracują w branży motoryzacyjnej oraz zajmują się diagnostyką silników.

Pytanie 18

Reparacja uszkodzonego gumowego elementu zawieszenia systemu wydechowego przeprowadzana jest poprzez jego

A. klejenie
B. skręcanie
C. spajanie
D. wymianę
Wymiana uszkodzonego gumowego elementu zawieszenia układu wydechowego jest kluczowym działaniem w celu zapewnienia prawidłowej funkcjonalności całego systemu. Elementy zawieszenia, takie jak poduszki gumowe, mają za zadanie tłumić drgania oraz zapewniać odpowiednią elastyczność, co jest istotne dla komfortu jazdy oraz redukcji hałasu. Gdy gumowy element ulegnie uszkodzeniu, jego właściwości tłumiące mogą zostać znacznie osłabione, co prowadzi do większego zużycia innych części układu wydechowego oraz obniżenia komfortu podróży. Wymiana jest zalecana w takich przypadkach, ponieważ naprawa, jak spajanie czy klejenie, nie zapewni odpowiedniej wytrzymałości i elastyczności, które są niezbędne w tych elementach. Standardy branżowe, takie jak normy ISO dotyczące jakości i bezpieczeństwa motoryzacyjnego, podkreślają znaczenie stosowania oryginalnych lub wysokiej jakości zamienników przy wymianie części. Przykładem może być wymiana poduszki tłumiącej, która po nowym montażu przywraca prawidłowe funkcjonowanie układu, obniżając drgania i hałas, co jest niezbędne dla bezpieczeństwa i komfortu kierowcy oraz pasażerów.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Aby rozmontować półosie napędowe z obudowy tylnego mostu napędowego, należy zastosować ściągacz

A. 2-ramienny
B. 3-ramienny
C. bezwładnościowy
D. do łożysk
Wybór niewłaściwego typu ściągacza, takiego jak 3-ramienny lub 2-ramienny, może prowadzić do wielu problemów podczas demontażu półosi napędowych z pochwy tylnego mostu napędowego. 3-ramienne ściągacze są zazwyczaj używane do demontażu elementów o bardziej okrągłych kształtach lub tam, gdzie siły rozkładają się równomiernie, co nie jest odpowiednie w przypadku półosi, gdzie często występują nieprzewidywalne naprężenia. Z kolei 2-ramienny ściągacz, mimo że ma zastosowanie w wielu sytuacjach, również nie zapewnia wystarczającej stabilności i równomierności siły, co może prowadzić do uszkodzeń elementu lub położenia montażowego. W przypadku demontażu z przyczyn technicznych i osadzenia elementów, ściągacze tego typu mogą nie być w stanie skutecznie wykonać zadania, powodując dodatkowe problemy i wydłużając czas pracy. Dodatkowo, zastosowanie ściągaczy bezwładnościowych jest zgodne z najlepszymi praktykami w branży, co podkreśla ich skuteczność i bezpieczeństwo. Niewłaściwy dobór narzędzi może skutkować nie tylko uszkodzeniem półosi, ale także zagrożeniem dla bezpieczeństwa osoby wykonującej pracę. Dlatego kluczowe jest, aby dobrze zrozumieć specyfikę demontażu i korzystać z odpowiednich narzędzi, które są zgodne z zaleceniami producentów i normami branżowymi.

Pytanie 21

Kiedy tłok silnika spalinowego znajduje się w górnym martwym punkcie, to przestrzeń nad nim określa objętość

A. całkowita cylindra
B. skokowa cylindra
C. komory spalania
D. skokowasilnika
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z niepełnego zrozumienia podstawowych terminów związanych z konstrukcją silnika spalinowego. Odpowiedź "skokowasilnika" jest błędna, ponieważ termin ten odnosi się do całkowitej długości, jaką tłok przebywa w cylindrze podczas jednego pełnego cyklu pracy, a nie do przestrzeni nad tłokiem w GMP. Podobnie "całkowita cylindra" to termin, który odnosi się do całkowitej objętości cylindra, a nie konkretnej przestrzeni nad tłokiem w danym momencie cyklu. Ostatecznie, "skokowa cylindra" odnosi się do objętości, którą tłok przesuwa, podczas gdy porusza się w górę i w dół, a nie do konkretnej lokalizacji przestrzeni nad tłokiem, gdy ten znajduje się w GMP. Zrozumienie tych terminów jest kluczowe dla prawidłowej analizy pracy silnika. W praktyce, błędne interpretacje mogą prowadzić do nieefektywnych rozwiązań projektowych i problemów podczas eksploatacji silników, co może skutkować zwiększonym zużyciem paliwa, emisją spalin oraz obniżoną wydajnością. W kontekście inżynierii mechanicznej istotne jest zatem, aby studenci i inżynierowie dobrze przyswoili te podstawowe pojęcia, co pozwoli im na lepsze zrozumienie mechanizmów działania silników spalinowych i przyczyni się do ich optymalizacji w codziennej praktyce inżynierskiej.

Pytanie 22

Ciecze wykorzystywane do chłodzenia silników spalinowych to mieszaniny wody i

A. olejów
B. glikolu etylowego
C. alkoholu metylowego
D. alkoholu etylowego
Zastosowanie olejów oraz alkoholi metylowego i etylowego w cieczy chłodzącej to nie najlepszy pomysł, i to z kilku powodów. Oleje, chociaż mają dobre właściwości smarne, nie radzą sobie w niskich temperaturach i kiepsko przewodzą ciepło, więc do chłodzenia silników się nie nadają. Kluczowe dla silnika jest, żeby ciecz skutecznie odprowadzała ciepło, a oleje tego po prostu nie zrobią wystarczająco dobrze. Do tego mogą jeszcze zatykać układ chłodzenia, co prowadzi do przegrzewania. Jeśli chodzi o alkohole, to mają one niższą temperaturę zamarzania niż glikol, ale są bardziej lotne, co może powodować parowanie i korozję elementów silnika. Poza tym, te alkohole mogą tworzyć osady, co też nie jest fajne, bo mogą zatkać kanały chłodzenia. W praktyce, używanie tych substancji zamiast glikolu etylowego zwiększa ryzyko uszkodzeń silnika i obniża jego wydajność. Najlepiej kierować się sprawdzonymi normami, które wskazują na glikol etylowy w odpowiednich proporcjach z wodą.

Pytanie 23

Reperacja tarcz hamulcowych w sytuacji, gdy nie są nadmiernie zdeformowane oraz mają właściwą grubość, polega na ich

A. napawaniu
B. metalizacji
C. galwanizacji
D. przetoczeniu
Przetoczenie tarcz hamulcowych to naprawdę ważna sprawa, bo dzięki temu można przywrócić im pierwotną funkcjonalność. Oczywiście, musi być tak, że tarcze nie są mocno zużyte ani zdeformowane. Cały ten proces polega na tym, że mechanicznie usuwamy warstwę materiału z powierzchni tarczy. Dzięki temu pozbywamy się wszelkich nierówności i mamy gładką powierzchnię, która dobrze współpracuje z klockami hamulcowymi. W praktyce, przetoczenie robi się na specjalnych obrabiarkach numerycznych, co gwarantuje, że wszystko jest dokładnie zrobione. Jak tarcze są dobrze przetoczone, to mogą działać dłużej, co jest korzystne nie tylko dla portfela, ale też dla bezpieczeństwa na drodze. Warto pamiętać, że są normy, które mówią, jaką minimalną grubość muszą mieć tarcze po przetoczeniu, żeby nadal dobrze hamowały i były trwałe. Jak są poniżej tych wartości, to może być niebezpiecznie, bo układ hamulcowy może nie działać jak trzeba.

Pytanie 24

Podczas naprawy układu zawieszenia wymieniono amortyzatory. Jakie mogą być konsekwencje ich nieprawidłowego montażu?

A. Zwiększone drgania i niestabilność pojazdu
B. Skrócony czas pracy akumulatora
C. Zmniejszenie efektywności układu hamulcowego
D. Zmniejszenie mocy silnika
Amortyzatory są kluczowym elementem układu zawieszenia, który odpowiada za tłumienie drgań i utrzymanie stabilności pojazdu podczas jazdy. Prawidłowy montaż amortyzatorów jest niezbędny, aby zapewnić odpowiednie właściwości jezdne samochodu. Jeżeli amortyzatory są zamontowane nieprawidłowo, mogą powodować zwiększone drgania pojazdu, co prowadzi do obniżenia komfortu jazdy i zmniejszenia kontroli nad pojazdem. Z mojego doświadczenia, nieprawidłowo zamontowane amortyzatory mogą również prowadzić do nadmiernego zużycia innych komponentów układu zawieszenia, takich jak tuleje czy łożyska, przez co pojazd staje się bardziej podatny na awarie. Dodatkowo, nieprawidłowy montaż może prowadzić do nierównomiernego zużycia opon, co jest szczególnie niebezpieczne podczas jazdy na śliskiej nawierzchni. W praktyce, aby tego uniknąć, zaleca się zawsze stosować się do instrukcji producenta i używać odpowiednich narzędzi do montażu.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Za utrzymanie trakcji w pojeździe poruszającym się odpowiada system

A. ESP
B. ENI
C. EPS
D. OBD
ESP, czyli Electronic Stability Program, to zaawansowany system elektroniczny, który ma na celu poprawę stabilności i kontroli trakcji pojazdu w trakcie jazdy. Działa poprzez monitorowanie prędkości kół, kątów skrętu oraz przyspieszenia, a w przypadku wykrycia utraty trakcji, automatycznie dostosowuje siłę hamowania oraz moc silnika, aby zapobiec poślizgowi. Przykładowo, podczas jazdy na śliskiej nawierzchni, system ESP może interweniować, zmniejszając moc silnika lub hamując konkretne koła, co pomaga zachować kontrolę nad pojazdem. Zgodnie z normami bezpieczeństwa motoryzacyjnego, takie systemy są obowiązkowe w nowych samochodach w wielu krajach, co podkreśla ich kluczowe znaczenie w zapobieganiu wypadkom. Dobre praktyki w dziedzinie inżynierii motoryzacyjnej nakładają na producentów obowiązek testowania i optymalizacji systemów ESP, aby zapewnić ich niezawodność w różnych warunkach drogowych.

Pytanie 27

Podczas inspekcji elementów systemu hamulcowego zauważono pęknięcia wentylowanych tarcz hamulcowych. W takim przypadku powinno się je

A. otrzeć.
B. przetoczyć.
C. zespawać.
D. wymienić.
Wymiana wentylowanych tarcz hamulcowych jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności układu hamulcowego. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów, takich jak nierównomierne hamowanie, drżenie kierownicy podczas hamowania, a nawet całkowita awaria hamulców. Zgodnie z normami branżowymi, tarcze hamulcowe powinny być wymieniane, gdy występują znaczące uszkodzenia, które mogą wpływać na ich funkcję. Przykładowo, w przypadku zauważenia pęknięć, które mogą rozwinąć się w większe uszkodzenia, nie należy ryzykować dalszej eksploatacji. W praktyce, technicy często dokumentują stan techniczny tarcz podczas przeglądów, co pozwala na szybkie podejmowanie decyzji o ich wymianie. Wymiana tarcz hamulcowych jest zatem nie tylko zgodna z dobrymi praktykami, ale także kluczowa dla bezpieczeństwa pojazdu i pasażerów. Tylko nowe, nieuszkodzone tarcze mogą zagwarantować odpowiednią wydajność hamowania oraz stabilność pojazdu w różnych warunkach drogowych.

Pytanie 28

Odporność na niekontrolowany samozapłon paliwa przeznaczonego do silników z zapłonem iskrowym jest określana przez

A. liczbę oktanową
B. liczbę cetanową
C. liczbę metanową
D. liczbę propanową
Liczba metanowa, liczba propanowa i liczba cetanowa są miarami charakterystyk innych typów paliw i nie mają zastosowania w kontekście silników z zapłonem iskrowym. Liczba metanowa odnosi się do gazu ziemnego i jego zdolności do spalania w silnikach gazowych, co nie ma związku z silnikami benzynowymi. Liczba propanowa, podobnie, odnosi się do właściwości propanu i jego zastosowania jako paliwa, ale nie jest używana do oceny paliw dla silników zapłonowych. Z kolei liczba cetanowa dotyczy silników diesla, gdzie wyższa liczba cetanowa oznacza lepsze spalanie na początku cyklu pracy silnika. Zrozumienie tych różnic jest kluczowe, aby uniknąć pomyłek w wyborze paliwa i zastosowania odpowiednich norm dla danego silnika. Często mylenie tych wartości wynika z braku wiedzy na temat ich zastosowań oraz specyfikacji różnych silników. Dlatego tak ważne jest, aby przedstawić te kwestie w sposób jasny i zrozumiały, aby użytkownicy mogli podejmować świadome decyzje dotyczące wyboru paliwa.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Podczas elektrycznego spawania metali konieczne jest stosowanie

A. maski przeciwpyłowej
B. ochraniaczy słuchu
C. maski spawalniczej
D. kasku ochronnego
Maska spawalnicza jest niezbędnym elementem ochrony osobistej podczas elektrycznego spawania metali, gdyż chroni oczy i twarz przed szkodliwym promieniowaniem, w tym światłem łuku elektrycznego. Promieniowanie UV i IR emitowane podczas spawania może powodować poważne uszkodzenia wzroku, w tym oparzenia siatkówki oraz zaćmę. Maska zapewnia również ochronę przed odpryskującymi cząstkami metalu oraz wysoką temperaturą. W praktyce, profesjonalni spawacze korzystają z masek wyposażonych w filtry, które automatycznie przyciemniają się w momencie rozpoczęcia spawania, co zwiększa komfort pracy. Zgodnie z normami ochrony osobistej, takimi jak PN-EN 175, stosowanie maski spawalniczej jest kluczowe dla zapewnienia bezpieczeństwa oraz zdrowia pracowników w środowisku spawalniczym. Zaleca się także, aby maski były regularnie kontrolowane pod kątem ich stanu technicznego oraz prawidłowego działania, co jest istotne dla zachowania wysokiego poziomu ochrony.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Część przegubu Cardana należy do

A. skrzyni biegów
B. sprzęgła ciernego
C. koła dwumasowego
D. wału napędowego
Przegub Cardana jest kluczowym elementem wału napędowego, który jest używany w systemach przeniesienia napędu w pojazdach. Jego głównym zadaniem jest przenoszenie momentu obrotowego z jednego elementu na inny, przy jednoczesnym pozwoleniu na pewne ruchy kątowe, co jest szczególnie istotne w pojazdach z niezależnym zawieszeniem. Przegub Cardana umożliwia współpracę między elementami, które są w różnych płaszczyznach, co jest niezbędne w przypadku skręcania kół. Na przykład, w samochodach osobowych, przegub Cardana znajduje zastosowanie w systemach napędowych, gdzie łączy wał napędowy z dyferencjałem, co pozwala na przekazywanie mocy z silnika na koła. Warto również zaznaczyć, że przeguby Cardana są projektowane zgodnie z normami bezpieczeństwa oraz niezawodności, co czyni je nieodłącznym elementem nowoczesnych układów napędowych. Ich regularne serwisowanie oraz kontrola stanu technicznego są kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy pojazdu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Wymiana zużytych wkładek ciernych w hamulcach tarczowych powinna zawsze odbywać się w parach?

A. w każdym typie zacisku
B. wyłącznie w zacisku przesuwnym
C. tylko w stałym zacisku
D. jedynie w zacisku pływającym
Wybór niewłaściwej odpowiedzi, sugerujący, że wymiana wkładek ciernych hamulców tarczowych jest właściwa tylko w specyficznych typach zacisków, może prowadzić do wielu nieporozumień odnośnie do prawidłowej konserwacji i bezpieczeństwa układów hamulcowych. Każdy z wymienionych typów zacisku, niezależnie czy mówimy o zaciskach stałych, pływających czy przesuwnych, działa w ramach tych samych zasad fizyki dotyczących sił działających na układ hamulcowy. Niezależnie od konstrukcji, najważniejsze jest to, że zarówno przednia, jak i tylna oś pojazdu powinny być traktowane w sposób równoległy. Wymiana wkładek w pojedynczych zaciskach, a nie w parach, może skutkować nierównym zużyciem, co prowadzi do powstawania niebezpiecznych sytuacji na drodze, takich jak wodzenie pojazdu na zakrętach oraz wydłużenie drogi hamowania. To błędne podejście może również wpłynąć na żywotność tarcz hamulcowych, które mogą ulegać nadmiernym obciążeniom z powodu nierównomiernego działania sił hamujących. Właściwe dążenie do wymiany wkładek w parach jest zgodne z zaleceniami producentów i ogólnie uznawanymi praktykami w branży motoryzacyjnej, co zapewnia optymalne osiągi systemu hamulcowego oraz bezpieczeństwo użytkowników pojazdów.

Pytanie 35

Do rozmontowania kolumny Mc Phersona potrzebny jest ściągacz

A. sprężyn szczęk hamulcowych.
B. sprężyn zaworowych.
C. łożysk.
D. sprężyn układu zawieszenia.
Odpowiedź "sprężyn układu zawieszenia" jest poprawna, ponieważ demontaż kolumny McPhersona wiąże się z koniecznością usunięcia sprężyn, które są kluczowym elementem tego typu zawieszenia. Kolumna McPhersona jest popularnym rozwiązaniem w nowoczesnych pojazdach, wykorzystującym połączenie amortyzatora i sprężyny w jednej konstrukcji. Do demontażu sprężyn układu zawieszenia niezbędne jest zastosowanie odpowiedniego ściągacza sprężyn, który umożliwia bezpieczne i skuteczne usunięcie sprężyny z kolumny. W praktyce, przed przystąpieniem do demontażu, należy podnieść pojazd, zabezpieczyć go stabilnie, a następnie zdemontować koło, aby uzyskać dostęp do kolumny. Użycie ściągacza sprężyn jest niezbędne, aby uniknąć ryzyka uszkodzenia elementów zawieszenia, a także zapewnić bezpieczeństwo podczas pracy. Warto również pamiętać o dokładnym sprawdzeniu stanu pozostałych elementów zawieszenia oraz ich wymianie, jeśli tego wymaga sytuacja. Zgodność z zaleceniami producenta oraz odpowiednie narzędzia są kluczowe w prawidłowym przeprowadzeniu tej operacji.

Pytanie 36

Aby odczytać i zinterpretować błędy zapisane w pamięci sterownika silnika, należy wykorzystać

A. multimetr
B. komputerowy zestaw diagnostyczny
C. czytnik kodów błędów
D. klucz serwisowy
Komputerowy zestaw diagnostyczny to zaawansowane narzędzie wykorzystywane w diagnostyce silników, które umożliwia odczyt i interpretację błędów zapisanych w pamięci sterownika. Tego typu zestawy są standardem w warsztatach samochodowych i są niezbędne do skutecznej diagnostyki nowoczesnych pojazdów, które są coraz bardziej skomputeryzowane. Dzięki nim można uzyskać szczegółowe informacje o stanie różnych układów pojazdu, co pozwala na szybką identyfikację problemów oraz dokładne określenie koniecznych napraw. Na przykład, przy użyciu takiego zestawu diagnostycznego można odczytać kody błędów związane z systemem zarządzania silnikiem, a także monitorować parametry pracy silnika w czasie rzeczywistym. Zestawy te często oferują także funkcje takie jak testowanie komponentów, przeprowadzanie kalibracji oraz resetowanie błędów, co czyni je niezastąpionym narzędziem dla profesjonalnych mechaników. Warto również zauważyć, że korzystanie z komputerowego zestawu diagnostycznego jest zgodne z najlepszymi praktykami branżowymi, zalecanymi przez producentów pojazdów.

Pytanie 37

Najczęściej używanym materiałem do wytwarzania odlewów wałów korbowych jest

A. silumin
B. żeliwo sferoidalne
C. żeliwo białe
D. stal stopowa
Stal stopowa, chociaż może mieć niezłe właściwości wytrzymałościowe, nie jest specjalnie dobra do produkcji wałów korbowych. Ma wyższą twardość, ale proces produkcji stali jest bardziej skomplikowany, co sprawia, że nie jest taka ekonomiczna w porównaniu do żeliwa sferoidalnego. Żeliwo białe, znowu, ma twardość, ale jest kruche i w aplikacjach, gdzie liczy się odporność na zmęczenie, może nie dać sobie rady. Jakby co, użycie żeliwa białego w wałach korbowych mogłoby prowadzić do pęknięć, co w silnikach pod dużym obciążeniem byłoby totalnie nieakceptowalne. Silumin, czyli stopy aluminium, są lekkie, ale mają kiepską wytrzymałość na rozciąganie i wysoką temperaturę, więc też się nie nadają do wałów korbowych, gdzie trzeba mieć wysoką odporność na zmęczenie. Generalnie przy projektowaniu wałów korbowych wybór materiału jest bardzo istotny i powinien być dobrze przemyślany, co praktycznie wyklucza stali stopowe, żeliwo białe czy siluminy.

Pytanie 38

W przypadku urazu mechanicznego oka, pierwsza pomoc polega na

A. spłukaniu oka
B. nałożeniu jałowej gazy na oko i wezwaniu pomocy medycznej
C. próbie usunięcia ciała obcego z oka
D. aplikacji kropli do oczu
Płukanie oka, stosowanie kropli do oczu oraz próba wyjęcia ciała obcego z oka to działania, które w kontekście urazów mechanicznych oka mogą przynieść więcej szkód niż korzyści. Płukanie oka może wydawać się logiczne, jednak w wielu przypadkach wprowadza dodatkową ilość zanieczyszczeń do oka, co zwiększa ryzyko zakażenia. Dodatkowo, niewłaściwe wykonanie płukania może prowadzić do podrażnienia lub uszkodzenia delikatnych struktur oka. Zastosowanie kropli do oczu również wydaje się być niewłaściwe, gdyż może maskować objawy urazu, co opóźnia diagnozę i leczenie przez specjalistów. Co więcej, podejmowanie prób usunięcia ciała obcego jest skrajnie niebezpieczne; może to prowadzić do poważnych uszkodzeń gałki ocznej, a nawet do krwawienia. W takich sytuacjach kluczowe jest zachowanie spokoju i niepodejmowanie nieodpowiednich działań. Standardy pierwszej pomocy jasno określają, że w przypadku urazów mechanicznych oka powinno się skupić na zapewnieniu ochrony urazu i jak najszybszym skontaktowaniu się z lekarzem. Dlatego bardzo ważne jest, aby unikać typowych błędów myślowych związanych z nadmiernym samodzielnym leczeniem, które mogą prowadzić do niezawodnych konsekwencji. Wspierając odpowiednie wytyczne, możemy zapewnić bezpieczeństwo ofiary i minimalizować ryzyko poważnych uszkodzeń.

Pytanie 39

Zawartość wody w analizowanym płynie hamulcowym nie może przekraczać

A. 5%
B. 1%
C. 10%
D. 3%
Wybór odpowiedzi, która sugeruje dopuszczalną zawartość wody w płynie hamulcowym na poziomie wyższym niż 1%, może wynikać z kilku istotnych nieporozumień dotyczących właściwości płynów hamulcowych. Płyny te są projektowane tak, aby spełniały określone normy dotyczące wydajności i bezpieczeństwa, w tym odporności na wilgoć. Zawartość wody w płynie hamulcowym powyżej 1% wpływa negatywnie na jego właściwości, w tym temperaturę wrzenia, co może prowadzić do zjawiska zwanego 'vapor lock', czyli blokady parowej. Ta sytuacja zachodzi, gdy płyn hamulcowy nagrzewa się do punktu, w którym jego ciśnienie zmienia się z cieczy na parę, co skutkuje utratą zdolności hamulcowej. Zgubne może być również postrzeganie zawartości wody jako nieistotnego czynnika - w rzeczywistości, woda w płynie hamulcowym może prowadzić do korozji elementów układu hamulcowego, co z czasem skutkuje poważnymi awariami. Dlatego tak ważne jest, aby regularnie sprawdzać stan płynów hamulcowych i ich zawartość na obecność wody, co jest zgodne z praktykami inżynierskimi w motoryzacji. Utrzymanie niskiego poziomu wilgoci w płynie hamulcowym jest kluczowe dla zachowania wysokiej wydajności układu hamulcowego i bezpieczeństwa kierowcy oraz pasażerów.

Pytanie 40

Lampa służąca do sprawdzania kąta wyprzedzenia zapłonu wykorzystuje

A. zjawisko interferencji
B. zjawisko dyfrakcji
C. efekt absorpcji światła
D. efekt stroboskopowy
Trochę się pomieszały zjawiska, które nie mają nic wspólnego z lampami do ustawiania kąta wyprzedzania zapłonu. Zjawisko pochłaniania światła to tak naprawdę absorpcja fal świetlnych przez różne materiały, co nie ma zastosowania, gdy chodzi o wykrywanie momentu zapłonu. Możesz myśleć, że lampy stroboskopowe działają na tym zjawisku, ale w rzeczywistości to błyski światła, które pozwalają na obserwację ruchu obiektów. Dyfrakcja z kolei to zginanie fal świetlnych, co też nie jest związane z tymi lampami. Zjawisko interferencji, które polega na nakładaniu fal, bardziej nadaje się do badań optycznych, a nie do rzeczywistego użycia w lampach stroboskopowych. Wiele osób myli te zjawiska z rzeczywistym działaniem lamp stroboskopowych, ale zrozumienie, że to efekt stroboskopowy jest kluczowe dla właściwej diagnostyki silników.