Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 31 maja 2025 10:32
  • Data zakończenia: 31 maja 2025 10:41

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rozpuszczono 60 kg KCl w 150 kg wody w temperaturze 90ºC. Do jakiej temperatury należy obniżyć temperaturę tego roztworu, aby otrzymać roztwór nasycony i aby KCl nie wytrącał się z roztworu?

Rozpuszczalność KCl [g/100 g H2O]
0 °C10 °C20 °C30 °C40 °C50 °C60 °C70 °C80 °C90 °C100 °C
27,63134374042,645,548,351,15456,7

A. 70ºC
B. 40ºC
C. 20ºC
D. 10ºC
Obniżenie temperatury roztworu KCl do 40ºC jest kluczowe dla osiągnięcia stanu nasycenia. Rozpuszczalność KCl w wodzie w tej temperaturze wynosi 40 g na 100 g wody, co oznacza, że w 150 kg wody można rozpuścić 60 kg KCl, co dokładnie odpowiada naszym warunkom. W praktyce, monitorowanie rozpuszczalności soli w różnych temperaturach jest niezwykle istotne w wielu procesach chemicznych i przemysłowych, takich jak produkcja nawozów czy procesy oczyszczania. Zgodnie z dobrymi praktykami, zawsze warto odnosić się do tabel rozpuszczalności, aby unikać nieprzewidzianych efektów, takich jak wytrącanie się substancji z roztworu. Wiedza na temat rozpuszczalności substancji w różnych temperaturach jest również korzystna w kontekście projektowania systemów chemicznych oraz w laboratoriach badawczych, gdzie kontrolowanie warunków eksperymentalnych jest kluczowe dla uzyskania wiarygodnych wyników.

Pytanie 2

Ile kilogramów wody znajduje się w 2 tonach mieszaniny nitrującej, której skład procentowy (m/m) wynosi: H2SO4 – 56 %, HNO3 – 28 % oraz H2O – 16 %?

A. 640 kg
B. 320 kg
C. 80 kg
D. 160 kg
Aby obliczyć ilość wody w 2 tonach mieszaniny nitrującej, należy najpierw przeliczyć masę na kilogramy. 2 tony to 2000 kilogramów. Procentowy skład mieszaniny wynosi 16% wody. Obliczamy masę wody jako 16% z 2000 kg. Wzór na to obliczenie wygląda następująco: masa wody = (procent wody / 100) * masa całkowita. W naszym przypadku: (16 / 100) * 2000 kg = 320 kg. Otrzymana wartość 320 kg jest poprawna. Takie obliczenia są istotne w wielu branżach chemicznych, gdzie precyzyjne określenie składu mieszanin jest kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów. Wiedza na temat składów chemikaliów jest niezbędna przy pracy z substancjami niebezpiecznymi, a właściwe obliczenia pozwalają na odpowiednie ich przechowywanie i użytkowanie.

Pytanie 3

Jakie cechy stali manganowej mają kluczowe znaczenie dla jej wykorzystania przy produkcji okładzin szczęk w łamaczach szczękowych?

A. Mały współczynnik rozszerzalności liniowej oraz wysoka odporność na pękanie
B. Niska temperatura topnienia oraz wysoka odporność na zginanie
C. Zwiększona wytrzymałość mechaniczna oraz wysoka odporność na ścieranie
D. Zwiększona odporność na działanie kwasów oraz łatwość w obróbce mechanicznej
Stal manganowa to materiał, który w sumie ma w sobie mnóstwo fajnych właściwości. Słynie z tego, że ma dużo manganu, dzięki czemu jest super wytrzymała i świetnie znosi ścieranie. To dlatego idealnie nadaje się do produkcji okładzin w łamaczach szczękowych. Wytrzymałość to kluczowa sprawa, bo łamacze muszą radzić sobie z ogromnymi siłami, gdy przetwarzają różne materiały, nie ma co do tego wątpliwości. Odporność na ścieranie również ma znaczenie, bo okładziny ciągle ocierają się o twarde rzeczy i muszą wytrzymać długo. Przykładowo, w górnictwie czy budownictwie, gdzie używa się takich maszyn do rozdrabniania skał, stal manganowa naprawdę wydłuża życie sprzętu i poprawia wydajność. Warto też wiedzieć, że są normy, jak na przykład ASTM A128, które określają, jakie parametry musi mieć ta stal, co jeszcze bardziej podkreśla, jak ważna jest w przemyśle.

Pytanie 4

Aby usunąć zanieczyszczenia z zewnętrznych elementów maszyn i urządzeń, które są spowodowane przez kurz i pył, należy je spłukać

A. roztworem etanolu
B. ciepłą wodą
C. rozpuszczalnikiem
D. mlekiem wapiennym
Odpowiedź ciepłą wodą jest poprawna, ponieważ woda w temperaturze pokojowej lub lekko podgrzana skutecznie usuwa zanieczyszczenia, takie jak kurz i pył, z zewnętrznych części maszyn i urządzeń. Ciepła woda zwiększa aktywność molekularną, co sprzyja rozpuszczaniu zanieczyszczeń i ich łatwiejszemu usunięciu. W praktyce, wiele branż, w tym przemysł spożywczy i produkcyjny, korzysta z mycia na gorąco w celu zapewnienia czystości i higieny. Oprócz skuteczności, stosowanie wody jest zgodne z zasadami ochrony środowiska, gdyż nie wprowadza do obiegu substancji chemicznych. Do mycia można dodatkowo stosować środki zwilżające, które poprawiają efektywność czyszczenia, jednak sam proces spłukiwania ciepłą wodą pozostaje najbardziej efektywny. Warto również zwrócić uwagę na standardy, takie jak ISO 9001, które podkreślają znaczenie czystości w procesach produkcyjnych.

Pytanie 5

Ilość nasyconego roztworu NaNO3 przepływającego przez urządzenie krystalizacyjne wynosi 250 kg/h. Z 1000 kg roztworu można uzyskać 250 kg NaNO3. Jaką ilość stałego NaNO3 otrzymamy po 8 godzinach pracy krystalizatora?

A. 500 kg
B. 2000 kg
C. 1000 kg
D. 250 kg
Liczmy razem, żeby dowiedzieć się, ile NaNO3 możemy zdobyć w ciągu 8 godzin pracy krystalizatora. Wiemy, że z 1000 kg roztworu wychodzi 250 kg NaNO3, więc z jednego kilograma roztworu uzyskujemy 0,25 kg NaNO3. Teraz obliczamy, ile roztworu przepłynie przez krystalizator w 8 godzin, mając natężenie przepływu 250 kg na godzinę. Wychodzi na to, że przez te 8 godzin przepłynie 2000 kg roztworu (250 kg/h * 8 h). Następnie, mnożymy tę ilość przez naszą wydajność – czyli 0,25 kg NaNO3 na kg roztworu. Daje nam to 500 kg NaNO3 (2000 kg * 0,25 kg/kg). Te obliczenia są ważne nie tylko w kontekście krystalizacji, ale też w całym przemyśle, bo precyzyjne wyliczenia wpływają na koszty i efektywność produkcji.

Pytanie 6

Jakie termometry charakteryzują się największym zakresem pomiarowym w zakresie najwyższych temperatur?

A. Termometry manometryczne
B. Termometry rezystancyjne
C. Termometry termoelektryczne
D. Termometry pirometryczne
Termometry pirometryczne są dedykowane do pomiaru wysokich temperatur, często w zakresie od kilku setek do kilku tysięcy stopni Celsjusza. Ich działanie opiera się na pomiarze promieniowania podczerwonego emitowanego przez obiekty, co pozwala na bezkontaktowe określenie temperatury. Dzięki zastosowaniu tej technologii, pirometry są niezwykle użyteczne w przemyśle metalurgicznym, odlewniczym oraz w procesach spalania, gdzie tradycyjne metody pomiarowe mogą być niepraktyczne lub niemożliwe do zastosowania. Przykładem zastosowania pirometrów może być monitorowanie temperatury pieców hutniczych czy podczas procesów spawania. W branży energetycznej, pirometry są wykorzystywane do kontrolowania temperatury w turbinach gazowych, co jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa operacyjnego. W związku z tym, pirometry stanowią standard w pomiarach wysokotemperaturowych, co czyni je niezbędnym narzędziem w wielu zastosowaniach inżynieryjnych i przemysłowych.

Pytanie 7

Jakie zbiorniki powinny być użyte do przechowywania cieczy łatwopalnych oraz wybuchowych?

A. Membranowe
B. Naziemne
C. Podziemne
D. Kriogeniczne
Zbiorniki podziemne są najczęściej wybierane do magazynowania cieczy łatwopalnych i wybuchowych z kilku powodów. Przede wszystkim, ich lokalizacja poniżej poziomu terenu minimalizuje ryzyko przypadkowego zapłonu, co jest kluczowe w przypadku substancji niebezpiecznych. Dodatkowo, zbiorniki te często są projektowane z wykorzystaniem materiałów odpornych na korozję i deformacje, co zwiększa ich bezpieczeństwo i trwałość. Przykłady zastosowania podziemnych zbiorników obejmują magazynowanie paliw w stacjach benzynowych, gdzie zbiorniki są umieszczone pod ziemią, aby zminimalizować ryzyko wybuchu i zanieczyszczenia środowiska. Standardy takie jak NFPA 30 (National Fire Protection Association) jasno określają zasady dotyczące przechowywania cieczy łatwopalnych, podkreślając znaczenie odpowiedniej lokalizacji zbiorników. Ponadto, zastosowanie technologii monitorowania i systemów zabezpieczeń w zbiornikach podziemnych znacznie zwiększa bezpieczeństwo operacji oraz chroni przed nieautoryzowanym dostępem i wyciekami.

Pytanie 8

Którego z produktów ubocznych należy zastosować do eliminacji siarkowodoru z gazu syntezowego?

A. Żużel uzyskany w procesie zgazowania węgla
B. Fosfogips pozyskiwany z procesu wytwarzania superfosfatu
C. "Czerwony szlam" pozyskany w trakcie przerobu boksytów
D. Katolit otrzymywany podczas elektrolizy NaCl
Czerwony szlam, będący produktem ubocznym procesu przerobu boksytów, jest skutecznym środkiem do usuwania siarkowodoru z gazu syntezowego dzięki swoim właściwościom chemicznym. Zawiera on tlenki żelaza i glinu, które mają zdolność do reagowania z siarkowodorem, tworząc nieprzylegające do siebie sole. Proces ten jest zgodny z aktualnymi standardami ochrony środowiska, które wymagają usuwania niebezpiecznych związków chemicznych z gazów przemysłowych. Praktyczne zastosowanie czerwonego szlamu w przemyśle chemicznym oraz energetycznym pokazuje efektywność tego materiału w procesie oczyszczania gazów. Przykłady zastosowań obejmują instalacje do oczyszczania gazów przemysłowych, gdzie czerwony szlam jest stosowany jako środek sorpcyjny. Użycie tego produktu jest także zgodne z zasadą gospodarki cyrkularnej, gdzie odpady są przetwarzane w użyteczne materiały, co przyczynia się do redukcji szkodliwych emisji i ochrony środowiska.

Pytanie 9

Urządzenia, które funkcjonują na zasadzie przesuwania materiału przy pomocy obracającego się wału o śrubowej powierzchni w otwartym lub zamkniętym korycie, to przenośniki

A. członowe
B. ślimakowe
C. kubełkowe
D. zgarniakowe
Przenośniki ślimakowe są urządzeniami, które wykorzystują zasadę działania obrotowego wału o powierzchni śrubowej do przesuwania materiałów w korytach otwartych lub zamkniętych. Ich konstrukcja pozwala na efektywne transportowanie materiałów sypkich, takich jak zboża, piasek czy węgiel. Wał ślimakowy, który jest umieszczony w obudowie, obraca się, co powoduje przesuwanie materiału w kierunku wyjścia. Przenośniki te są szeroko stosowane w różnych branżach, w tym w rolnictwie, budownictwie i przemyśle chemicznym. Standardy branżowe, takie jak normy ISO dotyczące transportu materiałów, podkreślają znaczenie przenośników ślimakowych w procesach logistycznych, ze względu na ich wysoką wydajność oraz możliwość dostosowania do różnych zastosowań. Przykładowe zastosowania obejmują systemy transportowe w młynach, gdzie przenośniki te transportują mąkę, lub w zakładach produkcyjnych, gdzie przesuwają różne surowce w procesach produkcyjnych. Dodatkowo, przenośniki ślimakowe mogą być projektowane w różnych rozmiarach i konfiguracjach, co pozwala na ich dopasowanie do specyficznych wymagań operacyjnych.

Pytanie 10

Który z zaworów może być zastosowany w instalacji transportującej media pod ciśnieniem 100 barów i temperaturze 210°C?

zawórmaksymalne ciśnienie
robocze
[bar]
temperatura pracy
[°C]
I.kulowy Bee63-10 ÷ +95
II.iglicowy HOKE414-54 ÷ +232
III.kulowy HOKE138-18 ÷ +121
IV.dozujący kątowy HOKE207-54 ÷ +204

A. II.
B. IV.
C. III.
D. I.
Zawór iglicowy HOKE (II) jest idealnym rozwiązaniem w instalacjach, które wymagają pracy w wysokich ciśnieniach i temperaturach, jak w przypadku mediów transportowanych pod ciśnieniem 100 barów i temperaturze 210°C. Jego zdolność do utrzymywania maksymalnego ciśnienia roboczego na poziomie 414 barów oraz temperatury do 232°C czyni go jedynym odpowiednim wyborem spośród przedstawionych opcji. Zawory iglicowe są powszechnie stosowane w aplikacjach wymagających precyzyjnego sterowania przepływem, co jest kluczowe w wielu procesach przemysłowych, takich jak petrochemia, przemysł energetyczny oraz inżynieria chemiczna. Dzięki swojej konstrukcji, zawory te zapewniają minimalne straty ciśnienia oraz skuteczne uszczelnienie, co znacząco podnosi efektywność i bezpieczeństwo pracy instalacji. Ponadto, stosowanie zaworów zgodnych z normami branżowymi, takimi jak ASME, przyczynia się do zapewnienia wysokiej jakości i trwałości elementów instalacyjnych.

Pytanie 11

Nadzór nad działaniem rurociągu transportującego ciekłą siarkę obejmuje między innymi weryfikację poprawności funkcjonowania

A. systemu grzewczego oraz kontroli szczelności izolacji
B. systemu chłodzącego oraz kontroli zaworów bezpieczeństwa
C. systemu chłodnic ociekowych
D. systemu transportu pneumatycznego
Cały proces monitorowania rurociągów do transportu ciekłej siarki jest mega ważny, jeśli chodzi o bezpieczeństwo i sprawność działania. Twoja odpowiedź o systemie grzewczym oraz kontroli szczelności izolacji jest na miejscu, bo w przypadku cieczy, a zwłaszcza takiej, jak siarka, która jest gęsta i wrażliwa na temperaturę, trzeba dbać o odpowiednią temperaturę, żeby nie doszło do krystalizacji. System grzewczy trzyma siarkę w płynnej formie, co jest kluczowe przy jej przewożeniu. Kontrola szczelności izolacji też ma ogromne znaczenie, bo żeby utrzymać dobrą temperaturę, izolacja musi być sprawna. Dobrze jest regularnie sprawdzać te systemy, robić inspekcje i testy, żeby nie doszło do jakichś strat energii ani wycieków, co mogłoby być niebezpieczne dla środowiska i ludzi. Trzymanie się takich praktyk idzie w parze z międzynarodowymi normami, jak ISO 14001, które promują odpowiedzialne podejście do ochrony środowiska w przemyśle.

Pytanie 12

Jak powinno się postępować z sitami używanymi w koksowniach do przesiewania węgla po zakończeniu ich użytkowania?

A. Przedmuchać sprężonym powietrzem
B. Zabezpieczyć olejowym środkiem ochrony czasowej
C. Przetrzeć wilgotną szmatą
D. Umyć gorącą wodą z detergentem
Przedmuchiwanie sit sprężonym powietrzem jest najlepszym sposobem na usunięcie zanieczyszczeń, pyłu i resztek węgla, które mogą gromadzić się na powierzchni sit w trakcie ich eksploatacji. Dzięki temu procesowi można nie tylko przywrócić sitom ich pierwotną wydajność, ale także wydłużyć ich żywotność. Standardowe procedury konserwacyjne w zakładach koksowniczych wskazują, że stosowanie sprężonego powietrza jest preferowane, ponieważ skutecznie penetruje wszelkie zakamarki konstrukcji sit, co jest trudne do osiągnięcia przy użyciu wody lub innych środków czyszczących. Przykładowo, w przypadku sit o drobnych oczkach, czyszczenie sprężonym powietrzem minimalizuje ryzyko zatykania się otworów, co mogłoby prowadzić do obniżenia efektywności procesu przesiewania. Dodatkowo, sprężone powietrze jest metodą szybką i efektywną, co ogranicza przestoje w procesie produkcji. Warto również zaznaczyć, że zgodnie z wytycznymi BHP, przed przystąpieniem do czyszczenia sit sprężonym powietrzem, należy stosować odpowiednie środki ochrony osobistej, aby zabezpieczyć pracowników przed ewentualnym działaniem pyłów.

Pytanie 13

Jakie urządzenia wykorzystuje się do łączenia składników w stanie ciekłym?

A. Mieszarki
B. Mieszalniki
C. Miksery
D. Zagniatarki
Mieszalniki są specjalistycznymi urządzeniami zaprojektowanymi do efektywnego mieszania składników w fazie ciekłej. Działają na zasadzie wprowadzenia energii mechanicznej do cieczy, co umożliwia równomierne rozprowadzenie składników i uzyskanie jednorodnej konsystencji. W praktyce znajdują zastosowanie w różnych branżach, takich jak przemysł chemiczny, spożywczy, farmaceutyczny czy kosmetyczny. Przykładem może być produkcja farb, gdzie mieszalniki zapewniają dokładne wymieszanie pigmentów z rozpuszczalnikami. Kluczowymi cechami dobrego mieszalnika są jego wydajność, łatwość w obsłudze oraz zdolność do mieszania różnorodnych gęstości cieczy. Dobre praktyki branżowe zalecają regularne utrzymanie i czyszczenie mieszalników, aby zapewnić ich długowieczność oraz jakość produkcji.

Pytanie 14

Jak należy zebrać próbkę pierwotną materiału sypkiego? 1 część i proces ten powtarza się, aż próbka osiągnie wymaganą masę.

A. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 10 części. Losowo wybiera się 2 części i proces ten powtarza się, aż próbka osiągnie wymaganą masę
B. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 4 części. Losowo wybiera się 2 części i proces ten powtarza się, aż próbka osiągnie wymaganą masę
C. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 2 części. Losowo wybiera się
D. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 6 części. Losowo wybiera się 1 część i proces ten powtarza się, aż próbka osiągnie wymaganą masę
Podana odpowiedź jest prawidłowa, ponieważ opisuje właściwy proces pobierania próbki pierwotnej materiału sypkiego. Proces ten zaczyna się od usypania próbki w formie stożka, co jest kluczowe, ponieważ taka forma sprzyja równomiernemu rozkładaniu się materiału. Spłaszczenie stożka i podział na cztery części pozwala na uzyskanie reprezentatywnej próbki, z której następnie losowo wybierane są dwie części. Powtarzanie tego procesu do osiągnięcia wymaganej masy próbki jest zgodne z dobrą praktyką w analizach laboratoryjnych. Taki sposób zapewnia, że próbka będzie miała odpowiednią charakterystykę i reprezentatywność w stosunku do całej partii materiału. Przykładem standardu, który wspiera tę metodologię, jest ISO 18134, który reguluje zasady pobierania próbek materiałów sypkich. W kontekście przemysłowym, takie podejście jest kluczowe, aby zapewnić dokładność analiz oraz wiarygodność wyników, co jest fundamentalne w kontroli jakości i zapewnieniu zgodności z normami. Właściwe pobieranie próbki jest nie tylko kwestią techniczną, ale również wyrazem dbałości o precyzję i rzetelność w procesach badawczych.

Pytanie 15

Aby przetransportować żwir na wysokość około 20 m, należy zastosować przenośnik

A. ślimakowy
B. zgarniakowy
C. kubełkowy
D. taśmowy
Przenośniki kubełkowe są idealnym rozwiązaniem do transportu materiałów sypkich, takich jak żwir, na dużą wysokość, w tym przypadku około 20 metrów. Zasada działania przenośników kubełkowych opiera się na wykorzystaniu kubełków zamocowanych na taśmie, które napełniają się materiałem na dole przenośnika i są następnie podnoszone w górę przez system taśmowy. Dzięki swojej konstrukcji, przenośniki te są w stanie efektywnie transportować materiały, minimalizując straty i zapobiegając ich uszkodzeniu. W branży budowlanej oraz górniczej przenośniki kubełkowe są powszechnie stosowane nie tylko do transportu żwiru, ale także piasku czy kamieni. Warto zaznaczyć, że ich wydajność i elastyczność w zastosowaniach sprawiają, że są preferowanym wyborem w zakładach zajmujących się przetwarzaniem surowców, gdzie konieczne jest podnoszenie materiałów na znaczne wysokości. Dobrą praktyką jest również regularne serwisowanie tych urządzeń, co zapewnia ich długotrwałe i niezawodne działanie w trudnych warunkach operacyjnych.

Pytanie 16

Zanim podejmiemy decyzję o koksowaniu odpowiednio wyselekcjonowanej mieszanki różnych rodzajów węgla, konieczne jest pobranie próbki tej mieszanki

A. aspiratorem i poddać ją analizie na zawartość siarki
B. dmuchawą przemysłową i poddać ją analizie na zawartość siarki
C. czerpakiem i poddać ją analizie sitowej
D. zgłębnikiem i poddać ją analizie sitowej
W przypadku prób pobierania węgla, stosowanie nieodpowiednich narzędzi lub metod analizy może prowadzić do błędnych wniosków i wpływać na jakość końcowego produktu. Na przykład, wykorzystanie czerpaka do pobierania próbek nie gwarantuje reprezentatywności materiału, ponieważ może on skupić się na zewnętrznej warstwie węgla, ignorując właściwości głębiej położonych frakcji. Z tego powodu, wyniki analizy sitowej mogą być nieprecyzyjne i nie przedstawiać rzeczywistego stanu mieszanki. Ponadto, analizowanie zawartości siarki przy użyciu dmuchawy przemysłowej czy aspiratora nie jest odpowiednim podejściem w kontekście koksowania. Siarka, będąca zanieczyszczeniem w procesie koksowania, powinna być analizowana przy użyciu metod chemicznych, które dokładnie określają jej zawartość, a nie przez pomiar objętościowy. Użycie niewłaściwych narzędzi może prowadzić do błędów pomiarowych oraz niezgodności z wymaganiami jakościowymi określonymi w standardach, takich jak ISO 13909, który reguluje pobieranie próbek węgla do badań. Kluczowe jest zrozumienie, że odpowiednie metody pobierania próbek oraz analizy są fundamentem skutecznego procesu produkcji koksu oraz zapewnienia jego jakości na poziomie wymaganym przez przemysł.

Pytanie 17

Aby potwierdzić obecność jonów Cl¯ w wodzie z sieci wodociągowej, powinno się zastosować

A. odczynnika Fehlinga
B. roztworu AgNO3
C. odczynnika Tollensa
D. roztworu NH4SCN
Roztwór AgNO3 (azotan srebra) jest najczęściej stosowanym odczynnikiem do wykrywania jonów Cl¯ w wodzie, ponieważ reaguje z nimi, tworząc nierozpuszczalny osad AgCl (chlorek srebra). Ta reakcja jest dobrze znana w chemii analitycznej i stanowi podstawę metody miareczkowania. W praktyce, test polega na dodaniu kilku kropli roztworu AgNO3 do próbki wody. Jeśli jony Cl¯ są obecne, pojawi się biały osad, co potwierdza ich obecność. Tego typu analiza jest zgodna z normami jakości wody, które wymagają regularnego monitorowania zawartości chlorków w wodzie pitnej. Roztwór AgNO3 jest również wykorzystywany w laboratoriach do analizy jakości wody, w badaniach środowiskowych oraz w przemyśle, gdzie kontrola zawartości jonów chlorkowych jest istotna. Ponadto, znajomość reakcji AgNO3 z jonami Cl¯ jest fundamentalna dla chemii analitycznej i wykorzystywana w różnych metodach analizy, takich jak miareczkowanie i spektroskopia.

Pytanie 18

Jaka jest główna funkcja chłodnicy oleju w układzie hydraulicznym?

A. Zwiększenie lepkości oleju
B. Oczyszczanie oleju z zanieczyszczeń
C. Obniżenie temperatury oleju
D. Zwiększenie ciśnienia oleju
Chłodnica oleju w układzie hydraulicznym pełni kluczową rolę w utrzymaniu optymalnej temperatury pracy oleju hydraulicznego. Wysoka temperatura oleju może prowadzić do jego szybszej degradacji, zmniejszenia lepkości oraz zwiększenia ryzyka uszkodzeń komponentów układu hydraulicznego. Utrzymanie odpowiedniej temperatury oleju jest niezbędne dla zapewnienia efektywności i długowieczności systemu. Chłodnica działa na zasadzie wymiany ciepła, gdzie ciepło z gorącego oleju jest przekazywane do cieczy chłodzącej, co obniża temperaturę oleju. W przemyśle chemicznym, gdzie procesy często generują dużo ciepła, funkcja chłodzenia jest szczególnie istotna. Dobre praktyki branżowe wskazują na konieczność regularnego monitorowania temperatury oleju, aby zapobiegać problemom związanym z przegrzewaniem. W przypadku zastosowań przemysłowych, chłodnice oleju mogą być wyposażone w różne systemy kontroli temperatury, co pozwala na jeszcze lepsze zarządzanie procesami. Prawidłowo działający układ chłodzenia przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności całego systemu hydraulicznego.

Pytanie 19

Reakcja absorpcji tlenku azotu(IV) w wodzie została przedstawiona równaniem
3NO2 + H2O ↔ 2HNO3 + NO ΔH < 0 Zgodnie z zasadą Le Chateliera - Brauna efektywność reakcji wzrośnie, jeśli

A. zwiększy się temperatura i zwiększy się ciśnienie
B. zwiększy się temperatura i zmniejszy się ciśnienie
C. zmniejszy się temperatura i zwiększy się ciśnienie
D. zmniejszy się temperatura i zmniejszy się ciśnienie
Pojęcia związane z wpływem temperatury i ciśnienia na równowagę reakcji chemicznych są kluczowe dla zrozumienia dynamiki procesów chemicznych. Wysoka temperatura w reakcjach egzotermicznych może wydawać się korzystna, ponieważ zwiększa energię cząsteczek. Jednak w przypadku reakcji, gdzie ciepło jest produktem, jak w omawianym równaniu, wyższa temperatura przesuwa równowagę w stronę reagentów. W rezultacie może to prowadzić do niższej wydajności reakcji, co jest niezgodne z zasadą Le Chateliera. Podobnie, obniżenie ciśnienia w reakcjach gazowych, szczególnie wtedy, gdy liczba moli gazów produktowych jest mniejsza, również nie sprzyja wydajności. W sytuacji, gdy reagenty mają większą liczbę moli niż produkty, zmniejszenie ciśnienia powoduje przesunięcie równowagi w stronę reagentów, co z kolei prowadzi do gorszych wyników. W praktyce, niewłaściwe zrozumienie tych zasad może skutkować nieoptymalnymi warunkami reakcji, co ma bezpośredni wpływ na koszty produkcji oraz jakość uzyskiwanych substancji chemicznych. Zatem, zarówno temperatura, jak i ciśnienie powinny być starannie kontrolowane i dostosowywane do charakterystyki danej reakcji, aby osiągnąć najlepsze wyniki i przestrzegać dobrych praktyk przemysłowych.

Pytanie 20

Ruch materiałów w trybie przeciwprądowym jest najskuteczniejszy podczas suszenia gorącymi gazami, ale w sytuacji, gdy sucha substancja może ulegać rozkładowi, bezpieczniejsze jest zastosowanie ruchu współprądowego. W tym kontekście obowiązuje zasada

A. maksymalnego wykorzystania energii
B. maksymalnego wykorzystania surowców
C. maksymalnego wykorzystania sprzętu
D. umiarkowania technologicznego
Odpowiedź "umiary technologicznego" jest prawidłowa, ponieważ odnosi się do zasadności wyboru metod suszenia w kontekście zachowania jakości materiałów. W przypadku suszenia gorącymi gazami w ruchu przeciwprądowym, proces ten jest wydajny energetycznie, jednak naraża substancję na wysokie temperatury przez dłuższy czas, co może prowadzić do jej rozkładu. Umiar technologiczny wskazuje na konieczność dostosowania procesów technologicznych do specyficznych właściwości materiałów, co jest kluczowe w praktykach przemysłowych. Przykładem może być suszenie ziół, gdzie wysoka temperatura może zniszczyć cenne związki aktywne. W takich przypadkach, zastosowanie ruchu współprądowego, gdzie temperatura gazów wlotowych jest niższa, chroni surowce przed degradacją. W kontekście dobrych praktyk, umiar technologiczny przyczynia się do efektywności procesów produkcyjnych i ochrony środowiska, co znajduje odzwierciedlenie w standardach jakość takich jak ISO 9001, które promują ciągłe doskonalenie procesów.

Pytanie 21

Jakie działania należy podjąć, aby przenośnik taśmowy, który transportuje mokry piasek pod kątem 25º, mógł również przewozić piasek suchy?

A. Skrócić poziomą długość trasy przenośnika
B. Podnieść prędkość ruchu taśmy przenośnika
C. Zmniejszyć kąt nachylenia trasy przenośnika do poziomu
D. Zwiększyć wysokość transportu przenośnika w pionowym kierunku
Zmniejszenie kąta pochylenia przenośnika taśmowego jest kluczowym krokiem w przypadku transportu suchego piasku, ponieważ zmniejsza to siły działające na materiał. Mokry piasek ma inną lepkość i gęstość, co pozwala na jego transport nawet pod większym kątem. W przypadku suchego piasku, który jest bardziej sypki i łatwiej się przesuwa, zbyt stromy kąt może prowadzić do zsuwania się materiału z taśmy, co w efekcie obniża wydajność transportu oraz może prowadzić do zatorów. Optymalny kąt nachylenia dla transportu suchego piasku wynosi zazwyczaj od 15º do 20º. Przykładowo, w przemyśle budowlanym często stosuje się przenośniki o zmniejszonym kącie nachylenia, aby zapewnić nieprzerwane i efektywne załadunki przy zachowaniu jakości transportowanego materiału. Praktyki te są zgodne z normami branżowymi, które podkreślają znaczenie dostosowania parametrów przenośnika do właściwości transportowanego materiału.

Pytanie 22

Z jakiego typu materiału produkowana jest wewnętrzna warstwa urządzeń do wchłaniania chlorowodoru w wodzie?

A. Z grafitu
B. Z żeliwa
C. Ze staliwa
D. Z aluminium
Wybór materiałów do budowy urządzeń do absorpcji gazów, takich jak chlorowodorek, jest kluczowy dla efektywności i trwałości tych systemów. Żeliwo, mimo że jest popularnym materiałem budowlanym, nie jest odpornym na korozję, co czyni je nieodpowiednim do kontaktu z kwasami. Chlorowodorek, jako substancja silnie żrąca, reaktywna z wieloma metalami, może w krótkim czasie spowodować degradację żeliwa, prowadząc do awarii systemu. Aluminium, z drugiej strony, wykazuje lepsze właściwości odporności na korozję, ale jego zastosowanie w środowisku kwasowym, takim jak w przypadku chlorowodoru, także wiąże się z ryzykiem uszkodzeń. Aluminium może reagować z kwasami, co z czasem prowadzi do osłabienia struktury i zmniejszenia efektywności urządzenia. Stal węglowa, mimo iż jest mocna i wytrzymała, również nie jest materiałem odpornym na działanie kwasów, co czyni ją niewłaściwym materiałem do tego zastosowania. W przemyśle chemicznym, gdzie bezpieczeństwo i efektywność procesów są priorytetem, stosowanie materiałów odpornych na korozję, takich jak grafit, jest nie tylko dobrym standardem, ale również wymogiem wynikającym z najlepszych praktyk branżowych.

Pytanie 23

Jakie jest zamierzenie procesu mielenia fosforytu w przygotowaniu surowca stałego do produkcji superfosfatu?

A. zwiększenia powierzchni styku surowca z kwasem siarkowym
B. uproszczenia transportu fosforytu przenośnikami do komory wytwórczej
C. uzyskania superfosfatu w formie pyłowej
D. uprzedzenia załadunku fosforytu do komory wytwórczej
Wybór odpowiedzi dotyczącej ułatwienia załadunku lub transportu fosforytu do komory produkcyjnej jest nieprawidłowy, ponieważ te aspekty nie są głównym celem procesu mielenia. Chociaż praktycznie załadunek i transport surowca są istotnymi elementami procesu produkcji nawozów, nie wpływają one bezpośrednio na efektywność chemiczną reakcji. Mielenie ma na celu przede wszystkim zwiększenie powierzchni kontaktu, co jest kluczowe dla skuteczności reakcji z kwasem siarkowym. Odpowiedzi koncentrujące się na ułatwianiu transportu są mylne, ponieważ nie uwzględniają roli powierzchni cząstek w procesach chemicznych, co jest fundamentalną zasadą w chemii materiałów. Zmielony fosforyt, dzięki zwiększonej powierzchni, reaguje intensywniej z kwasem, co prowadzi do wyższej wydajności produkcji superfosfatu. Wybór opcji dotyczącej otrzymania superfosfatu pylistego również nie uwzględnia kluczowego aspektu, jakim jest mechanizm reakcji chemicznej, a nie tylko fizyczne właściwości produktu końcowego. Zrozumienie tego procesu wymaga od uczących się znajomości chemii nieorganicznej oraz specyfiki procesów technologicznych w branży nawozowej, co wskazuje na szersze znaczenie nauki o materiałach w kontekście produkcji nawozów.

Pytanie 24

Badanie składników organicznych obecnych w powietrzu dostarczanym do pieca do spalania siarki powinno być przeprowadzone przy użyciu metody

A. metody kolorymetrycznej
B. absorpcji promieniowania podczerwonego.
C. chromatografii gazowej.
D. absorpcji w roztworze soli.
Chromatografia gazowa (GC) to jedna z najskuteczniejszych metod analizy składników organicznych w próbkach gazowych, takich jak te wykorzystywane w procesach spalania. Technika ta polega na separacji składników na zasadzie różnic w ich powinowactwie do fazy stacjonarnej oraz mobilnej, co pozwala na dokładną identyfikację i ilościowe oznaczenie różnych związków chemicznych. W przypadku analizy powietrza podawanego do pieca do spalania siarki, chromatografia gazowa jest szczególnie przydatna, ponieważ pozwala na wykrycie i analizę lotnych związków organicznych, które mogą wpływać na efektywność spalania oraz emisję zanieczyszczeń. Przykładowo, w przemyśle chemicznym często wykorzystuje się GC do monitorowania składu gazów w procesach technologicznych, co pozwala na optymalizację warunków pracy oraz minimalizację negatywnego wpływu na środowisko. Użycie chromatografii gazowej w analizie powietrza jest zgodne z najlepszymi praktykami branżowymi, które zalecają regularne monitorowanie składników gazowych w celu zapewnienia ich zgodności z normami ochrony środowiska.

Pytanie 25

Wokół podajnika taśmowego, który transportuje fosforyt, leżą znaczne ilości rozsypanego surowca. Jakie wnioski dotyczące stanu technicznego tego urządzenia można wyciągnąć na tej podstawie?

A. Urządzenia działają poprawnie, jednak transportowany materiał ma zbyt dużą wilgotność
B. Taśma transportująca porusza się zbyt szybko
C. Taśma transportująca jest zbyt słabo napięta
D. Urządzenia pracują poprawnie, a transportowany materiał ma niewłaściwą temperaturę
Odpowiedź wskazująca, że taśma transportująca jest zbyt słabo naciągnięta, jest trafna, ponieważ w przypadku zbyt luźno zamocowanej taśmy, materiał transportowany może nie być skutecznie przenoszony na urządzeniu, co prowadzi do jego rozsypywania. Zbyt małe napięcie taśmy powoduje, że nie jest ona w stanie utrzymać właściwego kształtu, co negatywnie wpływa na wydajność transportu. W praktyce, odpowiednie naciągnięcie taśmy jest kluczowe, aby zminimalizować straty materiału oraz zwiększyć efektywność operacyjną systemów transportowych. Standardy branżowe, takie jak normy ISO dotyczące transportu i przechowywania materiałów, podkreślają znaczenie utrzymania odpowiednich parametrów technicznych urządzeń transportowych, w tym naciągu taśmy. Aby zapewnić optymalną wydajność, regularne kontrole i konserwacja systemów transportowych, w tym sprawdzenie naciągu taśmy, powinny być przeprowadzane zgodnie z harmonogramem utrzymania ruchu.

Pytanie 26

Jak powinno się składować opakowania z saletrą amonową?

A. W ogrzewanych pomieszczeniach magazynowych obok gazów technicznych
B. W magazynach charakteryzujących się wysoką wilgotnością
C. Umieszczając je w jasnych, nieprzewiewnych miejscach, ściśle upakowane
D. Umieszczając je w bezpiecznej odległości od materiałów palnych i źródeł ciepła
Saletra amonowa jest substancją chemiczną, która w trakcie przechowywania wymaga szczególnej uwagi w odniesieniu do warunków otoczenia. Utrzymywanie opakowań z saletrą amonową z dala od materiałów łatwopalnych i źródeł ciepła jest kluczowe, aby zminimalizować ryzyko pożaru oraz zachować stabilność chemiczną substancji. W wysokich temperaturach i w obecności substancji łatwopalnych, saletra amonowa może stać się niebezpieczna, a nawet prowadzić do wybuchów. Dlatego zgodnie z zaleceniami norm takich jak NFPA (National Fire Protection Association) oraz OSHA (Occupational Safety and Health Administration), należy zapewnić odpowiednie odległości i warunki składowania. Przykładowo, w przemyśle chemicznym, opakowania z saletrą amonową powinny być przechowywane w specjalnie przystosowanych pomieszczeniach magazynowych, które posiadają odpowiednią wentylację oraz systemy przeciwpożarowe. Dodatkowo, ważne jest, aby opakowania były w odpowiednich, trwałych pojemnikach, które uniemożliwią ich uszkodzenie, co mogłoby prowadzić do uwolnienia substancji i zwiększenia ryzyka wystąpienia niebezpiecznych sytuacji.

Pytanie 27

Jakie jest zastosowanie wirówek talerzowych?

A. mieszania materiałów sypkich
B. oczyszczania powietrza
C. rozdrabniania materiałów włóknistych
D. rozdzielania emulsji
Wirówki talerzowe, znane również jako wirówki dekantacyjne, są specjalistycznymi urządzeniami stosowanymi do rozdzielania emulsji, czyli układów, w których jedna ciecz jest rozproszona w drugiej. Proces ten zachodzi przy użyciu siły odśrodkowej, która oddziela składniki na podstawie ich gęstości. Dzięki swojej konstrukcji i wydajności, wirówki talerzowe są szeroko stosowane w przemyśle chemicznym, spożywczym oraz farmaceutycznym. Przykładowo, w przemyśle mleczarskim mogą być wykorzystywane do oddzielania tłuszczu od mleka, a w przemysłach chemicznych – do separacji cieczy i stałych w procesach produkcyjnych. W kontekście dobrych praktyk, ważne jest, aby przed użyciem wirówki zrozumieć właściwości przetwarzanych substancji oraz parametry procesu, takie jak prędkość obrotowa i czas separacji, co wpływa na efektywność rozdzielania emulsji.

Pytanie 28

Dekarbonizacja wody przy użyciu wody wapiennej polega na dodawaniu do niej nasyconego roztworu Ca(OH)2 o stężeniu 0,15%. Do zmiękczania 1000 dm3 wody przemysłowej konieczne jest przygotowanie 1 kg wody wapiennej. Ile wodorotlenku wapnia jest potrzebne do uzyskania 1 kg wody wapiennej?

A. 1,5 kg Ca(OH)2
B. 0,15 kg Ca(OH)2
C. 0,15 g Ca(OH)2
D. 1,5 g Ca(OH)2
Odpowiedź 1,5 g Ca(OH)2 jest poprawna, ponieważ do sporządzenia 1 kg wody wapiennej o stężeniu 0,15% potrzebujemy 1,5 g wodorotlenku wapnia. Obliczenia można przeprowadzić w sposób następujący: 0,15% roztworu oznacza, że na 100 g roztworu przypada 0,15 g substancji czynnej. W przypadku 1 kg (1000 g) roztworu, wartość ta wynosi 1,5 g (1000 g * 0,15% = 1,5 g). Taki roztwór jest stosowany w procesach dekabonizacji, gdzie woda wapienna działa jako środek zmiękczający, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak oczyszczanie wody czy neutralizacja kwasów. Zastosowanie odpowiednich dawek substancji chemicznych jest zgodne z normami branżowymi, co przyczynia się do efektywności procesów oraz ochrony środowiska.

Pytanie 29

Podczas planowania remontu reaktora chemicznego, należy wziąć pod uwagę:

A. Liczbę operatorów na zmianie
B. Kierunek obrotów mieszadła
C. Stan korozji i zużycie materiałów
D. Kolor powłoki ochronnej
Ocena stanu korozji i zużycia materiałów w reaktorze chemicznym jest kluczowym elementem planowania remontu. Korozja to proces, który może prowadzić do osłabienia struktury reaktora, co z kolei zwiększa ryzyko awarii lub wycieków niebezpiecznych substancji. Oceniając stopień korozji, inżynierowie są w stanie określić, które elementy wymagają wymiany lub wzmocnienia. Jest to zgodne z dobrymi praktykami i standardami przemysłowymi, takimi jak API 510, które opisuje inspekcję i naprawę naczyń ciśnieniowych. Regularna ocena stanu materiałów pozwala również na optymalizację kosztów remontu, eliminując potrzebę niepotrzebnej wymiany elementów, które wciąż są w dobrym stanie. To podejście, oprócz zapewnienia bezpieczeństwa, przedłuża także żywotność reaktora i zwiększa jego niezawodność operacyjną. W praktyce, podczas przeglądów, używa się narzędzi takich jak ultradźwięki czy spektroskopia, aby dokładnie ocenić grubość ścianek i stopień degradacji materiału. Takie działania są nieodzowne w branży chemicznej, gdzie bezpieczeństwo i efektywność są priorytetem.

Pytanie 30

Guma zbrojona o wysokiej odporności na zerwanie oraz dużym wskaźniku sprężystości znajduje zastosowanie w przemyśle chemicznym do produkcji

A. taśm transportowych przenośników
B. podłóg w pomieszczeniach technologicznych
C. chemoodpornych powłok reaktorów
D. izolacji termicznych rurociągów
Zbrojona guma o dużej wytrzymałości na zerwanie i wysokim współczynniku sprężystości znajduje szerokie zastosowanie w przemyśle chemicznym, w tym w produkcji taśm transportowych przenośników. Ten rodzaj materiału jest idealny do takiego zastosowania, ponieważ musi on znosić intensywne obciążenia mechaniczne oraz kontakt z substancjami chemicznymi. Taśmy transportowe są wykorzystywane do transportu różnych materiałów, od surowców po gotowe produkty, co w praktyce oznacza, że muszą być odporne na działanie chemikaliów, a także charakteryzować się elastycznością, która pozwala na ich odpowiednie dopasowanie do systemów przenośnikowych. Wybór zbrojonej gumy do tych zastosowań oparty jest na standardach branżowych, takich jak ISO 9001, które podkreślają konieczność utrzymania wysokiej jakości materiałów wykorzystywanych w procesach przemysłowych. Przykłady zastosowań obejmują przenośniki używane w zakładach chemicznych, które transportują substancje takie jak kwasy, zasady czy rozpuszczalniki. Odpowiednia trwałość i odporność na czynniki zewnętrzne są kluczowe dla zapewnienia długotrwałej eksploatacji tych systemów.

Pytanie 31

Pierwszym krokiem w procesie konserwacji maszyn oraz urządzeń jest

A. montaż komponentów i ich regulacja
B. ochrona przed korozją
C. wyczyszczenie maszyny oraz jej części składowych
D. odnowienie elementów składowych
Odpowiedź 'oczyszczenie maszyny i jej części składowych' jest kluczowym pierwszym etapem procesu konserwacji, ponieważ skuteczne usunięcie zanieczyszczeń, takich jak kurz, oleje czy resztki smarów, jest niezbędne do prawidłowego działania maszyn. Oczyszczanie nie tylko poprawia estetykę urządzeń, ale przede wszystkim wpływa na ich trwałość oraz wydajność. Zanieczyszczenia mogą prowadzić do przyspieszonego zużycia części, a w skrajnych przypadkach do awarii. Przykładem zastosowania może być regularne czyszczenie filtrów powietrza w silnikach, które zapewnia właściwą cyrkulację powietrza i chroni silnik przed uszkodzeniem. Standardy takie jak ISO 9001 podkreślają znaczenie utrzymania czystości na stanowiskach pracy jako elementu efektywnej konserwacji, co jest zgodne z najlepszymi praktykami w branży. Oczyszczanie jest też wstępnym krokiem do dalszych działań konserwacyjnych, takich jak smarowanie czy wymiana uszkodzonych komponentów, co czyni je niezbędnym w codziennej eksploatacji maszyn.

Pytanie 32

Aby przygotować 1 dm3 roztworu o stężeniu 0,1 mol/dm3, potrzeba 6,31 cm3 44% roztworu NaOH. Jaką ilość 44% roztworu NaOH należy zastosować, aby uzyskać 250 cm3 0,1-molowego roztworu?

A. 25,24 cm3
B. 2,16 cm3
C. 1,58 cm3
D. 6,31 cm3
Aby przygotować 250 cm³ roztworu o stężeniu 0,1 mol/dm³, trzeba najpierw obliczyć ilość moli NaOH, którą chcemy uzyskać. Wzór na obliczenie moli to: moli = stężenie (mol/dm³) × objętość (dm³). Zmieniając 250 cm³ na dm³, otrzymujemy 0,25 dm³. Zatem liczba moli NaOH wynosi: 0,1 mol/dm³ × 0,25 dm³ = 0,025 mol. Teraz musimy obliczyć, ile roztworu 44% NaOH potrzebujemy, aby uzyskać tę ilość moli. W przypadku 44% roztworu NaOH, jego gęstość wynosi około 1,2 g/cm³, co oznacza, że 100 g tego roztworu zawiera około 44 g NaOH. Ilość moli NaOH w 44 g to: 44 g / 40 g/mol (masa molowa NaOH) = 1,1 mol. Zatem w 100 g roztworu mamy 1,1 mola NaOH, co przekłada się na około 0,025 mola, które chcemy uzyskać. Obliczamy objętość potrzebną: 0,025 mol / 1,1 mol/100 g = 2,27 g roztworu. Przeliczając na objętość (używając gęstości), mamy: 2,27 g / 1,2 g/cm³ = 1,89 cm³. Taka objętość roztworu w 44% NaOH odpowiada 1,58 cm³, co jest odpowiedzią prawidłową. W praktyce znajomość tych obliczeń jest kluczowa w laboratoriach chemicznych, gdzie przygotowuje się roztwory o określonym stężeniu.

Pytanie 33

Pompa membranowa jest wykorzystywana do transportowania cieczy

A. bardzo lotnych
B. o właściwościach smarujących
C. bardzo agresywnych
D. o dużej lepkości
Pompy membranowe są specjalistycznym rodzajem urządzeń, które doskonale nadają się do przetłaczania cieczy o wysokiej agresywności chemicznej. Działają na zasadzie zmiany objętości komory pompy, co pozwala na precyzyjne dozowanie i transportowanie substancji. Dzięki zastosowaniu membrany, te pompy mogą radzić sobie z cieczami, które są korozyjne lub mają inne właściwości, które mogłyby uszkodzić tradycyjne pompy. W praktyce pompy membranowe znajdują zastosowanie w wielu branżach, na przykład w przemyśle chemicznym, gdzie transportuje się silne kwasy i zasady, a także w farmaceutyce, gdzie istotne jest zachowanie czystości i jakości substancji. Zgodnie z normami branżowymi, pompy te muszą być regularnie kontrolowane pod kątem ich stanu technicznego oraz szczelności, aby uniknąć wycieków, które mogłyby prowadzić do zanieczyszczenia środowiska lub uszkodzenia instalacji.

Pytanie 34

Transport lekkich, sypkich materiałów, które nie tworzą brył, odbywa się poprzez ich unoszenie i przesuwanie za pomocą strumienia powietrza do miejsca, w którym następuje wyładunek, wykorzystując przenośniki

A. bezcięgnowych
B. pneumatycznych
C. cięgnowych
D. hydraulicznych
Odpowiedź 'pneumatycznych' jest prawidłowa, ponieważ transport materiałów sypkich za pomocą przenośników pneumatycznych wykorzystuje strumień powietrza do transportu materiałów w stanie zawieszenia. W praktyce oznacza to, że niewielkie cząstki materiałów, które są lekkie i nie mają tendencji do zbrylania się, mogą być efektywnie przenoszone na znaczną odległość. Systemy te są szeroko stosowane w branży spożywczej, chemicznej oraz w przemyśle budowlanym, gdzie transportuje się takie materiały jak mąka, cement czy granulaty plastikowe. Przenośniki pneumatyczne oferują szereg zalet, takich jak minimalizacja mechanicznych uszkodzeń transportowanych materiałów, a także możliwość transportu w ciasnych przestrzeniach, co jest niemożliwe w przypadku przenośników cięgnowych. Ponadto, zgodnie z normami branżowymi, systemy pneumatyczne są projektowane z uwzględnieniem efektywności energetycznej i bezpieczeństwa, co czyni je optymalnym wyborem w nowoczesnych instalacjach transportowych.

Pytanie 35

Elementem mieszającym o dużej prędkości w reaktorze zbiornikowym jest mieszadło

A. ślimakowe
B. łapowe
C. turbinowe
D. kotwiczne
Mieszadło turbinowe jest kluczowym elementem w reaktorach zbiornikowych, które wymagają efektywnej mieszanki substancji. Jego konstrukcja, charakteryzująca się dużą prędkością obrotową oraz specyficznym kształtem łopatek, pozwala na skuteczne przemieszczanie cieczy, co jest niezbędne w procesach chemicznych i biotechnologicznych. Mieszadła turbinowe wspierają rozpuszczanie, homogenizację, a także umożliwiają transport ciepła i masy. W zastosowaniach przemysłowych, takich jak produkcja farb, żywności czy farmaceutyków, ich efektywność jest niezbędna do zapewnienia jednolitej jakości produktów. Dzięki dużej zdolności do wytwarzania turbulence, mieszadła te przyczyniają się do intensyfikacji procesów reakcji chemicznych, co w efekcie prowadzi do skrócenia czasu reakcji. Zgodnie z normami branżowymi, zastosowanie mieszadeł turbinowych w reaktorach zbiornikowych ma na celu osiągnięcie optymalnych warunków mieszania, odpowiadając na wymagania procesów technologicznych.

Pytanie 36

Na którym z przenośników możliwe jest rozładowanie transportowanego materiału jedynie na jego końcu?

A. Taśmowym
B. Członowym
C. Wibracyjnym
D. Ślimakowym
Przenośnik członowy, znany również jako przenośnik modułowy, to urządzenie wykorzystywane do transportu materiałów, które pozwala na rozładowywanie transportowanego materiału wyłącznie na jego końcu. System ten składa się z sekcji, które są połączone ze sobą, a materiał porusza się wzdłuż określonego toru. Takie rozwiązanie jest często stosowane w magazynach, zakładach produkcyjnych i na liniach montażowych, gdzie precyzyjne zarządzanie przepływem materiałów jest kluczowe. Praktycznym przykładem zastosowania przenośnika członowego jest obsługa towarów w centrach logistycznych, gdzie uczestniczy on w procesach automatyzacji, zwiększając efektywność operacyjną. Dodatkowo, przenośniki członowe charakteryzują się dużą elastycznością w konfiguracji, co pozwala na dostosowanie ich do różnorodnych układów przestrzennych oraz rodzajów transportowanych materiałów. W standardach branżowych często podkreśla się znaczenie przenośników członowych w kontekście poprawy ergonomii i redukcji ryzyka uszkodzeń materiałów, co czyni je niezbędnym elementem nowoczesnych rozwiązań logistycznych.

Pytanie 37

Kiedy należy przeprowadzać konserwację maszyn w przemyśle chemicznym?

A. Tylko w przypadku awarii
B. Regularnie, zgodnie z harmonogramem konserwacji
C. Po każdej zmianie pracowników
D. Wyłącznie przed audytem
Regularna konserwacja maszyn w przemyśle chemicznym jest kluczowym elementem zapewnienia bezpieczeństwa, wydajności i długowieczności urządzeń. Przeprowadzanie jej zgodnie z ustalonym harmonogramem pozwala na wczesne wykrycie ewentualnych usterek i zapobiega awariom, które mogą prowadzić do kosztownych przestojów produkcji. Harmonogram konserwacji jest zazwyczaj ustalany na podstawie specyfikacji producenta, doświadczenia operatorów oraz specyficznych wymagań środowiskowych. Regularne przeglądy i konserwacje zgodne z planem minimalizują ryzyko wystąpienia sytuacji awaryjnych, a także pozwalają na optymalizację pracy maszyn poprzez bieżące dostosowywanie parametrów ich pracy. Dodatkowo, przestrzeganie harmonogramu konserwacji jest często wymogiem norm ISO i innych standardów branżowych, które kładą duży nacisk na proaktywne podejście do utrzymania ruchu. Dzięki regularnej konserwacji, zakłady chemiczne mogą utrzymać wysoką jakość produkcji i zminimalizować ryzyko nieprzewidzianych zdarzeń, co jest niezwykle ważne w kontekście bezpieczeństwa pracowników i ochrony środowiska.

Pytanie 38

Jakie odczynniki są potrzebne do oznaczenia twardości ogólnej wody kotłowej?

A. Mianowany roztwór wersenianu sodu, bufor amoniakalny, czerń eriochromową
B. Mianowany roztwór H2SO4, bufor amoniakalny, oranż metylowy
C. Mianowany roztwór NaOH, bufor octanowy, czerń eriochromową
D. Mianowany roztwór wersenianu sodu, bufor octanowy, fenoloftaleinę
Odpowiedź dotycząca mianowanego roztworu wersenianu sodu, buforu amoniakalnego oraz czerwi eriochromowej jest prawidłowa, ponieważ te odczynniki są kluczowe dla wykonania oznaczenia twardości ogólnej wody kotłowej. Wersenian sodu działa jako kompleksujący reagent, który skutecznie wiąże jony wapnia i magnezu, co jest istotne w procesie analizy twardości wody. Bufor amoniakalny stabilizuje pH roztworu, co jest niezbędne do uzyskania dokładnych wyników analizy. Czerń eriochromowa służy jako wskaźnik, zmieniający barwę w momencie, gdy wszystkie jony wapnia i magnezu zostały skompleksowane, co sygnalizuje zakończenie titracji. W praktyce, taka analiza jest kluczowa w branży energetycznej, gdzie kontrola jakości wody kotłowej ma bezpośredni wpływ na wydajność systemów oraz unikanie korozji i osadów w kotłach. Przykładem może być monitoring wody w elektrowniach, gdzie twardość musi być ściśle kontrolowana, aby zapewnić długotrwałą i bezpieczną pracę urządzeń.

Pytanie 39

Roztwór nasycony określonej soli uzyskano poprzez dodanie 250 g tej soli do 1 000 g wody. Jakie jest stężenie procentowe tak przygotowanego roztworu?

A. 25%
B. 33%
C. 17%
D. 20%
Aby obliczyć stężenie procentowe roztworu, musimy zastosować wzór: stężenie procentowe = (masa solutu / masa roztworu) × 100%. W tym przypadku masa solutu wynosi 250 g (masa soli), a masa roztworu to suma masy soli i masy rozpuszczalnika (wody), która wynosi 1000 g. Tak więc masa roztworu wynosi 250 g + 1000 g = 1250 g. Podstawiając wartości do wzoru, otrzymujemy: (250 g / 1250 g) × 100% = 20%. Dlatego stężenie procentowe roztworu wynosi 20%. Obliczanie stężenia procentowego jest kluczowe w chemii, szczególnie w kontekście przygotowywania roztworów do eksperymentów laboratoryjnych czy przemysłowych. Umożliwia to precyzyjne kontrolowanie ilości substancji w roztworze, co jest niezbędne w wielu procesach chemicznych oraz w farmaceutyce, gdzie dokładne stężenie substancji czynnej jest kluczowe dla skuteczności leku.

Pytanie 40

Podczas obsługi autoklawu należy pamiętać, aby zawsze

A. jednocześnie dostarczać substraty i gaz obojętny ze stałym natężeniem przepływu
B. napełniać zbiornik gazem obojętnym w jak najszybszym czasie, otwierając zawory na maksymalny przepływ
C. doprowadzać gazy wytwarzające podwyższone ciśnienie po zamknięciu przewodu doprowadzającego substraty
D. załadować urządzenie substratami po napełnieniu zbiornika gazem obojętnym do ciśnienia roboczego
Podałeś substraty i gaz obojętny w stałym natężeniu, ale to raczej nie jest najlepszy pomysł. Może to prowadzić do niespodziewanego wzrostu ciśnienia w autoklawie, a to może być dość niebezpieczne. Jeśli jednocześnie będziesz podawał te substancje, to ryzyko przepełnienia układu znacząco rośnie, co nie jest zgodne z zasadami bezpieczeństwa. A jak już załadujesz substraty po tym, jak zbiornik się napełni gazem obojętnym do ciśnienia roboczego, to może się zdarzyć, że substancje nie będą rozłożone równomiernie w komorze autoklawu. To wpływa negatywnie na proces sterylizacji. Dodatkowo, szybkie wypełnianie gazem obojętnym i otwieranie zaworów na pełny przepływ może prowadzić do niebezpiecznych skoków ciśnienia, co jest nie do przyjęcia. Dobre zarządzanie ciśnieniem i kontrolowanie przepływu gazów i substratów jest kluczowe dla skutecznej i bezpiecznej sterylizacji. W branży są określone standardy, które podkreślają, jak ważne jest przestrzeganie procedur, żeby zminimalizować ryzyko i zapewnić wysoką jakość w sterylizacji.