Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 kwietnia 2025 11:42
  • Data zakończenia: 17 kwietnia 2025 11:54

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Utrzymują ustalony poziom ciśnienia
B. Ograniczają ciśnienie do ustalonego poziomu
C. Zapewniają ustawiony, stały spadek ciśnienia
D. Redukują nagłe skoki ciśnienia
Wybór odpowiedzi, która wskazuje na inne funkcje zaworów przelewowych, może prowadzić do nieporozumień w zakresie ich rzeczywistego zastosowania. Zmniejszanie gwałtownych impulsów ciśnienia nie jest zasadniczą funkcją zaworów przelewowych. Takie zadania często są realizowane przez inne elementy układu, takie jak tłumiki czy akumulatory hydrauliczne, które są zaprojektowane do absorpcji szczytowych wartości ciśnienia. Utrzymywanie zadanego, stałego spadku ciśnienia jest również nieprawidłowym podejściem, ponieważ zawory przelewowe nie są przeznaczone do regulowania różnicy ciśnień, lecz do ochrony przed nadmiernym wzrostem ciśnienia. Innym błędnym przekonaniem jest to, że zawory przelewowe po prostu ograniczają ciśnienie do określonego poziomu; w rzeczywistości ich działanie jest bardziej złożone i polega na zapewnieniu stabilności ciśnienia w układzie poprzez odprowadzanie nadmiaru płynu. Mylne interpretacje dotyczące funkcji zaworów przelewowych mogą skutkować nieprawidłowym doborem komponentów w systemach hydraulicznych, co w konsekwencji prowadzi do awarii i zwiększonych kosztów eksploatacyjnych. Dlatego kluczowe jest zrozumienie ich rzeczywistej roli w utrzymywaniu stabilności ciśnienia, co jest niezbędne dla prawidłowego funkcjonowania całego układu hydraulicznego.

Pytanie 4

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. grupy siłowników z modułem rozszerzającym
B. programatora ze sterownikiem
C. programatora z siłownikiem
D. silnika z pompą hydrauliczną
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 5

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. szerokości silnika oraz średnicy wirnika
B. odległości między osią wału a podstawą uchwytów silnika
C. średnicy stojana
D. wysokości silnika
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z poniższych czujników mierzących powinien być użyty do określenia wartości ciśnienia w zbiorniku sprężonego powietrza oraz do przesłania danych do sterownika PLC z analogowymi wejściami?

A. Czujnik termoelektryczny
B. Czujnik ultradźwiękowy
C. Czujnik piezorezystancyjny
D. Czujnik manometryczny
Wybór czujników do pomiaru ciśnienia w zbiorniku sprężonego powietrza wymaga zrozumienia ich specyfiki i zastosowania. Czujnik termoelektryczny, który działa na zasadzie pomiaru temperatury, nie jest właściwym narzędziem w tym kontekście. Jego zastosowanie w pomiarze ciśnienia jest nieefektywne, ponieważ nie jest w stanie dostarczyć informacji o ciśnieniu, co prowadzi do błędnych wniosków i niewłaściwego doboru urządzeń. Kolejnym przykładem jest czujnik ultradźwiękowy, który może być stosowany do pomiaru poziomu cieczy, jednak w kontekście pomiaru ciśnienia w gazach, jakim jest sprężone powietrze, jego zastosowanie jest ograniczone. Czujniki te są bardziej odpowiednie do monitorowania odległości lub poziomu cieczy w zbiornikach. Manometryczny czujnik ciśnienia, chociaż właściwy do wielu aplikacji, nie zawsze będzie idealnym wyborem dla sprężonego powietrza, szczególnie w przypadku wymaganej wysokiej precyzji oraz pracy w zmiennych warunkach. Często błędem jest założenie, że wszystkie czujniki ciśnienia są sobie równe, co prowadzi do niewłaściwego doboru urządzenia. Właściwy wybór czujnika powinien opierać się na specyfikacji technicznej, warunkach pracy oraz wymogach systemu, aby zapewnić optymalną dokładność i niezawodność pomiarów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. mikroskopu technicznego
B. przymiaru średnicowego
C. przymiaru kreskowego
D. śruby mikrometrycznej
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 17

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0 V
B. 0,3 V
C. 1,4 V
D. 0,6 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. exe
B. sys
C. bmp
D. ini
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 21

W procesie TIG stosuje się technikę spawania

A. elektrodą wolframową w osłonie argonowej
B. elektrodą topliwą w osłonie dwutlenku węgla
C. łukiem plazmowym
D. strumieniem elektronów
Metoda TIG (Tungsten Inert Gas) to technika spawania, w której wykorzystuje się elektrodę wolframową, a osłona gazowa pochodzi z argonu. Wolfram charakteryzuje się wysoką temperaturą topnienia, co pozwala na uzyskanie stabilnego łuku elektrycznego, niezbędnego do spawania metali. Proces ten jest niezwykle precyzyjny i doskonały dla spawania cienkowarstwowego, co czyni go idealnym do zastosowania w branżach takich jak lotnictwo, motoryzacja czy medycyna, gdzie wymagana jest wysoka jakość i wytrzymałość spoin. Przykładem może być spawanie elementów konstrukcyjnych w lekkich pojazdach lub komponentów silników, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa oraz wydajności. Metoda TIG umożliwia również spawanie różnych materiałów, takich jak stal nierdzewna, aluminium czy tytan, co sprawia, że jest niezwykle wszechstronna. Dobre praktyki w tej metodzie obejmują odpowiednie przygotowanie powierzchni spawanych elementów oraz właściwe ustawienie parametrów spawania, co wpływa na jakość i trwałość spoiny.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach i okularach ochronnych
B. obuwiu z gumową podeszwą oraz fartuchu ochronnym
C. rękawicach skórzanych i fartuchu skórzanym
D. kasku ochronnym i rękawicach elektroizolacyjnych
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 25

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
B. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
C. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
D. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
Poprawna kolejność montażu elementów składowych zespołu przygotowania powietrza w układzie pneumatycznym zasilającym silnik pneumatyczny to filtr powietrza, reduktor ciśnienia, układ smarowania, a na końcu zawór sterujący. Filtr powietrza jest kluczowy, ponieważ usuwa zanieczyszczenia i wilgoć z powietrza, co chroni dalsze elementy układu przed uszkodzeniem i zapewnia ich dłuższą żywotność. Reduktor ciśnienia reguluje ciśnienie powietrza do odpowiedniego poziomu, co jest istotne dla prawidłowego działania silnika pneumatycznego. Następnie układ smarowania wprowadza odpowiednią ilość smaru, co jest niezbędne do prawidłowej pracy elementów ruchomych w silniku. Ostatnim elementem jest zawór sterujący, który umożliwia kontrolę nad przepływem powietrza do silnika. Taka struktura zapewnia optymalne warunki pracy i wydajność układu, zgodnie z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 1 Nm
C. 10 Nm
D. 986 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Płaskiego
C. Imbusowego
D. Dynamometrycznego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Stabilizatory.
B. Prostowniki.
C. Flip-flopy.
D. Generatory.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 34

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. NAND
B. NOR
C. Ex-NOR
D. Ex-OR
Symbol graficzny przedstawia bramkę Ex-OR (Exclusive OR), która jest kluczowym elementem w projektowaniu układów cyfrowych. Działa na zasadzie, że na wyjściu generuje stan wysoki (1) tylko wtedy, gdy na wejściach są różne stany – jednocześnie 1 i 0. To odróżnia ją od standardowej bramki OR, która daje wynik wysoki, gdy przynajmniej jedno z wejść ma stan wysoki. W praktyce, bramki Ex-OR są wykorzystywane w takich zastosowaniach jak sumatory w obliczeniach arytmetycznych, a także w układach logicznych, które wymagają porównywania stanów. Przykładem może być kontrola błędów w transmisji danych, gdzie bramka Ex-OR jest używana do generowania bitów parzystości. W kontekście standardów, stosowanie bramek Ex-OR jest zgodne z praktykami projektowania układów cyfrowych, które kładą nacisk na efektywność i minimalizację błędów. Zrozumienie działania tej bramki jest fundamentem dla dalszych zagadnień związanych z układami cyfrowymi i logiką.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. zbyt wysokie napięcie zasilające
B. brak modyfikacji częstotliwości impulsów z kontrolera
C. nadmierne obciążenie silnika
D. wysyłanie impulsów sterujących w błędnej kolejności
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 3 jednostki napędowe
B. 5 jednostek napędowych
C. 4 jednostki napędowe
D. 6 jednostek napędowych
Odpowiedź wskazująca na pięć napędów w manipulatorze jest prawidłowa, ponieważ wiele nowoczesnych manipulatorów wykorzystuje zaawansowane systemy napędowe, które pozwalają na precyzyjne sterowanie ruchem. W przypadku pięciu napędów, każdy z nich może odpowiadać za różne osie ruchu, co zapewnia większą elastyczność i dokładność podczas wykonywania zadań. Na przykład, w robotyce przemysłowej, manipulatory z pięcioma napędami są w stanie wykonać bardziej skomplikowane operacje, takie jak montaż, pakowanie czy manipulowanie delikatnymi przedmiotami. W praktyce, stosowanie pięciu napędów pozwala na uzyskanie większej liczby stopni swobody, co jest kluczowe w wielu aplikacjach. Dobre praktyki w projektowaniu manipulatorów sugerują również, że większa liczba napędów może poprawić zdolności adaptacyjne robota, umożliwiając mu lepsze dostosowanie się do zmiennych warunków pracy. Ponadto, zgodnie z normami ISO 10218 dotyczącymi bezpieczeństwa robotów przemysłowych, odpowiednia liczba napędów może wpłynąć na poprawę stabilności i bezpieczeństwa operacji, co jest kluczowe w środowisku przemysłowym.