Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 26 kwietnia 2025 16:36
  • Data zakończenia: 26 kwietnia 2025 16:47

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby stworzyć skompresowane archiwum danych w systemie Linux, jakie polecenie należy zastosować?

A. tar -jxvf
B. tar -tvf
C. tar -xvf
D. tar -zcvf
Polecenie 'tar -zcvf' jest poprawną metodą tworzenia skompresowanego archiwum danych w systemie Linux. Składa się z kilku kluczowych elementów: 'tar' to program służący do archiwizacji plików, '-z' wskazuje na użycie kompresji gzip, co pozwala na zmniejszenie rozmiaru archiwum, '-c' oznacza, że tworzymy nowe archiwum, '-v' jest opcjonalnym argumentem, który wyświetla szczegóły procesu (verbose), a '-f' definiuje nazwę pliku archiwum, które chcemy utworzyć. Przykład zastosowania: jeśli chcesz skompresować folder o nazwie 'dane' do pliku 'dane.tar.gz', użyjesz polecenia 'tar -zcvf dane.tar.gz dane'. Warto pamiętać, że korzystanie z opcji kompresji jest zgodne z najlepszymi praktykami w zarządzaniu danymi, gdyż pozwala na oszczędność miejsca na dysku oraz ułatwia transfer danych. Kompresja archiwów jest powszechną praktyką w administracji systemami oraz programowaniu, co czyni to poleceniem niezwykle użytecznym w codziennej pracy z systemem Linux.

Pytanie 2

Najbardziej prawdopodobnym powodem niskiej jakości druku z drukarki laserowej, objawiającym się widocznym rozmazywaniem tonera, jest

Ilustracja do pytania
A. zanieczyszczenie wnętrza drukarki
B. zacięcie papieru
C. uszkodzenie rolek
D. zbyt niska temperatura utrwalacza
Jak wydruk wychodzi słaby i toner się rozmazuje, to czasami ludzie mylą to z uszkodzeniem rolek, zacięciem papieru czy zabrudzeniem wnętrza drukarki. Uszkodzenie rolek bardziej wpływa na transport papieru niż na sam proces rozmazywania, więc to nie jest bezpośrednia przyczyna. Zacięcia papieru raczej zatrzymują drukowanie niż powodują rozmazywanie, więc warto sprawdzić, czy ścieżka papieru jest czysta oraz w jakim stanie są rolki i czujniki. Też jest mylne, że zanieczyszczenie wnętrza drukarki powoduje rozmazywanie tonera. Jasne, że brud może prowadzić do smug i plam, ale to nie jest głównym problemem z tonerem. Regularne czyszczenie wnętrza drukarki jest ważne, żeby uniknąć innych problemów, ale przy rozmazywaniu kluczowe jest sprawdzenie temperatury utrwalania. Wiesz, prawidłowe utrwalenie tonera wymaga odpowiedniej temperatury i nacisku, więc jeśli to zaniedbamy, jakość druku może być kiepska.

Pytanie 3

Jaką ochronę zapewnia program antyspyware?

A. atakom typu DoS i DDoS (Denial of Service)
B. programom typu robak
C. programom antywirusowym
D. programom szpiegującym
Wiele osób myli programy antyspyware z innymi rodzajami zabezpieczeń, co prowadzi do nieporozumień w kontekście ich funkcji. Programy typu robak to złośliwe oprogramowanie, które samodzielnie się replikuje i rozprzestrzenia, niekoniecznie ingerując w prywatność użytkowników. Choć programy te mogą być niebezpieczne, ich działanie jest różne od programów szpiegujących, które są zaprojektowane, aby gromadzić dane użytkowników. Ponadto, programy antywirusowe są ukierunkowane na wykrywanie i usuwanie złośliwego oprogramowania, w tym wirusów, robaków i trojanów, ale nie są tożsame z funkcjonalnością programów antyspyware, które koncentrują się na wykrywaniu narzędzi do szpiegowania. Z kolei ataki typu DoS i DDoS dotyczą obciążania serwerów w celu uniemożliwienia użytkownikom dostępu do usług, co jest zupełnie innym rodzajem zagrożenia, niewspółmiernym do działania programów szpiegujących. Dlatego ważne jest, aby zrozumieć, że różne rodzaje oprogramowania ochronnego mają różne cele i zastosowania, co jest kluczowe dla skutecznej ochrony przed zagrożeniami w sieci. Zrozumienie tej różnorodności pozwala na bardziej świadome podejmowanie decyzji dotyczących zabezpieczeń komputerowych.

Pytanie 4

Jak najlepiej chronić zebrane dane przed dostępem w przypadku kradzieży komputera?

A. przygotować punkt przywracania systemu
B. ochronić konta za pomocą hasła
C. wdrożyć szyfrowanie partycji
D. ustawić atrybut ukryty dla wszystkich istotnych plików
Zastosowanie atrybutu ukrytego dla plików nie zapewnia odpowiedniego poziomu ochrony danych. Chociaż pliki z atrybutem ukrytym są mniej widoczne dla przeciętnego użytkownika, nie są one chronione przed dostępem, a to oznacza, że osoba z odpowiednią wiedzą techniczną może je łatwo odkryć. Z kolei punkt przywracania systemu służy głównie do przywracania stanu systemu operacyjnego w przypadku awarii, co nie ma bezpośredniego wpływu na bezpieczeństwo danych w kontekście ich kradzieży. Zabezpieczenie kont hasłem również nie jest wystarczające, ponieważ w przypadku kradzieży sprzętu, fizyczny dostęp do komputera umożliwia potencjalnemu złodziejowi ominięcie zabezpieczeń systemowych. Oparcie się tylko na hasłach nie chroni przed atakami typu brute force czy phishing, które mogą prowadzić do utraty dostępu do danych. Dlatego ważne jest, aby podejść do ochrony danych w sposób kompleksowy, stosując szyfrowanie, które nie tylko ukrywa dane, ale i skutecznie je zabezpiecza przed nieautoryzowanym dostępem. Współczesne standardy bezpieczeństwa wskazują, że szyfrowanie jest podstawowym elementem każdego systemu ochrony informacji, co czyni je niezastąpionym narzędziem w ochronie danych.

Pytanie 5

Osobom pracującym zdalnie, dostęp do serwera znajdującego się w prywatnej sieci za pośrednictwem publicznej infrastruktury, jaką jest Internet, umożliwia

A. VPN
B. FTP
C. Telnet
D. SSH
Wybór FTP, SSH czy Telnet jako odpowiedzi na pytanie o zdalny dostęp do serwera w sieci prywatnej nie jest właściwy, ponieważ te technologie mają różne zastosowania i ograniczenia. FTP, czyli File Transfer Protocol, służy głównie do przesyłania plików, ale nie zapewnia szyfrowania, co czyni go nieodpowiednim do bezpiecznego dostępu do zasobów sieciowych. W przypadku przesyłania danych wrażliwych, stosowanie FTP może prowadzić do poważnych naruszeń bezpieczeństwa. SSH (Secure Shell) to protokół, który umożliwia bezpieczne logowanie do zdalnych systemów i zarządzanie nimi. Chociaż SSH oferuje silne szyfrowanie, jego podstawowym celem jest zdalne wykonywanie poleceń, a nie zapewnienie pełnego dostępu do sieci prywatnej. Telnet, z kolei, jest protokołem znanym z braku zabezpieczeń – dane przesyłane przez Telnet są przesyłane w postaci niezaszyfrowanej, co czyni go nieodpowiednim do pracy w środowiskach, gdzie bezpieczeństwo danych ma kluczowe znaczenie. Błędem jest zakładanie, że te protokoły mogą pełnić rolę zabezpieczenia dostępu do sieci prywatnej w sposób, w jaki robi to VPN, co skutkuje narażeniem danych na ataki i utratę poufności.

Pytanie 6

Który typ drukarki stosuje metodę, w której stały barwnik jest przenoszony z taśmy na papier odporny na wysoką temperaturę?

A. Atramentowa
B. Laserowa
C. Termiczna
D. Termosublimacyjna
Drukarka termosublimacyjna to zaawansowane urządzenie, które wykorzystuje proces polegający na sublimacji barwnika. W tej technice specjalne tusze są podgrzewane, dzięki czemu przechodzą w stan gazowy i przenoszą się na papier, który jest odpowiednio przystosowany do wysokich temperatur. Zastosowanie tej technologii jest szczególnie popularne w produkcji zdjęć oraz materiałów reklamowych, ponieważ pozwala na uzyskanie wysokiej jakości wydruków o intensywnych kolorach oraz gładkich przejściach tonalnych. Drukarki termosublimacyjne są często używane w laboratoriach fotograficznych oraz na wydarzeniach, gdzie wymagana jest szybka produkcja wydruków, takich jak zdjęcia z uroczystości czy różnorodne materiały promocyjne. Warto również zauważyć, że ta technika zapewnia dużą odporność na blaknięcie i działanie czynników zewnętrznych, co czyni ją idealnym rozwiązaniem do tworzenia długoterminowych materiałów. W kontekście standardów branżowych, drukarki termosublimacyjne zgodne są z normami jakościowymi, co gwarantuje ich efektywność i niezawodność w zastosowaniach przemysłowych oraz profesjonalnych.

Pytanie 7

Jaki pasywny komponent sieciowy powinno się wykorzystać do podłączenia przewodów z wszystkich gniazd abonenckich do panelu krosowniczego umieszczonego w szafie rack?

A. Kabel połączeniowy
B. Organizer kabli
C. Przepust szczotkowy
D. Adapter LAN
Organizer kabli to kluczowy element pasywny w sieciach teleinformatycznych, który służy do porządkowania oraz utrzymywania w należytym stanie okablowania w szafach rackowych. Jego główną funkcją jest neutralizowanie bałaganu kablowego, co z kolei ułatwia zarówno instalację, jak i późniejsze prace serwisowe. Użycie organizera kabli pozwala na zminimalizowanie ryzyka przypadkowego odłączenia kabli, a także na poprawę wentylacji w szafie rackowej, co jest niezbędne dla wydajnego chłodzenia urządzeń. W praktyce, organizery kabli są stosowane do prowadzenia kabli w pionie i poziomie, co pozwala na lepsze zarządzanie przestrzenią oraz ułatwia identyfikację poszczególnych kabli. W branży stosowane są różne standardy, takie jak ANSI/TIA-568, które podkreślają znaczenie uporządkowanego okablowania dla zapewnienia wysokiej jakości transmisji danych. Dobre praktyki wskazują również, że właściwe zarządzanie kablami wpływa na estetykę oraz efektywność operacyjną całej instalacji.

Pytanie 8

Które z urządzeń może powodować wzrost liczby kolizji pakietów w sieci?

A. Mostu
B. Koncentratora
C. Rutera
D. Przełącznika
Wybór mostu jako odpowiedzi na to pytanie nie jest uzasadniony, ponieważ mosty działają na warstwie drugiej modelu OSI, ale mają zdolność inteligentnego filtrowania ruchu. Mosty segmentują sieć, co oznacza, że przesyłają dane tylko do odpowiednich segmentów sieci, co ogranicza występowanie kolizji. Ruter, pracujący na warstwie trzeciej, jest odpowiedzialny za trasowanie pakietów między różnymi sieciami, a nie w obrębie jednej sieci lokalnej, co czyni go jeszcze mniej odpowiednim do wywołania kolizji pakietów. Przełączniki również operują na warstwie drugiej, ale są znacznie bardziej zaawansowane niż koncentratory, ponieważ potrafią przekazywać dane tylko do odpowiednich adresów MAC, co minimalizuje kolizje. Wiele osób myli te urządzenia, sądząc, że wszystkie działają w taki sam sposób, ale kluczową różnicą jest sposób, w jaki zarządzają ruchem sieciowym. Przez to, że wszystkie urządzenia mają różne funkcje i sposoby działania, ważne jest zrozumienie ich roli w architekturze sieci. Używanie nieodpowiednich urządzeń może prowadzić do nieefektywności sieci i problemów z wydajnością, co jest szczególnie istotne w środowiskach o dużym natężeniu ruchu.

Pytanie 9

Urządzenie peryferyjne, które jest kontrolowane przez komputer i służy do pracy z dużymi, płaskimi powierzchniami, a do produkcji druku odpornego na warunki atmosferyczne wykorzystuje farby na bazie rozpuszczalników, nosi nazwę ploter

A. solwentowy
B. pisakowy
C. kreślący
D. tnący
Odpowiedź 'solwentowy' jest poprawna, ponieważ plotery solwentowe stosują farby na bazie rozpuszczalników, które zapewniają wysoką trwałość i odporność na czynniki zewnętrzne, takie jak promieniowanie UV, wilgoć czy zanieczyszczenia. Wydruki z tych ploterów są powszechnie wykorzystywane w reklamie, oznakowaniu oraz produkcji banerów. Dzięki swojej jakości i wytrzymałości, ploter solwentowy jest idealnym narzędziem do tworzenia materiałów, które muszą przetrwać w trudnych warunkach atmosferycznych. W praktyce często spotyka się go w branżach zajmujących się grafiką i reklamą wielkoformatową, co potwierdzają standardy ISO dotyczące jakości druku. Zastosowanie ploterów solwentowych w procesie druku jest zgodne z zasadami zrównoważonego rozwoju, które promują użycie materiałów trwałych i odpornych na działanie warunków atmosferycznych, co przekłada się na dłuższy cykl życia produktów. Dodatkowo, plotery te są wydajne i mogą obsługiwać duże powierzchnie robocze, co czyni je niezwykle praktycznym wyborem.

Pytanie 10

Aby podłączyć drukarkę z interfejsem równoległym do komputera, który ma jedynie porty USB, należy użyć adaptera

A. USB na RS-232
B. USB na PS/2
C. USB na COM
D. USB na LPT
Podczas wyboru adaptera do podłączenia drukarki z portem równoległym do komputera z portami USB, niepoprawne odpowiedzi, takie jak adaptery USB na PS/2, USB na COM oraz USB na RS-232, wskazują na nieporozumienia dotyczące typów portów i ich właściwych zastosowań. Złącze PS/2, używane głównie do podłączania klawiatur i myszy, nie ma zastosowania w przypadku drukarek, ponieważ nie obsługuje protokołów komunikacyjnych wymaganych do drukowania. Adapter USB na COM, który konwertuje sygnały USB na złącze szeregowe (COM), jest również niewłaściwym rozwiązaniem, gdyż urządzenia równoległe używają innego modelu komunikacji, który nie jest wspierany przez ten typ adaptera. Podobnie, adapter USB na RS-232, również przeznaczony do komunikacji szeregowej, tego samego błędu nie naprawia, a złącze RS-232 jest przestarzałe i rzadko spotykane w nowoczesnych drukarkach. Wybierając adapter, kluczowe jest zrozumienie, że porty równoległe i szeregowe operują na różnych zasadach; port równoległy przesyła dane równolegle, co jest bardziej efektywne dla urządzeń takich jak drukarki, podczas gdy porty szeregowe przesyłają dane w jednym ciągłym strumieniu, co znacząco wpływa na wydajność i szybkość transferu. Używając nieodpowiednich adapterów, można prowadzić do problemów z komunikacją, które będą powodować błędy w drukowaniu lub całkowity brak reakcji drukarki na polecenia z komputera.

Pytanie 11

Jakiego protokołu używa polecenie ping?

A. RDP
B. LDAP
C. ICMP
D. FTP
Protokół ICMP (Internet Control Message Protocol) jest kluczowym elementem zestawu protokołów internetowych, który służy do przesyłania komunikatów o błędach oraz informacji diagnostycznych. W przypadku polecenia ping, ICMP jest wykorzystywany do wysyłania pakietów echo request do określonego hosta oraz odbierania pakietów echo reply, co pozwala na ocenę dostępności i czasów odpowiedzi urządzenia w sieci. Ping jest powszechnie stosowany w diagnostyce sieci, aby sprawdzić, czy dany adres IP jest osiągalny oraz jakie są czasy opóźnień w transmisji danych. Dzięki ICMP administratorzy sieci mogą szybko identyfikować problemy z łącznością i optymalizować konfigurację sieci. W dobrych praktykach sieciowych zaleca się regularne monitorowanie dostępności kluczowych urządzeń za pomocą narzędzi opartych na ICMP, co pozwala na utrzymanie wysokiej wydajności i dostępności usług. Zrozumienie działania protokołu ICMP jest istotne dla każdego specjalisty IT, ponieważ pozwala na skuteczne zarządzanie infrastrukturą sieciową oraz identyfikowanie potencjalnych zagrożeń związanych z bezpieczeństwem.

Pytanie 12

Usterka przedstawiona na ilustracji, widoczna na monitorze komputera, nie może być spowodowana przez

Ilustracja do pytania
A. spalenie rdzenia lub pamięci karty graficznej po overclockingu
B. przegrzanie karty graficznej
C. nieprawidłowe napięcie zasilacza
D. uszkodzenie modułów pamięci operacyjnej
Przegrzewanie się karty graficznej może powodować różne dziwne artefakty na ekranie, bo generowanie grafiki 3D wymaga sporo mocy i ciepła. Jeśli chłodzenie karty jest za słabe albo powietrze krąży źle, to temperatura może wzrosnąć, co prowadzi do kłopotów z działaniem chipów graficznych i problemów z obrazem. Zasilacz to też sprawa kluczowa, bo jak napięcie jest złe, to może to wpłynąć na stabilność karty. Zasilacz z niewystarczającą mocą lub z uszkodzeniem może spowodować przeciążenia i wizualne problemy. Jak ktoś kręci rdzeń czy pamięć karty graficznej po overclockingu, to może dojść do błędów w wyświetlaniu, bo przekraczanie fabrycznych ograniczeń mocno obciąża komponenty i może je uszkodzić termicznie. Podsumowując, wszystkie te przyczyny, poza problemami z pamięcią RAM, są związane z kartą graficzną i jej działaniem, co skutkuje zakłóceniami w obrazie.

Pytanie 13

Który protokół przesyła datagramy bez gwarancji ich dostarczenia?

A. TCP
B. ICMP
C. HTTP
D. UDP
UDP (User Datagram Protocol) to protokół komunikacyjny, który charakteryzuje się brakiem gwarancji dostarczenia przesyłanych datagramów. Oznacza to, że nie zapewnia on mechanizmów kontroli błędów ani retransmisji, co prowadzi do sytuacji, w których datagramy mogą zostać zgubione, zduplikowane lub dotrzeć w niewłaściwej kolejności. Taki model jest szczególnie przydatny w aplikacjach, gdzie szybkość przesyłania danych jest kluczowa, a małe opóźnienia są akceptowalne. Przykładem zastosowania UDP jest transmisja strumieniowa audio i wideo, gdzie utrata kilku pakietów nie wpływa znacząco na jakość odbioru. Inne zastosowania to gry online i protokoły takie jak DNS (Domain Name System), które wymagają szybkiego przesyłania niewielkich ilości danych. Warto pamiętać, że dzięki swojej prostocie i wydajności, UDP jest często wybierany w sytuacjach, gdzie priorytetem jest czas, a nie niezawodność dostarczenia.

Pytanie 14

Bez zgody właściciela praw autorskich do oprogramowania jego legalny użytkownik, zgodnie z ustawą o prawie autorskim i prawach pokrewnych, co może zrobić?

A. nie ma możliwości wykonania żadnej kopii programu
B. może stworzyć jedną kopię, jeśli jest to konieczne do korzystania z programu
C. może dystrybuować program
D. może wykonać dowolną ilość kopii programu na swój użytek
Wybór odpowiedzi, że użytkownik może wykonać dowolną liczbę kopii programu na własny użytek, jest błędny, ponieważ narusza zasady prawa autorskiego. Zgodnie z ustawą o prawie autorskim, użytkownik ma prawo do wykonania jedynie jednej kopii programu w celu jego używania, a nie tworzenia wielokrotnych kopii, które mogłyby prowadzić do rozpowszechnienia programu. Wykonywanie dowolnej liczby kopii może prowadzić do nieautoryzowanego użytkowania, co jest sprzeczne z intencjami twórcy oprogramowania i narusza jego prawa do kontrolowania rozpowszechniania swojego dzieła. Po prostu posiadanie kopii na własny użytek nie zwalnia z obowiązku przestrzegania umowy licencyjnej, która zazwyczaj ogranicza liczbę dozwolonych kopii. Z kolei odpowiedź, że użytkownik może rozpowszechniać program, jest także mylna, ponieważ wymaga zezwolenia od posiadacza praw autorskich. Każde nieautoryzowane rozpowszechnianie może prowadzić do poważnych konsekwencji prawnych, w tym do odpowiedzialności cywilnej i karnej. Ponadto, stwierdzenie, że użytkownik nie może wykonać żadnej kopii programu, jest zbyt restrykcyjne i niezgodne z prawem, ponieważ użytkownik rzeczywiście ma prawo do wykonania jednej kopii, jeśli jest to niezbędne do korzystania z programu. Tego rodzaju nieporozumienia często wynikają z braku wiedzy na temat przepisów prawa autorskiego i zasad użytkowania oprogramowania, co może prowadzić do nieświadomego łamania prawa.

Pytanie 15

W jakim systemie numerycznym przedstawione są zakresy We/Wy na ilustracji?

Ilustracja do pytania
A. Dziesiętnym
B. Szesnastkowym
C. Ósemkowym
D. Binarnym
Odpowiedź szesnastkowa jest prawidłowa, ponieważ zakresy We/Wy w systemach komputerowych często są przedstawiane w systemie szesnastkowym (hexadecymalnym). System szesnastkowy jest bardzo powszechnie stosowany w informatyce, ponieważ pozwala na bardziej zwięzłe przedstawienie danych binarnych. Każda cyfra szesnastkowa reprezentuje cztery bity, co ułatwia konwersję między tymi dwoma systemami liczbowymi. W praktyce, system szesnastkowy jest używany do reprezentacji adresów pamięci, rejestrów procesora oraz innych zasobów systemowych. W interfejsach użytkownika, takich jak menadżery zasobów systemowych, adresy są często wyświetlane w formacie szesnastkowym, poprzedzone prefiksem '0x', co jednoznacznie wskazuje na ich format. Standardowe zasady i dobre praktyki w branży informatycznej sugerują użycie systemu szesnastkowego do oznaczania adresacji sprzętowej, co minimalizuje błędy i ułatwia zarządzanie zasobami. W szczególności, w systemach operacyjnych takich jak Windows, zakresy pamięci i adresy portów są często prezentowane w tym systemie, co daje administratorom systemów i programistom narzędzie do precyzyjnego zarządzania i diagnozowania systemów komputerowych. Zrozumienie i umiejętność interpretacji danych szesnastkowych jest kluczowe dla profesjonalistów w dziedzinie IT.

Pytanie 16

Który z standardów implementacji sieci Ethernet określa sieć opartą na kablu koncentrycznym, gdzie długość segmentu nie może przekraczać 185 m?

A. 100Base-T4
B. 10Base-5
C. 10Base-2
D. 100Base-T2
Wybrane odpowiedzi, takie jak 10Base-5, 100Base-T2 i 100Base-T4, nie są zgodne z opisanym standardem realizacji sieci Ethernet. 10Base-5, znany jako 'Thick Ethernet', również wykorzystuje kabel koncentryczny, jednak jego maksymalna długość segmentu wynosi 500 metrów, co znacząco przekracza wymaganie dotyczące 185 metrów. W efekcie, odpowiedź ta wprowadza w błąd, gdyż dotyczy innego standardu, który nie spełnia kryteriów podanych w pytaniu. Z kolei 100Base-T2 i 100Base-T4 są standardami Ethernet opartymi na kablach skrętkowych, co wyklucza je z możliwości pracy na kablu koncentrycznym. Standard 100Base-T2 obsługuje prędkość przesyłu do 100 Mbps, jednak nie jest przeznaczony do pracy z kablami koncentrycznymi, a zamiast tego korzysta z kabli skrętkowych typu Cat 3. 100Base-T4 również operuje na kablach skrętkowych, umożliwiając przesył danych z prędkością 100 Mbps, ale wymaga zastosowania czterech par przewodów, co jest zupełnie innym podejściem do realizacji sieci. W przypadku wyboru odpowiedzi, kluczowe jest zrozumienie, jakie właściwości i ograniczenia mają różne standardy Ethernet oraz ich zastosowania w praktyce. Typowym błędem myślowym jest skupianie się na prędkości przesyłu danych bez uwzględnienia medium transmisyjnego, co prowadzi do niepoprawnych wniosków co do właściwego standardu sieci.

Pytanie 17

Wskaż symbol umieszczany na urządzeniach elektrycznych, które są przeznaczone do obrotu i sprzedaży na terenie Unii Europejskiej?

Ilustracja do pytania
A. rys. A
B. rys. B
C. rys. D
D. rys. C
Znak CE to taki ważny znaczek, który można zobaczyć na wielu produktach, które są sprzedawane w Unii Europejskiej. Mówi to, że dany produkt spełnia wszystkie kluczowe wymagania unijnych dyrektyw, które dotyczą bezpieczeństwa zdrowia i ochrony środowiska. Kiedy widzisz znak CE, to znaczy, że producent przeszedł przez wszystkie potrzebne procedury, żeby potwierdzić, że produkt jest zgodny z zasadami jednolitego rynku. Tak naprawdę, producent mówi, że jego produkt spełnia dyrektywy takie jak ta związana z napięciem czy z kompatybilnością elektromagnetyczną. W praktyce to oznacza, że produkt z tym oznaczeniem może być sprzedawany w całej UE bez jakichkolwiek dodatkowych przeszkód. Moim zdaniem, to też pokazuje, że producent bierze odpowiedzialność za bezpieczeństwo swojego produktu. Dla konsumentów znak CE to taka gwarancja, że to, co kupują, jest zgodne z rygorystycznymi normami jakości i bezpieczeństwa, co sprawia, że mogą to używać bez obaw.

Pytanie 18

Co oznacza kod BREAK odczytany przez układ elektroniczny klawiatury?

A. zwolnienie klawisza
B. uruchomienie funkcji czyszczącej bufor
C. awarię kontrolera klawiatury
D. konieczność ustawienia wartości opóźnienia powtarzania znaków
Wiele osób może mylić kod BREAK z innymi funkcjami klawiatury, co prowadzi do niewłaściwych wniosków. Awaria kontrolera klawiatury, jak sugeruje jedna z odpowiedzi, jest zupełnie inną kwestią. Oznacza to, że klawiatura nie funkcjonuje poprawnie, co może być spowodowane uszkodzeniem sprzętu lub nieprawidłową konfiguracją, a nie konkretnym sygnałem o zwolnieniu klawisza. Problem ten wymaga diagnostyki sprzętowej, a nie analizy kodów generowanych przez klawiaturę. Podobnie, konieczność ustawienia wartości opóźnienia powtarzania znaków dotyczy kwestii konfiguracyjnych, które mają wpływ na to, jak długo system czeka przed ponownym wysłaniem sygnału, gdy klawisz jest przytrzymywany, co także nie ma związku z kodem BREAK. Funkcja czyszcząca bufor, z drugiej strony, wiąże się z zarządzaniem danymi w pamięci operacyjnej systemu lub aplikacji, co również nie ma związku z odczytem zwolnienia klawisza. Wskazówki te sugerują typowe błędy myślowe, w których użytkownicy mogą nie rozumieć, jak działa komunikacja między klawiaturą a komputerem, oraz jakie konkretne kody są generowane w odpowiedzi na różne działania użytkownika. Kluczowe jest zrozumienie, że każdy z tych kodów pełni określoną rolę w systemie, a ich właściwa interpretacja jest niezbędna do zapewnienia prawidłowego działania aplikacji. Z tego względu ważne jest, aby użytkownicy mieli solidne podstawy w zakresie działania sprzętu i oprogramowania, co pozwala uniknąć fałszywych założeń i poprawia ogólną efektywność pracy z komputerem.

Pytanie 19

Jakie polecenie trzeba wydać w systemie Windows, aby zweryfikować tabelę mapowania adresów IP na adresy MAC wykorzystywane przez protokół ARP?

A. netstat -r
B. route print
C. arp -a
D. ipconfig
Polecenie 'arp -a' jest używane w systemie Windows do wyświetlania zawartości tablicy ARP (Address Resolution Protocol), która przechowuje mapowanie adresów IP na odpowiadające im adresy MAC (Media Access Control). ARP jest kluczowym protokołem sieciowym, który umożliwia komunikację w sieci lokalnej, ponieważ pozwala urządzeniom na odnajdywanie fizycznych adresów sprzętowych na podstawie ich adresów IP. Znając adres fizyczny, dane mogą być prawidłowo przesyłane do docelowego urządzenia. Przykładem zastosowania może być sytuacja, gdy administrator sieci chce zdiagnozować problemy z połączeniem sieciowym; używając 'arp -a', może szybko sprawdzić, czy odpowiednie adresy MAC odpowiadają podanym adresom IP oraz czy nie występują nieprawidłowości w komunikacji. Dobrą praktyką jest regularne przeglądanie tablicy ARP, szczególnie w dużych sieciach, aby zapobiec ewentualnym atakom, takim jak ARP spoofing, które mogą prowadzić do przechwytywania danych. Warto również zauważyć, że ARP jest częścią standardowego zestawu narzędzi administracyjnych używanych w zarządzaniu sieciami.

Pytanie 20

Topologia fizyczna sieci, w której wykorzystywane są fale radiowe jako medium transmisyjne, nosi nazwę topologii

A. pierścienia
B. magistrali
C. CSMA/CD
D. ad-hoc
Topologia ad-hoc odnosi się do sieci bezprzewodowych, w których urządzenia mogą komunikować się ze sobą bez potrzeby centralnego punktu dostępu. W takim modelu, każdy węzeł w sieci pełni rolę zarówno nadawcy, jak i odbiorcy, co pozwala na dynamiczne tworzenie połączeń. Przykładem zastosowania topologii ad-hoc są sieci w sytuacjach kryzysowych, gdzie nie ma możliwości zbudowania infrastruktury, jak w przypadku naturalnych katastrof. Dodatkowo, sieci te są często wykorzystywane w połączeniach peer-to-peer, gdzie użytkownicy współdzielą pliki bez centralnego serwera. Topologia ad-hoc jest zgodna z różnymi standardami, takimi jak IEEE 802.11, co zapewnia interoperacyjność urządzeń w sieciach bezprzewodowych. Zastosowania obejmują również gry wieloosobowe, gdzie gracze mogą łączyć się bez potrzeby stabilnej sieci. W kontekście praktyki, ważne jest, aby zrozumieć, że w sieciach ad-hoc istnieje większe ryzyko zakłóceń oraz problemy z bezpieczeństwem, które należy skutecznie zarządzać.

Pytanie 21

W architekturze sieci lokalnych opartej na modelu klient-serwer

A. wszystkie komputery klienckie mają możliwość dostępu do zasobów komputerowych
B. żaden z komputerów nie ma nadrzędnej roli względem pozostałych
C. wyspecjalizowane komputery pełnią rolę serwerów oferujących zasoby, a inne komputery z tych zasobów korzystają
D. każdy komputer udostępnia i korzysta z zasobów innych komputerów
W architekturze typu klient-serwer kluczowym elementem jest rozróżnienie pomiędzy rolami komputerów w sieci. Odpowiedzi, w których twierdzi się, że wszystkie komputery klienckie mają równy dostęp do zasobów, są mylne, ponieważ w rzeczywistości dostęp do zasobów jest kontrolowany przez serwery. Koncepcja, że każdy komputer zarówno udostępnia, jak i korzysta z zasobów innych komputerów, odnosi się bardziej do architektury peer-to-peer, gdzie wszystkie maszyny mają równorzędny status. Twierdzenie, że żaden z komputerów nie pełni roli nadrzędnej, również jest błędne, ponieważ w modelu klient-serwer serwery mają nie tylko rolę nadrzędną, ale również odpowiedzialność za zarządzanie i przechowywanie danych. Użytkownicy mogą mylnie sądzić, że w takiej architekturze wszystkie komputery mogą działać w tej samej roli, co prowadzi do nieporozumień dotyczących efektywności i bezpieczeństwa. Kluczowe jest zrozumienie, że architektura klient-serwer jest zbudowana wokół zależności pomiędzy serwerami a klientami, co umożliwia centralizację usług i danych, co jest niezbędne w nowoczesnych środowiskach IT.

Pytanie 22

Aby umożliwić połączenie między urządzeniem mobilnym a komputerem za pomocą interfejsu Bluetooth, co należy zrobić?

A. utworzyć sieć WAN dla urządzeń
B. połączyć urządzenia kablem krosowym
C. wykonać parowanie urządzeń
D. skonfigurować urządzenie mobilne przez przeglądarkę
Parowanie urządzeń to naprawdę ważny krok, który pozwala na wygodne łączenie telefonu i komputera przez Bluetooth. Jak to działa? No, w skrócie chodzi o to, że oba urządzenia wymieniają między sobą informacje, dzięki czemu mogą się nawzajem uwierzytelnić i stworzyć bezpieczne połączenie. Zazwyczaj musisz włączyć Bluetooth na obu sprzętach i zacząć parowanie. Przykładowo, jeśli chcesz przenieść zdjęcia z telefonu na komputer, to właśnie to parowanie jest niezbędne. Jak już urządzenia się połączą, transfer plików staje się łatwy i nie potrzebujesz do tego kabli. Cały ten proces opiera się na standardach ustalonych przez Bluetooth Special Interest Group (SIG), które dbają o to, żeby było zarówno bezpiecznie, jak i sprawnie. Warto pamiętać o regularnych aktualizacjach oprogramowania i być świadomym zagrożeń, żeby chronić swoje urządzenia przed nieautoryzowanym dostępem.

Pytanie 23

Protokół ARP (Address Resolution Protocol) pozwala na przypisanie logicznych adresów warstwy sieciowej do rzeczywistych adresów warstwy

A. aplikacji
B. łącza danych
C. transportowej
D. fizycznej
Wydaje mi się, że wybór odpowiedzi związanych z warstwami aplikacyjną, fizyczną i transportową pokazuje, że mogło dojść do pewnego nieporozumienia odnośnie tego, co robi ARP. Warstwa aplikacyjna skupia się na interakcji z użytkownikami i obsługuje różne usługi jak HTTP czy FTP, a to nie ma nic wspólnego z mapowaniem adresów w sieci. Warstwa fizyczna mówi o przesyłaniu bitów przez różne media, więc też nie pasuje do rozwiązywania adresów IP. Z kolei warstwa transportowa odpowiada za niezawodność połączeń i segmentację danych, więc również nie ma tutaj swojego miejsca. Może to wynikać z mylnego zrozumienia modelu OSI, bo każda warstwa ma swoje zadania. Kluczowy błąd to myślenie, że ARP działa na innych warstwach, podczas gdy jego miejsce jest właśnie na warstwie łącza danych. Ważne jest też, żeby zrozumieć, jak funkcjonuje sieć lokalna i jakie mechanizmy używamy do przesyłania danych, bo to jest podstawą dla wszelkich działań w sieciach komputerowych.

Pytanie 24

Liczba FAFC w systemie heksadecymalnym odpowiada wartości liczbowej

A. 1111101011011101 (2)
B. 64256(10)
C. 175376 (8)
D. 1111101011111100 (2)
Liczba FAFC w systemie heksadecymalnym odpowiada liczbie 1111101011111100 w systemie binarnym. Aby zrozumieć, dlaczego tak jest, warto najpierw przyjrzeć się konwersji pomiędzy systemami liczbowymi. Liczba heksadecymalna FAFC składa się z czterech cyfr, gdzie każda cyfra heksadecymalna odpowiada czterem bitom w systemie binarnym. Zatem, aby przeliczyć FAFC na system binarny, należy przetłumaczyć każdą z cyfr: F to 1111, A to 1010, F to 1111, a C to 1100. Po połączeniu tych bitów otrzymujemy 1111101011111100. Taka konwersja jest powszechnie stosowana w programowaniu i elektronice, zwłaszcza w kontekście adresowania pamięci lub przedstawiania kolorów w systemach graficznych, gdzie heksadecymalne kody kolorów są często używane. Przykładami zastosowań mogą być grafika komputerowa oraz rozwój systemów wbudowanych, gdzie konwersje między różnymi systemami liczbowymi są na porządku dziennym. Zrozumienie tych konwersji jest kluczowe dla efektywnego programowania i pracy z różnymi formatami danych.

Pytanie 25

Które z poniższych stwierdzeń NIE odnosi się do pamięci cache L1?

A. Czas dostępu jest dłuższy niż w przypadku pamięci RAM
B. Znajduje się we wnętrzu układu procesora
C. Zastosowano w niej pamięć typu SRAM
D. Jej wydajność jest równa częstotliwości procesora
Wybór odpowiedzi sugerującej, że pamięć cache L1 ma dłuższy czas dostępu niż pamięć RAM, jest błędny i wynika z nieścisłego rozumienia zasad działania różnych typów pamięci w systemach komputerowych. Pamięć cache L1 jest zaprojektowana, aby być szybsza niż pamięć RAM, a jej funkcjonalność jest kluczowa dla efektywności działania procesora. Czas dostępu do pamięci L1 wynosi zazwyczaj od 1 do 3 nanosekund, podczas gdy tradycyjna pamięć RAM (dynamiczna pamięć RAM typu DRAM) ma czas dostępu rzędu 10-100 nanosekund. To oznacza, że pamięć cache L1 jest z reguły około dziesięć razy szybsza od pamięci RAM. Istotnym błędem jest myślenie, że pamięć o wyższej pojemności musi być również szybsza; w rzeczywistości, pamięć cache jest zoptymalizowana pod kątem szybkości na koszt pojemności. Dodatkowo, pamięć L1 znajduje się bezpośrednio w rdzeniu procesora, co minimalizuje opóźnienia związane z przesyłaniem danych. Zwrócenie uwagi na architekturę procesora oraz sposób, w jaki różne rodzaje pamięci współpracują ze sobą w hierarchii pamięci, pozwala na lepsze zrozumienie ich zastosowania i znaczenia w kontekście efektywności systemów komputerowych. Właściwe zarządzanie pamięcią oraz znajomość jej hierarchii są kluczowe dla inżynierów projektujących nowoczesne systemy obliczeniowe.

Pytanie 26

Aby uniknąć utraty danych w systemie do ewidencji uczniów, po zakończeniu codziennej pracy należy wykonać

A. bezpieczne zamknięcie systemu operacyjnego
B. aktualizację programu
C. kopię zapasową danych programu
D. aktualizację systemu operacyjnego
Dokonanie kopii zapasowej danych programu to kluczowy krok w zapewnieniu ochrony danych, który powinien być realizowany regularnie, a szczególnie po zakończeniu pracy każdego dnia. Kopia zapasowa to zapisana forma danych, która pozwala na ich przywrócenie w przypadku utraty lub uszkodzenia oryginalnych plików. W kontekście programów do ewidencji uczniów, takich jak systemy zarządzania danymi uczniów, wykonanie kopii zapasowej pozwala na zabezpieczenie istotnych informacji, takich jak dane osobowe uczniów, wyniki ocen, frekwencja oraz inne ważne statystyki. Przykładem dobrych praktyk w tej dziedzinie jest wdrożenie strategii 3-2-1, która zakłada posiadanie trzech kopii danych, na dwóch różnych nośnikach (np. dysk twardy i chmura) oraz jednej kopii przechowywanej w innej lokalizacji. Regularne tworzenie kopii zapasowych powinno być częścią polityki zarządzania danymi w każdej instytucji edukacyjnej.

Pytanie 27

Jak określa się technologię stworzoną przez firmę NVIDIA, która pozwala na łączenie kart graficznych?

A. SLI
B. ATI
C. RAMDAC
D. CROSSFIRE
SLI, czyli Scalable Link Interface, to technologia opracowana przez firmę NVIDIA, która umożliwia łączenie dwóch lub więcej kart graficznych w celu zwiększenia wydajności graficznej systemu. Dzięki SLI, użytkownicy mogą uzyskać lepsze rezultaty w grach komputerowych, renderingach 3D oraz aplikacjach wymagających intensywnego przetwarzania grafiki. W praktyce, SLI dzieli obciążenie graficzne między karty, co pozwala na osiągnięcie wyższych liczby klatek na sekundę (FPS) oraz płynniejszej grafiki. Warto jednak pamiętać, że aby technologia SLI działała efektywnie, muszą być spełnione określone warunki, takie jak posiadanie odpowiedniej płyty głównej, zasilacza o odpowiedniej mocy oraz kompatybilnych kart graficznych. Dodatkowo, nie wszystkie gry wspierają SLI, dlatego przed zakupem warto sprawdzić, czy konkretne tytuły będą w stanie wykorzystać tę technologię. W branży gier oraz profesjonalnego renderingu, SLI stało się standardem wśród zaawansowanych użytkowników, którzy szukają maksymalnej wydajności swoich systemów.

Pytanie 28

Urządzenie z funkcją Plug and Play, które zostało ponownie podłączone do komputera, jest identyfikowane na podstawie

A. unikalnego identyfikatora urządzenia
B. lokalizacji oprogramowania urządzenia
C. lokalizacji sprzętu
D. specjalnego oprogramowania sterującego
Odpowiedź dotycząca unikalnego identyfikatora urządzenia (UID) jest prawidłowa, ponieważ każdy sprzęt Plug and Play, po podłączeniu do komputera, jest identyfikowany na podstawie tego unikalnego identyfikatora, który jest przypisany do danego urządzenia przez producenta. UID pozwala systemowi operacyjnemu na właściwe rozpoznanie urządzenia i przypisanie mu odpowiednich sterowników. Dzięki temu użytkownik nie musi manualnie instalować oprogramowania, a system automatycznie rozpoznaje, co to za urządzenie. Przykładem mogą być drukarki, które po podłączeniu do komputera są automatycznie wykrywane i instalowane dzięki UID. W praktyce oznacza to, że proces dodawania nowych urządzeń do komputera stał się znacznie bardziej intuicyjny i przyjazny dla użytkownika. W celu zapewnienia pełnej zgodności, standardy takie jak USB (Universal Serial Bus) korzystają z unikalnych identyfikatorów, co jest uznawane za dobrą praktykę w projektowaniu nowoczesnych systemów komputerowych.

Pytanie 29

ARP (Adress Resolution Protocol) jest protokołem, który umożliwia przekształcenie adresu IP na

A. adres sprzętowy
B. nazwę komputera
C. nazwę domenową
D. adres IPv6
Wybór odpowiedzi, która wskazuje na odwzorowanie adresu IP na nazwę domenową, nazwę komputera lub adres IPv6, może wynikać z nieporozumienia dotyczącego funkcji, jakie pełni protokół ARP. ARP nie jest wykorzystywany do tłumaczenia nazw domenowych na adresy IP; do tego celu wykorzystuje się protokół DNS (Domain Name System). DNS działa na wyższej warstwie modelu OSI i ma na celu umożliwienie użytkownikom korzystania z przyjaznych nazw zamiast trudnych do zapamiętania adresów IP. Odnosząc się do konceptu nazw komputerów, warto zauważyć, że są one również rozwiązywane przez DNS, a nie przez ARP, który skupia się wyłącznie na odwzorowywaniu adresów IP na adresy sprzętowe. Co więcej, adres IPv6, będący następcom IPv4, wymaga innego podejścia i nie jest bezpośrednio związany z ARP. Dla IPv6 istnieje protokół NDP (Neighbor Discovery Protocol), który pełni podobną rolę, ale w kontekście nowego adresowania. Typowym błędem jest zatem mylenie różnych protokołów i ich funkcji, co prowadzi do nieprawidłowych wniosków o zastosowaniach ARP. Dobrze zrozumiane różnice między tymi protokołami są kluczowe dla efektywnego zarządzania sieciami komputerowymi oraz zapewnienia ich bezpieczeństwa.

Pytanie 30

Ile minimalnie pamięci RAM powinien mieć komputer, aby możliwe było uruchomienie 32-bitowego systemu operacyjnego Windows 7 w trybie graficznym?

A. 1 GB
B. 256 MB
C. 2 GB
D. 512 MB
Wybór odpowiedzi innej niż 1 GB, w kontekście minimalnych wymagań dla 32-bitowego systemu operacyjnego Windows 7, oparty jest na nieporozumieniach dotyczących zarządzania pamięcią oraz wydajności systemu. Odpowiedzi takie jak 512 MB czy 256 MB są zdecydowanie niewystarczające. System operacyjny Windows 7, nawet w wersji 32-bitowej, wymaga co najmniej 1 GB pamięci RAM, aby móc uruchomić graficzny interfejs użytkownika, co wiąże się z potrzebą obsługi wielu procesów jednocześnie, co jest typowe w nowoczesnych systemach operacyjnych. W przypadku 512 MB RAM, użytkownik napotka poważne ograniczenia w wydajności, a system może nie być w stanie uruchomić wymaganych komponentów graficznych oraz aplikacji. Ponadto, korzystanie z 256 MB RAM w dzisiejszych czasach jest skrajnie niezalecane i praktycznie niemożliwe, ponieważ wiele współczesnych aplikacji i przeglądarek internetowych wymaga znacznie więcej pamięci. Wybór niewłaściwej odpowiedzi najczęściej wynika z błędnej interpretacji wymagań systemowych oraz niewłaściwego postrzegania minimalnych standardów, co jest typową pułapką w edukacji związanej z technologiami informacyjnymi. Warto zwrócić uwagę na wytyczne producenta sprzętu oraz dokumentację techniczną, aby lepiej zrozumieć wymagania dotyczące pamięci RAM, co jest kluczowe dla zrozumienia architektury systemu operacyjnego.

Pytanie 31

Przerzutnik bistabilny pozwala na przechowywanie bitu danych w pamięci

A. SRAM
B. DRAM
C. SDRAM
D. DDR SDRAM
DRAM, SDRAM oraz DDR SDRAM to różne formy pamięci dynamicznej, które nie wykorzystują przerzutników bistabilnych do przechowywania danych. DRAM przechowuje informacje w kondensatorach, które muszą być regularnie odświeżane, aby utrzymać zawartość. To fundamentalnie różni się od SRAM, gdzie dane są przechowywane w stabilnych stanach przerzutników, co pozwala na szybszy dostęp do przechowywanych informacji. SDRAM, czyli synchroniczna pamięć DRAM, synchronizuje operacje z zegarem systemowym, co poprawia wydajność w porównaniu do tradycyjnego DRAM, jednak nadal wymaga odświeżania. DDR SDRAM, czyli podwójnie szybka SDRAM, zwiększa przepustowość pamięci poprzez przesyłanie danych w obu cyklach zegara, ale również nie jest w stanie utrzymać bitów informacji bez ciągłego odświeżania. W związku z tym, każda z tych pamięci ma swoje ograniczenia, które uniemożliwiają jej wykorzystanie jako trwałej pamięci do przechowywania informacji w sposób jaki robi to SRAM. Wiele osób myli różne typy pamięci ze względu na ich nazwę, nie zdając sobie sprawy z ich zasadniczych różnic w sposobie działania i zastosowania. Kluczowe jest zrozumienie, że podczas gdy SRAM jest idealny do zastosowań wymagających niskiego opóźnienia, DRAM i jego pochodne są bardziej odpowiednie do zastosowań, gdzie większa pojemność pamięci jest ważniejsza niż szybkość dostępu.

Pytanie 32

Jakie urządzenie NIE powinno być serwisowane podczas korzystania z urządzeń antystatycznych?

A. Modem
B. Zasilacz
C. Dysk twardy
D. Pamięć
Dyski twarde, pamięci oraz modemy to urządzenia, które można naprawiać w trakcie używania antystatycznych metod ochrony. Często zakłada się, że wszelkie komponenty komputerowe są bezpieczne do naprawy, o ile stosuje się odpowiednie środki zapobiegawcze, co może prowadzić do błędnych wniosków. Dyski twarde, choć krytyczne dla przechowywania danych, nie mają takiej samej struktury niebezpieczeństwa jak zasilacze. W momencie, gdy można odłączyć zasilanie, ryzyko statyczne jest minimalizowane, a elementy takie jak talerze czy głowice nie są narażone na wysokie napięcie. Jednakże nieprawidłowe myślenie o dyskach twardych, jako o jednostkach w pełni bezpiecznych, ignoruje ryzyko uszkodzenia mechanicznego, które może wystąpić w trakcie naprawy. Pamięci RAM również są wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi, ale są znacznie mniej niebezpieczne w porównaniu do zasilaczy. Modemy, będące urządzeniami komunikacyjnymi, mogą być bezpiecznie naprawiane, choć ich eksploatacja powinna odbywać się z zachowaniem zasad BHP. W konkluzyjnych punktach, mylenie tych urządzeń pod względem ryzyka zasilania prowadzi do niedocenienia znaczenia odpowiednich procedur bezpieczeństwa oraz standardów branżowych.

Pytanie 33

Jakiego rodzaju fizyczna topologia sieci komputerowej jest zobrazowana na rysunku?

Ilustracja do pytania
A. Siatka częściowa
B. Topologia pełnej siatki
C. Topologia gwiazdowa
D. Połączenie Punkt-Punkt
Topologia pełnej siatki jest jedną z najbardziej niezawodnych fizycznych topologii sieci komputerowych. W tym modelu każdy komputer jest połączony bezpośrednio z każdym innym komputerem, co daje najwyższy poziom redundancji i minimalizuje ryzyko awarii sieci. Dzięki temu, nawet jeśli jedno z połączeń zostanie przerwane, dane mogą być przesyłane innymi ścieżkami, co zapewnia ciągłość działania sieci. Taki układ znajduje zastosowanie w krytycznych systemach, takich jak sieci bankowe czy infrastruktura lotniskowa, gdzie niezawodność jest kluczowa. Zgodnie ze standardami branżowymi, pełna siatka jest uważana za wysoce odporną na awarie, choć koszty implementacji mogą być wysokie z powodu dużej liczby wymaganych połączeń. W praktyce, pełna siatka może być używana w segmentach sieci, które wymagają wysokiej przepustowości i niskiej latencji, jak centra danych lub systemy o wysokiej dostępności. Takie podejście zapewnia również równomierne obciążenie sieci, co jest zgodne z najlepszymi praktykami w projektowaniu niezawodnych systemów informatycznych.

Pytanie 34

Określ właściwą sekwencję działań potrzebnych do zamontowania procesora w gnieździe LGA na nowej płycie głównej, która jest odłączona od zasilania?

A. 5, 1, 7, 3, 6, 2, 4
B. 5, 7, 6, 1, 4, 3, 2
C. 5, 6, 1, 7, 2, 3, 4
D. 5, 2, 3, 4, 1, 6, 7
Aby poprawnie zamontować procesor w gnieździe LGA na nowej płycie głównej, należy rozpocząć od lokalizacji gniazda procesora, co jest kluczowe dla dalszych działań. Po zidentyfikowaniu gniazda, odginamy dźwignię i otwieramy klapkę, co umożliwia umiejscowienie procesora w gnieździe. Następnie należy ostrożnie włożyć procesor, uważając na odpowiednie dopasowanie pinów oraz kierunek montażu, co jest zgodne z oznaczeniami na płycie głównej. Po umieszczeniu procesora, zamykamy klapkę i dociągamy dźwignię, co zapewnia stabilne połączenie. W kolejnych krokach nakładamy pastę termoprzewodzącą, co jest niezbędne do efektywnego odprowadzania ciepła, a następnie montujemy układ chłodzący, który powinien być odpowiednio dobrany do specyfikacji procesora. Na końcu podłączamy układ chłodzący do zasilania, co jest kluczowe dla prawidłowego działania systemu. Taka struktura montażu jest zgodna z najlepszymi praktykami w branży i zapewnia długotrwałą wydajność systemu komputerowego.

Pytanie 35

Rejestr procesora, znany jako licznik rozkazów, przechowuje

A. liczbę rozkazów, które pozostały do zrealizowania do zakończenia programu
B. ilość rozkazów zrealizowanych przez procesor do tego momentu
C. adres rozkazu, który ma być wykonany następnie
D. liczbę cykli zegara od momentu rozpoczęcia programu
Niepoprawne odpowiedzi dotyczące rejestru licznika rozkazów mogą prowadzić do istotnych nieporozumień dotyczących architektury komputerów. Na przykład, stwierdzenie, że licznik rozkazów przechowuje liczbę cykli zegara liczoną od początku pracy programu jest mylące. Cykl zegara jest miarą czasu, w którym procesor wykonuje operacje, ale nie ma bezpośredniego związku z tym, co przechowuje licznik rozkazów. Licznik ten jest odpowiedzialny za wskazywanie adresu następnego rozkazu, a nie za śledzenie czasu wykonania. Kolejna błędna koncepcja, mówiąca o przechowywaniu liczby rozkazów pozostałych do wykonania, także jest nieprawidłowa. Licznik rozkazów nie informuje procesora o tym, ile instrukcji jeszcze czeka na wykonanie; jego rolą jest jedynie wskazanie następnego rozkazu. Zupełnie mylnym podejściem jest też rozumienie licznika rozkazów jako miejsca, które zlicza liczbę rozkazów wykonanych przez procesor. Choć możliwe jest implementowanie liczników wydajności w architekturze procesora, to jednak licznik rozkazów nie pełni tej funkcji. Typowe błędy myślowe to mylenie roli rejestrów i ich funkcji w procesorze. Wiedza o działaniu licznika rozkazów jest kluczowa dla zrozumienia podstaw działania procesorów i ich architektur, a błędne postrzeganie tej kwestii może prowadzić do trudności w programowaniu oraz projektowaniu systemów informatycznych.

Pytanie 36

Aby osiągnąć przepustowość 4 GB/s w obydwie strony, konieczne jest zainstalowanie w komputerze karty graficznej używającej interfejsu

A. PCI - Express x 1 wersja 3.0
B. PCI - Express x 4 wersja 2.0
C. PCI - Express x 8 wersja 1.0
D. PCI - Express x 16 wersja 1.0
Karta graficzna wykorzystująca interfejs PCI-Express x16 wersja 1.0 jest prawidłowym wyborem dla uzyskania przepustowości na poziomie 4 GB/s w każdą stronę. Interfejs PCI-Express x16 w wersji 1.0 oferuje maksymalną przepustowość na poziomie 8 GB/s w każdą stronę, co sprawia, że spełnia wymagania dotyczące transferu danych dla nowoczesnych aplikacji graficznych i gier. W praktyce, zastosowanie karty graficznej w tej konfiguracji zapewnia odpowiednią wydajność w procesach związanych z renderowaniem grafiki 3D, obliczeniami równoległymi oraz w pracy z dużymi zbiorami danych. Standard PCI-Express jest szeroko stosowany w branży komputerowej i zaleca się stosowanie najnowszych wersji interfejsu, aby maksymalizować wydajność systemów. Warto dodać, że dla użytkowników, którzy planują rozbudowę systemu o dodatkowe karty graficzne lub urządzenia, interfejs PCI-Express x16 zapewnia wystarczającą elastyczność i przyszłościowość. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które kładą nacisk na wydajność oraz trwałość komponentów.

Pytanie 37

Który adres IP posiada maskę w postaci pełnej, zgodną z klasą adresu?

A. 180.12.56.1, 255.255.0.0
B. 118.202.15.6, 255.255.0.0
C. 169.12.19.6, 255.255.255.0
D. 140.16.5.18, 255.255.255.0
Analizując pozostałe odpowiedzi, można zauważyć pewne nieprawidłowości w przypisanych maskach do adresów IP. Adres 118.202.15.6 należy do klasy B, jednak zastosowanie maski 255.255.0.0 dla adresu klasy C nie jest poprawne. Adres klasy C, który obejmuje zakres od 192.0.0.0 do 223.255.255.255, wymaga zastosowania maski 255.255.255.0, co pozwala na utworzenie 256 podsieci, w których każda z nich może mieć 254 hosty. Nieprawidłowe przypisanie maski do adresu prowadzi do nieefektywnego zarządzania przestrzenią adresową i potencjalnych problemów z routingiem. Z kolei adres 140.16.5.18 również należy do klasy B, a zastosowanie maski 255.255.255.0 jest niewłaściwe. Zgodnie z konwencją, dla klasy B właściwa maska to 255.255.0.0, co pozwala na szersze możliwości podziału na podsieci. W przypadku adresu 169.12.19.6, który jest adresem klasy B, również nie powinno się używać maski 255.255.255.0, co mogłoby skutkować problemami w identyfikacji właściwej sieci oraz hostów. Te pomyłki mogą wynikać z braku zrozumienia podstawowej klasyfikacji adresów IP oraz ich masek, co jest kluczowe w projektowaniu sieci. Właściwe przypisanie adresów IP i ich masek jest fundamentalne dla zapewnienia stabilności i wydajności sieci, a także dla efektywnego zarządzania jej zasobami.

Pytanie 38

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. magistrali
B. siatki
C. gwiazdy
D. pierścienia
Wybór topologii gwiazdy, pierścienia lub magistrali w kontekście sieci Ad-Hoc IBSS jest nieprawidłowy, ponieważ każda z tych struktur ma swoje specyficzne ograniczenia i nie pasuje do natury Ad-Hoc. Topologia gwiazdy opiera się na centralnym punkcie dostępowym, co jest sprzeczne z decentralizowanym charakterem Ad-Hoc, gdzie każde urządzenie może pełnić rolę zarówno nadawcy, jak i odbiorcy. W przypadku topologii pierścienia, w której dane przemieszczają się w jednym kierunku przez wszystkie urządzenia, łatwo o zakłócenia i problemy z wydajnością, co w sieciach Ad-Hoc jest niepożądane. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest również nieodpowiednia, ponieważ wymaga stabilnej struktury, co nie jest możliwe w dynamicznym środowisku Ad-Hoc. Typowym błędem myślowym jest mylenie pojmowania struktury sieci z typowymi, stałymi instalacjami, podczas gdy Ad-Hoc ma na celu umożliwienie szybkiej i elastycznej komunikacji w zmieniających się warunkach. Te nieprawidłowe odpowiedzi nie uwzględniają również praktycznych aspektów rozwoju sieci bezprzewodowych, które opierają się na standardach takich jak IEEE 802.11, które promują elastyczność i decentralizację.

Pytanie 39

W systemie serwerowym Windows widoczny jest zakres adresów IPv4. Ikona umieszczona obok jego nazwy sugeruje, że

Ilustracja do pytania
A. ten zakres jest aktywny
B. pula adresów w tym zakresie jest prawie w pełni wyczerpana
C. ten zakres jest nieaktywny
D. pula adresów w tym zakresie została wyczerpana całkowicie
Ikona przy zakresie adresów IPv4 wskazuje, że zakres ten jest nieaktywny co oznacza że serwer DHCP nie będzie przydzielał adresów IP z tej puli. W praktyce może to być spowodowane celowym wyłączeniem zakresu na czas konserwacji lub konfiguracji serwera. Wyłączenie zakresu może być również stosowane w przypadku przekształcania struktury sieci gdzie zmienia się schemat adresacji IP. Wyłączenie to pozwala na tymczasowe wstrzymanie wydawania adresów co jest zgodne z dobrymi praktykami zarządzania sieciami komputerowymi. W systemie Windows Server zarządzanie zakresami DHCP powinno odbywać się z zachowaniem wysokiej precyzji co minimalizuje ryzyko błędów sieciowych. Standardy branżowe zalecają regularne audyty konfiguracji w tym przegląd aktywności zakresów aby zapewnić niezawodność działania usług sieciowych. Aktywacja lub deaktywacja zakresów powinna być zawsze dokumentowana co ułatwia późniejsze analizy i ewentualne rozwiązywanie problemów. Właściwie zarządzane zakresy adresów to fundament stabilnej infrastruktury IT.

Pytanie 40

Podaj domyślny port używany do przesyłania poleceń w serwerze FTP

A. 21
B. 110
C. 25
D. 20
Port 21 jest domyślnym portem do przekazywania poleceń w protokole FTP (File Transfer Protocol). Protokół ten służy do przesyłania plików między klientem a serwerem w sieci. Protokół FTP działa w modelu klient-serwer, gdzie klient nawiązuje połączenie z serwerem, a port 21 jest używany do inicjowania sesji oraz przesyłania poleceń, takich jak logowanie czy komendy do przesyłania plików. W praktycznych zastosowaniach, gdy użytkownik korzysta z klienta FTP, np. FileZilla lub WinSCP, to właśnie port 21 jest wykorzystywany do połączenia z serwerem FTP. Ponadto, standard RFC 959 precyzuje, że port 21 jest przeznaczony dla komend, podczas gdy port 20 jest używany do transferu danych w trybie aktywnym. Znajomość tych portów i ich funkcji jest kluczowa dla administratorów sieci oraz profesjonalistów zajmujących się bezpieczeństwem, ponieważ niewłaściwe zarządzanie portami może prowadzić do problemów z bezpieczeństwem i nieefektywnością transferu plików.