Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 6 czerwca 2025 21:22
  • Data zakończenia: 6 czerwca 2025 21:57

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Niska wrażliwość na zmiany temperatury
B. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
C. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
D. Przepuszczalność promieniowania ultrafioletowego
Przepuszczalność promieniowania nadfioletowego, większa kruchość i mniejsza wytrzymałość na uderzenia w porównaniu do zwykłego szkła oraz mała wrażliwość na zmiany temperatury są cechami, które mogą mylnie kojarzyć się z naczyniami kwarcowymi. Naczynia te rzeczywiście przepuszczają promieniowanie UV, co czyni je odpowiednimi do zastosowań w biologii molekularnej i fotonice, jednak ich odporność na różnorodne substancje chemiczne nie jest niezrównana. W rzeczywistości, kruchość naczyń kwarcowych często prowadzi do ich uszkodzeń w wyniku uderzeń, co jest sprzeczne z założeniem, że są one bardziej wytrzymałe od szklanych naczyń zwykłych. Warto również zauważyć, że chociaż naczynia kwarcowe wykazują pewną odporność na zmiany temperatury, nie są one zupełnie odporne na nagłe ich zmiany. Typowe błędy myślowe w analizie tego zagadnienia mogą obejmować uproszczone wnioski o wytrzymałości materiałów na podstawie ich ogólnych właściwości fizycznych, bez uwzględnienia specyficznych reakcji chemicznych, które mogą występować w praktycznych zastosowaniach. Dlatego tak ważne jest, aby dokładnie rozumieć właściwości materiałów i ich zastosowanie w kontekście specyficznych warunków pracy.

Pytanie 2

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem pH i zawartości jodanów.
B. nie spełnia wymagań pod względem zawartości żelaza.
C. nie spełnia wymagań pod względem zawartości metali ciężkich.
D. spełnia wymagania i można wydać świadectwo jakości.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 3

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. miękki
B. częściowy
C. średni
D. twardy
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 4

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
B. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
C. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
D. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 5

Jaką substancję należy koniecznie oddać do utylizacji?

A. Chromian(VI) potasu
B. Gliceryna
C. Glukoza
D. Sodu chlorek
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Wskaź sprzęt konieczny do przeprowadzenia miareczkowania?

A. Biureta, kolba stożkowa, lejek do biurety, statyw
B. Biureta, kolba stożkowa, kolba miarowa, statyw
C. Pipeta, kolba stożkowa, lejek, statyw
D. Biureta, kolba miarowa, lejek do biurety, statyw
Wybrana odpowiedź jest poprawna, ponieważ miareczkowanie to technika analityczna, która wymaga precyzyjnego pomiaru objętości roztworu reagentu. Biureta jest kluczowym narzędziem, które pozwala na dokładne dozowanie cieczy, co jest niezbędne do uzyskania precyzyjnych wyników. Kolba stożkowa, w której zazwyczaj odbywa się miareczkowanie, umożliwia łatwe mieszanie roztworów oraz ich obserwację. Lejek do biurety jest istotny, ponieważ umożliwia bezpieczne i precyzyjne napełnianie biurety bez ryzyka rozlania reagentu. Statyw natomiast stabilizuje biuretę, co jest ważne dla bezpieczeństwa i dokładności pomiarów. W praktyce, aby miareczkowanie było skuteczne, należy stosować również odpowiednie techniki pipetowania i mieszania, aby zapewnić jednolite stężenie roztworu oraz uzyskać wiarygodne wyniki analizy. Te komponenty są zgodne z dobrymi praktykami laboratoryjnymi, które podkreślają znaczenie precyzji i poprawności technik analitycznych.

Pytanie 8

Metodą, która nie służy do utrwalania próbek wody, jest

A. naświetlanie lampą UV
B. dodanie biocydów
C. zakwaszenie do pH < 2
D. schłodzenie do temperatury 2-5°C
Wybór schłodzenia do temperatury 2-5°C jako metody utrwalania próbki wody jest powszechnie stosowany, ponieważ niskie temperatury spowalniają procesy biologiczne oraz chemiczne, co jest kluczowe dla zachowania stabilności próbki. Metoda ta jest zgodna z wytycznymi ISO, które rekomendują utrzymanie próbek w odpowiednich warunkach, aby zminimalizować ryzyko degradacji i utraty właściwości próbki. Dodanie biocydów to kolejna strategia, która ma na celu eliminację mikroorganizmów, co również wpływa na zachowanie integralności próbki. Zakwaszenie próbki do pH < 2 jest stosowane w niektórych analizach, szczególnie w kontekście metalurgii i chemii analitycznej, aby zdenaturować białka i stabilizować niektóre substancje, co jest istotne w przypadku próbek wymagających analizy chemicznej. Błędem jest jednak założenie, że naświetlanie lampą UV może uznać za metodę utrwalania, ponieważ jego celem jest dezynfekcja, a nie długoterminowe zabezpieczenie próbki. Naświetlanie UV może prowadzić do nieodwracalnych zmian chemicznych, a także do zniszczenia niektórych związków w próbce, co osłabia jakość wyników analiz. W kontekście odpowiednich praktyk laboratoryjnych, należy przestrzegać standardów dotyczących przygotowania próbek, aby zapewnić ich wiarygodność i dokładność analiz.

Pytanie 9

Jaką próbkę stanowi woreczek gleby pobranej zgodnie z instrukcją?

Instrukcja pobierania próbek glebowych
Próbki pierwotne pobiera się laską glebową z wierzchniej warstwy gleby 0-20 cm, kolejno wykonując czynności:
– w miejscu pobierania próbki pierwotnej (pojedynczej), rolę świeżo zaoraną przydeptać,
– pionowo ustawić laskę do powierzchni gleby,
– wcisnąć laskę do oporu (na wysokość poprzeczki ograniczającej),
– wykonać pełny obrót i wyjąć laskę,
– zawartość wgłębienia (zasobnika) przenieść do pojemnika skrobaczki.
Po pobraniu próbek pojedynczych, całość wymieszać i napełnić kartonik lub woreczek.

A. Jednostkową.
B. Ogólną.
C. Laboratoryjną.
D. Analityczną.
Woreczek gleby pobrany zgodnie z instrukcją stanowi próbkę ogólną, ponieważ jego celem jest uzyskanie reprezentatywnej analizy gleby z określonego obszaru. Przykładowo, jeżeli pobieramy próbki z pola uprawnego, wykonujemy to w różnych punktach, aby uwzględnić zmienność gleby, jak np. różnice w składzie mineralnym, wilgotności czy strukturze. Próbka ogólna, będąca wynikiem połączenia kilku próbek jednostkowych, pozwala na dokładniejsze zrozumienie średnich właściwości gleby, co jest kluczowe dla rolnictwa, oceny jakości gleby oraz zrównoważonego zarządzania zasobami naturalnymi. Zgodnie z normami ISO, takie podejście do pobierania próbek jest standardem w ocenie jakości gleby, co potwierdza znaczenie próbki ogólnej w badaniach środowiskowych oraz rolniczych.

Pytanie 10

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości
B. czystości chemicznej
C. spektralnej czystości
D. czystości drugorzędnej analitycznej
Wybór odczynników o niższej czystości, takich jak 'cz.' (czystość), 'spekt.cz.' (czystość spektroskopowa) czy 'chem.cz.' (czystość chemiczna), może prowadzić do nieprawidłowych wyników analiz chemicznych. Odczynniki te mogą zawierać różne zanieczyszczenia, które mogą znacząco wpłynąć na wyniki pomiarów. Na przykład, czystość spektroskopowa odnosi się do zastosowania w określonych technikach analitycznych, ale nie gwarantuje, że substancja jest odpowiednia do ogólnych analiz chemicznych. Czystość chemiczna może być niewystarczająca, szczególnie gdy wymagana jest wysoka dokładność. Istnieje również ryzyko, że reagenty o niższej czystości mogą zawierać nieznane substancje, co prowadzi do błędnych wniosków w analizach ilościowych. W wielu przypadkach, laboratoria analityczne są zobowiązane do przestrzegania surowych standardów, aby zapewnić, że wszystkie stosowane odczynniki są odpowiedniej czystości. Użycie reagentów o niewłaściwej czystości jest częstym błędem, który może wynikać z niedoinformowania lub nieprzestrzegania protokołów laboratoryjnych. Użytkownicy powinni zwracać szczególną uwagę na specyfikacje każdego odczynnika chemicznego, aby upewnić się, że spełniają one wymogi potrzebne do danego zastosowania analitycznego.

Pytanie 11

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 25%
B. 2,5%
C. 20%
D. 75%
Stężenie procentowe roztworu obliczamy jako stosunek masy rozpuszczonej substancji (w tym przypadku jodku potasu) do całkowitej masy roztworu, wyrażony w procentach. W naszym przypadku mamy 25 g jodku potasu rozpuszczonego w 100 cm³ wody. Gęstość wody wynosi 1 g/cm³, co oznacza, że 100 cm³ wody ma masę 100 g. Całkowita masa roztworu wynosi więc 25 g (masy jodku potasu) + 100 g (masy wody) = 125 g. Stężenie procentowe obliczamy jako: (masa rozpuszczonej substancji / masa roztworu) × 100%, co daje (25 g / 125 g) × 100% = 20%. Takie obliczenia są niezwykle istotne w chemii analitycznej, gdzie dokładne stężenia roztworów są kluczowe w różnych zastosowaniach, takich jak przygotowywanie odczynników czy analiza jakościowa i ilościowa substancji chemicznych.

Pytanie 12

Wszystkie pojemniki z odpadami, zarówno stałymi, jak i ciekłymi, które są przekazywane do służby zajmującej się utylizacją, powinny być opatrzone informacjami

A. o dacie i godzinie przekazania
B. o jak najbardziej dokładnym składzie tych odpadów
C. o rodzaju analizy, do której były używane
D. o nazwie wytwórcy oraz dacie zakupu
Podawanie informacji o nazwie producenta czy dacie zakupu nie jest wystarczające do prawidłowego zarządzania odpadami. Te dane mogą być użyteczne w kontekście odpowiedzialności producenta lub w przypadku reklamacji, ale nie mają kluczowego znaczenia dla procesu utylizacji. Wiedza o dacie i godzinie przekazania odpadów również nie wpływa na ich klasyfikację ani sposób obróbki. Chociaż jest to ważne dla logistyki i zarządzania czasem, nie ma bezpośredniego związku ze skuteczną utylizacją. Informacje o rodzaju analizy, do której odpady były wykorzystane, mogą być interesujące z perspektywy badawczej, ale nie mają wpływu na ich właściwe przetwarzanie. Aby skutecznie zarządzać odpadami, kluczowe jest zrozumienie ich chemicznego i fizycznego składu. Niewłaściwe podejście do klasyfikacji odpadów może prowadzić do ich niewłaściwego składowania lub przetwarzania, co z kolei stwarza zagrożenia dla ludzi i środowiska. W kontekście przepisów prawa, takie jak dyrektywy unijne czy krajowe regulacje dotyczące gospodarki odpadami, szczegółowy opis składu jest kluczowy dla zapewnienia zgodności z normami oraz dla ochrony środowiska. Błędem jest zatem pomijanie tej kluczowej informacji, co może prowadzić do nieefektywności w systemie zarządzania odpadami.

Pytanie 13

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 1 miesiąc
B. 5 miesięcy
C. 7 miesięcy
D. 3 miesiące
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 14

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
B. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
C. Roztwór kwasu siarkowego(VI) o stężeniu 2%
D. Roztwór chlorku potasu o stężeniu 1 mol/dm3
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 15

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. dokładnie oczyścić i osuszyć sprzęt
B. przed połączeniem nałożyć na szlify wazelinę
C. przed połączeniem nałożyć na szlify glicerynę
D. przed połączeniem wypłukać szlify acetonem
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon

A. Tlen.
B. Neon.
C. Argon.
D. Azot.
Tlen to składnik powietrza, który wrze w -182,96°C. W destylacji chodzi o to, żeby oddzielić różne składniki mieszanki na podstawie ich temperatur wrzenia. Kiedy destylujemy powietrze, najpierw oddzielają się te składniki, które mają niższe temperatury wrzenia. Tlen, mający najwyższą temperaturę w porównaniu z pozostałymi substancjami, będzie się wydobywał jako ostatni. Moim zdaniem, zrozumienie tego procesu jest naprawdę ważne, zwłaszcza w takich dziedzinach jak inżynieria chemiczna. Na przykład, w przemyśle gazowym, czysty tlen z powietrza uzyskuje się właśnie przez destylację frakcyjną. To pokazuje, jak praktyczna jest ta wiedza. Warto też pamiętać, że różne metody separacji gazów opierają się na różnych właściwościach fizycznych, jak różnice w temperaturach wrzenia. Takie poznanie na pewno się przyda inżynierom w ich pracy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. teflonowe
B. melaminowe
C. agatowe
D. ze stali molibdenowej
Wybór moździerzy teflonowych, melaminowych czy agatowych na rozdrabnianie twardych materiałów jest niewłaściwy z kilku powodów. Moździerze teflonowe, mimo że są odporne na działanie wielu chemikaliów, są zbyt miękkie, aby skutecznie rozdrabniać twarde substancje. Ich struktura nie pozwala na osiągnięcie odpowiedniej siły nacisku, a dodatkowo mogą ulegać zarysowaniom, co w dłuższym okresie może prowadzić do kontaminacji mieszanek. Z kolei moździerze melaminowe, chociaż lekkie i łatwe w czyszczeniu, również nie mają wystarczającej twardości, by poradzić sobie z twardymi materiałami. Mogą pękać lub się łamać pod wpływem dużych obciążeń. Moździerze agatowe są estetyczne i dobrze sprawdzają się w przypadku miększych materiałów, ale ich koszt oraz możliwość pękania przy dużych obciążeniach sprawiają, że nie są najlepszym wyborem do rozdrabniania twardych substancji. Wybierając odpowiedni moździerz, ważne jest, aby wziąć pod uwagę zarówno twardość materiału, jak i jego przeznaczenie. Dlatego też, do rozdrabniania twardych materiałów, moździerz ze stali molibdenowej jest najlepszym rozwiązaniem, zapewniającym zarówno efektywność, jak i trwałość podczas pracy.

Pytanie 21

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 10 cm3
C. 50 cm3
D. 25 cm3
W przypadku błędnych odpowiedzi, można zauważyć typowe nieporozumienia związane z obliczeniami stężenia i objętości. Często osoby udzielające niewłaściwych odpowiedzi mylą pojęcia stężenia i objętości, co prowadzi do błędnych wniosków. Na przykład, 25 cm3 sugeruje, że wzięto pod uwagę większą objętość niż wymagana do osiągnięcia zamierzonego stężenia. W rzeczywistości, aby uzyskać roztwór o stężeniu 0,4 mol/dm3, trzeba skupić się na ilości moli NaOH potrzebnych w 50 cm3 roztworu, a to wymaga znajomości zależności pomiędzy stężeniem, objętością i ilością moli. Ponadto, 50 cm3 na pewno nie jest poprawną odpowiedzią, ponieważ oznaczałoby to, że cała objętość roztworu o stężeniu 1 mol/dm3 zostałaby użyta bez jakiejkolwiek modyfikacji stężenia, co jest sprzeczne z założeniem problemu. Dlatego kluczowe jest zrozumienie zasad rozcieńczania roztworów, aby uniknąć takich błędów. W praktyce laboratorium chemicznego, nieumiejętność obliczenia odpowiedniej objętości roztworu może prowadzić do niepoprawnych wyników eksperymentów oraz marnotrawienia materiałów chemicznych.

Pytanie 22

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 100 g lodu i 30 g chlorku amonu.
B. 10 g lodu i 3 g chlorku sodu.
C. 150 g lodu i 50 g chlorku sodu.
D. 90 g lodu i 30 g chlorku amonu.
Odpowiedź '150 g lodu i 50 g chlorku sodu.' jest poprawna, ponieważ odpowiada stosunkowi masowemu 3:1, co jest kluczowe przy przygotowywaniu mieszanin oziębiających. W przypadku mieszanin takich jak sól i lód, zachodzi reakcja endotermiczna, w której sól obniża temperaturę topnienia lodu, co pozwala uzyskać niską temperaturę. Zgodnie z danymi zawartymi w tabeli, dla uzyskania temperatury -21 °C, konieczne jest zastosowanie odpowiednich proporcji lodu i chlorku sodu, a 150 g lodu w połączeniu z 50 g chlorku sodu są idealnymi składnikami. Tego rodzaju mieszaniny są stosowane w różnych aplikacjach, takich jak chłodzenie w laboratoriach chemicznych, gdzie wymagana jest kontrola temperatury, a także w medycynie, gdzie stosuje się je do przechowywania próbek w niskich temperaturach. Zrozumienie tej zasady jest kluczowe w pracach laboratoryjnych i przemysłowych, gdzie kontrolowanie temperatury ma istotne znaczenie dla zachowania właściwości substancji.

Pytanie 23

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 1%
B. 0,1%
C. 0,01%
D. 0,001%
Wybór wartości 1% jako wielkości próby może wydawać się na pierwszy rzut oka rozsądny, jednak przekracza powszechnie akceptowane standardy w zakresie pobierania próbek. W praktyce, pobieranie próbki w takiej ilości może prowadzić do nieproporcjonalnych strat materiałowych oraz do potencjalnego wprowadzenia błędu systematycznego w analizach. W przypadku materiałów o dużej zmienności, pobranie 1% może skutkować nieodpowiednią reprezentatywnością próbki, co z kolei prowadzi do błędnych wniosków na temat jakości całej partii. Podobnie, wartości takie jak 0,001% i 0,01% są zbyt małe, aby zapewnić odpowiedni poziom dokładności i reprezentatywności próbki. Przykładowo, gdy próbka jest zbyt mała, istnieje ryzyko, że nie odda ona właściwości fizykochemicznych całego materiału, co jest niezgodne z zasadami statystyki prób. Warto zwrócić uwagę, że procesy pobierania próbek powinny być zgodne z wytycznymi norm ISO 2859-1, które sugerują, że optymalna wielkość próbki powinna być określona na podstawie wielkości całej partii oraz jej jednorodności. Stąd, dobór 0,1% jako wartości standardowej w wielu branżach, zwłaszcza tam, gdzie jakość i bezpieczeństwo są kluczowe, jest rozsądnym podejściem, które minimalizuje ryzyko błędów związanych z nieodpowiednią próbą.

Pytanie 24

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 250,0 g wody i 250,0 g rodanku amonu.
B. 384,6 g wody i 115,4 g chlorku amonu.
C. 375,0 g lodu i 125,0 g chlorku sodu.
D. 384,6 g lodu i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 25

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Wstępne suszenie.
B. Liofilizację.
C. Utrwalanie.
D. Oznaczanie wilgoci.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Najwyżej czyste odczynniki chemiczne to odczynniki

A. chemicznie czyste.
B. czyste.
C. spektralnie czyste.
D. czyste do analizy.
Odpowiedź 'spektralnie czyste' jest jak najbardziej na miejscu. Chodzi tutaj o odczynniki chemiczne, które są na najwyższym poziomie czystości – to naprawdę ważne w analizach spektralnych i spektroskopowych. Gdy mamy do czynienia z takimi odczynnikami, musimy pamiętać, że wszelkie zanieczyszczenia mogą zepsuć nasze wyniki. Na przykład w laboratoriach chemicznych, gdzie badamy różne substancje, jakiekolwiek zanieczyszczenia mogą wprowadzić nas w błąd. Najlepsze praktyki w laboratoriach mówią, że powinniśmy używać odczynników spektralnie czystych, zwłaszcza gdy potrzebujemy dużej precyzji, jak w pomiarach absorbancji w spektroskopii UV-Vis. Dlatego stosowanie odczynników o wysokiej czystości jest kluczowe, bo to zapewnia, że wyniki są wiarygodne i dają się powtórzyć. Podobne normy, jak ISO 17025, pokazują, jak istotne jest używanie odczynników o potwierdzonej czystości.

Pytanie 28

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O
2 CH3COOH + Na2O →2 CH3COONa + H2O
2 C2H5COOH + 2 Na →2 C2H5COONa + H2
C17H35COOH + NaOH →C17H35COONa + H2O

A. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
B. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
C. C17H35COOH + NaOH → C17H35COONa + H2O
D. CH3COOH + NaOH → CH3COONa + H2O
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!

Pytanie 29

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 584,1 g
B. 390,5 g
C. 210,0 g
D. 469,3 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 30

Jak nazywa się proces, w którym następuje wytrącenie ciała stałego z przesyconego roztworu w wyniku spadku temperatury?

A. dekantacja
B. krystalizacja
C. odparowanie
D. sedymentacja
Krystalizacja to proces, w którym substancja stała wydziela się z roztworu, gdy jego stężenie przekracza punkt nasycenia, co może być wynikiem obniżenia temperatury lub odparowania rozpuszczalnika. W praktycznych zastosowaniach, krystalizacja jest kluczowa w przemysłach chemicznym i farmaceutycznym, gdzie czystość i jakość produktu końcowego są niezwykle istotne. Dobrze przeprowadzony proces krystalizacji pozwala na uzyskanie czystych kryształów, które można łatwo oddzielić od roztworu, co jest zgodne z najlepszymi praktykami w zakresie kontroli jakości. Dodatkowo, krystalizacja może być stosowana w technologii separacji i oczyszczania związków chemicznych, gdzie proces ten jest wykorzystywany do wyodrębniania substancji aktywnych z surowców naturalnych. Warto również zauważyć, że krystalizacja jest częścią wielu procesów naturalnych i technologicznych, takich jak formowanie lodu w przyrodzie czy produkcja cukru z soku buraczanego.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Piktogram nie jest konieczny dla

A. mieszanin samoreaktywnych typu G
B. substancji, które działają drażniąco na skórę
C. substancji, które mają działanie drażniące na oczy
D. substancji, które powodują korozję metali
Mieszaniny samoreaktywne typu G to substancje, które nie wymagają stosowania piktogramów, ponieważ są one klasyfikowane w inny sposób niż substancje drażniące. Zgodnie z rozporządzeniem CLP (Classification, Labelling and Packaging), piktogramy są stosowane do oznaczania substancji, które posiadają określone właściwości niebezpieczne, takie jak drażniące działanie na oczy czy skórę. Mieszaniny samoreaktywne typu G, do których zalicza się substancje mogące ulegać niekontrolowanym reakcjom chemicznym, są klasyfikowane na podstawie ich właściwości fizykochemicznych i nie są objęte wymaganiami dotyczącymi piktogramów. Przykładem może być pewien rodzaj azotanu, który, będąc samoreaktywnym, nie wymaga dodatkowego oznakowania ostrzegawczego, o ile nie wykazuje innych zagrożeń. Dobrą praktyką w obszarze zarządzania substancjami chemicznymi jest znajomość ich klasyfikacji oraz odpowiednich przepisów, co pozwala na bezpieczne ich stosowanie w przemyśle oraz laboratoriach.

Pytanie 33

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
B. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
C. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
D. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 34

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. roztworu KMnO4 z dodatkiem kwasu solnego
B. kwasu solnego
C. płynu do zmywania naczyń
D. wody destylowanej
Woda destylowana, mimo że wydaje się czysta, to nie ma tych właściwości chemicznych, które mogłyby skutecznie poradzić sobie z osadami nieorganicznymi. Zazwyczaj używamy jej do rozcieńczania, a nie jako aktywnego środka czyszczącego. Płyn do mycia naczyń także nie jest najlepszym rozwiązaniem, bo on zajmuje się głównie usuwaniem tłuszczu i zanieczyszczeń organicznych, a nie mineralnych, jak tlenki czy węglany. Roztwór KMnO4 z kwasem solnym brzmi ciekawie, ale też nie jest praktycznym sposobem na czyszczenie naczyń szklanych z tych osadów, bo mogą się pojawić niepożądane reakcje i produkty uboczne. W laboratoriach trzeba mieć na uwadze ryzyko niewłaściwego używania kwasów i substancji utleniających, bo to może prowadzić do dość poważnych wypadków. Używanie nieodpowiednich metod czyszczenia to dość powszechny błąd, przez który można zniszczyć drogie narzędzia i popsuć wyniki eksperymentów, więc warto znać odpowiednie techniki i chemikalia do różnych rodzajów zanieczyszczeń.

Pytanie 35

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w ustaleniu się kontrakcji objętości
B. opóźnieniem w osiągnięciu równowagi dysocjacji
C. potrzebą wyrównania temperatury roztworu z otoczeniem
D. koniecznością dokładnego wymieszania roztworu
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 36

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 12,5 kg
B. 37,5 kg
C. 25,0 kg
D. 50,0 kg
Aby obliczyć ilość wapienia potrzebną do uzyskania 7 kg wapna palonego (CaO) przy wydajności reakcji wynoszącej 50%, należy najpierw zrozumieć reakcję chemiczną, która zachodzi. W reakcji CaCO3 → CaO + CO2 mol wapnia (Ca) uzyskujemy z jednego mola węglanu wapnia (CaCO3). Masy molowe są następujące: Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, co daje masę CaCO3 równą 100 g/mol. Z przeprowadzonej reakcji wynika, że 1 mol CaCO3 daje 1 mol CaO, co odpowiada masie 56 g/mol dla CaO. Z punktu widzenia praktycznego, wydajność 50% oznacza, że aby otrzymać 7 kg (7000 g) wapna palonego, potrzebujemy 2 razy więcej węglanu wapnia, czyli 14000 g (14 kg) CaCO3. Jednak ze względu na wydajność, musimy użyć 28 kg CaCO3. Zatem, aby uzyskać 7 kg CaO, przy wydajności 50% potrzebujemy 25 kg CaCO3 na uzyskanie 14 kg CaCO3. W praktyce, te obliczenia są kluczowe w przemyśle chemicznym i materiałowym, gdzie precyzyjne dawkowanie surowców jest istotne dla efektywności produkcji, co jest zgodne z normami jakości w branży.

Pytanie 37

Na skutek krystalizacji 18 g kwasu benzoesowego uzyskano 8 g czystego produktu. Jaką wydajność miała ta krystalizacja?

A. 2,25%
B. 44,44%
C. 2,25 g
D. 44,44 g
Wydajność procesu krystalizacji oblicza się jako stosunek masy uzyskanego produktu do masy surowca, wyrażony w procentach. W tym przypadku, otrzymując 8 g czystego kwasu benzoesowego z 18 g użytego surowca, wydajność wynosi: (8 g / 18 g) * 100% = 44,44%. Taka wydajność jest ważna w kontekście procesów technologicznych, ponieważ pozwala ocenić, jak efektywnie surowce zostały wykorzystane. W praktyce, wysoka wydajność jest pożądana, ponieważ obniża koszty materiałowe i zwiększa rentowność produkcji. W kontekście przemysłu farmaceutycznego lub chemicznego, osiągnięcie wysokiej wydajności krystalizacji jest kluczowe dla zapewnienia czystości i jakości produktów końcowych, co odpowiada standardom takim jak GMP (Good Manufacturing Practices). Dodatkowo, analiza wydajności może pomóc w identyfikacji potencjalnych problemów w procesie produkcyjnym i dostosowywaniu parametrów, aby zoptymalizować proces.

Pytanie 38

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. przeciwpożarową
B. ściekową
C. parową
D. wodną
W laboratoriach chemicznych, zgodnie z międzynarodowymi standardami oznakowania instalacji, kolor zielony jest przypisany do systemów wodnych. Wszystkie rurociągi i instalacje, które transportują wodę, powinny być oznakowane tym kolorem, co zwiększa bezpieczeństwo i efektywność operacyjną. Oznaczenie wodnych instalacji jest szczególnie istotne w kontekście wypadków i awarii, gdzie szybka identyfikacja systemu może uratować życie. Na przykład, w przypadku pożaru, personel musi wiedzieć, które rurociągi prowadzą do źródeł wody, aby skutecznie przeprowadzić akcję gaśniczą. W praktyce oznakowanie to opiera się na normach takich jak ISO 7010 oraz ANSI Z535, które definiują kolorystykę i sposób oznaczania systemów w różnych środowiskach. W związku z tym, rozumienie i przestrzeganie tych standardów jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach chemicznych oraz minimalizacji ryzyka związanego z niewłaściwym podłączeniem lub pomyleniem instalacji.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. NaCl
B. BaCl2
C. AgF
D. Pb(NO3)2
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.