Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 22 kwietnia 2025 09:48
  • Data zakończenia: 22 kwietnia 2025 10:02

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Znaki geodezyjne, które nie są objęte ochroną, to

A. budowle triangulacyjne
B. punkty osnowy geodezyjnej
C. kamienie graniczne
D. repety robocze
Kamienie graniczne są stałymi elementami, które pełnią kluczową rolę w geodezji, szczególnie w kontekście wyznaczania granic działek i nieruchomości. Ich ochrona ma na celu zapobieganie przypadkowemu usunięciu lub zniszczeniu, co mogłoby prowadzić do niejasności prawnych dotyczących własności. Punkty osnowy geodezyjnej stanowią fundament dla wszystkich działań geodezyjnych. Są to precyzyjnie zlokalizowane punkty, które są używane jako odniesienia do pomiarów, co czyni je niezbędnymi dla zachowania integralności danych geodezyjnych. Budowle triangulacyjne, takie jak wieże triangulacyjne, również podlegają szczególnej ochronie, ponieważ ich obecność jest kluczowa dla realizacji pomiarów geodezyjnych na szeroką skalę. Ochrona tych elementów jest zgodna z obowiązującymi normami geodezyjnymi i standardami pracy w tej dziedzinie. Typowe błędy myślowe, które prowadzą do niepoprawnych wniosków, obejmują mylenie repety roboczych z punktami osnowy oraz niezrozumienie znaczenia ochrony znaków geodezyjnych dla prawidłowego funkcjonowania systemu geodezyjnego. Ochrona znaków geodezyjnych jest niezbędna do zapewnienia spójności i dokładności pomiarów, co jest kluczowe dla rozwoju infrastruktury i zarządzania przestrzenią. Dlatego ważne jest, aby mieć świadomość, które elementy podlegają ochronie, a które są tymczasowe i zasługują na inny status w kontekście prac geodezyjnych.

Pytanie 2

Geodezyjnym znakiem, który znajduje się pod ziemią, nie jest

A. rurka drenażowa
B. słup wykonany z granitu lub betonu
C. rura kanalizacyjna wypełniona betonem
D. cegła odpowiednio wypalona
Podczas analizy geodezyjnych znaków podziemnych, ważne jest zrozumienie ich funkcji oraz klasyfikacji. Cegła dobrze wypalona, rura kanalizacyjna wypełniona cementem oraz rurka drenarska mogą być stosowane jako znaki podziemne, ponieważ ich struktura zapewnia odpowiednią trwałość i stabilność. Cegły, ze względu na swoje właściwości fizyczne, mogą być wykorzystywane do oznaczania punktów w różnych projektach budowlanych, gdzie potrzebne są długotrwałe oznaczenia. Rura kanalizacyjna wypełniona cementem również pełni podobną rolę, ponieważ jej integralność zapewnia, że nie ulegnie ona deformacji w trakcie prac ziemnych. Rurki drenarskie są z kolei używane do odprowadzania wody, co czyni je istotnymi w kontekście zarządzania wodami gruntowymi oraz ochrony strukturalnej budowli. Natomiast błędne przekonanie, że słup z granitu lub betonu jest geodezyjnym znakiem podziemnym, opiera się na nieporozumieniu dotyczących jego funkcji. Słupy te są elementami nośnymi w budownictwie, a ich umiejscowienie i zastosowanie ma charakter budowlany, a nie geodezyjny. Dlatego też ich klasyfikowanie jako znaki podziemne jest mylne, co może prowadzić do poważnych błędów w planowaniu przestrzennym i geodezyjnym. W geodezji istotne jest, aby znaki podziemne były zrozumiane i klasyfikowane prawidłowo, aby zapewnić dokładność i spójność w pomiarach.

Pytanie 3

Przyjmując pomiarową osnowę sytuacyjną, należy zrealizować pomiary liniowe z przeciętnym błędem pomiaru odległości

A. md ≤ 0,01 m + 0,01 m/km
B. md ≤ 0,05 m + 70 mm/km
C. md ≤ 0,07 m + 50 mm/km
D. md ≤ 0,01 m + 0,02 m/km
Odpowiedzi takie jak md ≤ 0,05 m + 70 mm/km, md ≤ 0,01 m + 0,02 m/km oraz md ≤ 0,07 m + 50 mm/km nie spełniają wymogów dla precyzyjnych pomiarów liniowych w geodezji. W pierwszej z tych odpowiedzi, błąd systematyczny wynoszący 5 cm jest zbyt wysoki, szczególnie w kontekście projektów wymagających wysokiej dokładności, jak np. budowa infrastruktury. Z kolei błąd na jednostkę długości wynoszący 70 mm/km wskazuje na znaczną deprecjację jakości pomiarów w dłuższych odległościach, co może prowadzić do poważnych nieścisłości w danych pomiarowych. W odpowiedzi md ≤ 0,01 m + 0,02 m/km, chociaż błąd początkowy jest niski, to dodatkowy błąd na kilometr przekracza akceptowane wartości dla wielu zastosowań, co obniża ogólną precyzję pomiarów. W przypadku ostatniej odpowiedzi, md ≤ 0,07 m + 50 mm/km, gdzie błąd systematyczny sięga 7 cm, również nie jest dopuszczalne w kontekście standardów branżowych. W geodezji kluczowe jest, aby zapewnić odpowiednią jakość pomiarów, a nieprzestrzeganie tych zasad może prowadzić do błędnych wyników, które wpływają na dalsze etapy projektów budowlanych. W praktyce, zbyt duże błędy pomiarowe mogą skutkować koniecznością ponownego wykonania prac geodezyjnych, co wiąże się z niepotrzebnymi kosztami i opóźnieniami.

Pytanie 4

Niwelator to narzędzie służące do dokonania pomiaru

A. różnic wysokości
B. wysokości punktów
C. kątów nachylenia
D. kątów zenitalnych
Niwelator to dosyć specyficzne urządzenie, które służy głównie do mierzenia różnic wysokości pomiędzy punktami w terenie. Jak to działa? Wykorzystuje coś w rodzaju poziomicy, by dokładnie określić te różnice. To bardzo ważne w różnych dziedzinach, takich jak budownictwo czy geodezja, bo dobrze wykonane pomiary wysokości są kluczowe. Na przykład, kiedy budujemy fundamenty, musimy być pewni, że wszystko jest na właściwej wysokości, żeby budowla była stabilna. Niwelatory są też wykorzystywane do tworzenia map topograficznych, gdzie precyzyjne różnice w wysokościach terenu mają ogromne znaczenie. W branży mamy różne normy, jak ISO, które przypominają, jak ważne są dokładne pomiary. A co ciekawe, teraz mamy również niwelatory elektroniczne, które jeszcze bardziej podnoszą jakość pomiarów, co naprawdę ma znaczenie w dzisiejszych projektach budowlanych.

Pytanie 5

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 25 m
B. 30 m
C. 20 m
D. 15 m
Odpowiedzi, które sugerują inne długości rzędnej, takie jak 20 m, 30 m czy 15 m, mogą prowadzić do poważnych nieporozumień dotyczących standardów pomiarowych. Długości te są nieadekwatne do wymagań zawartych w normach geodezyjnych, które jasno określają optymalne zasięgi dla różnych metod pomiarowych. W przypadku 20 m można sądzić, że to zbyt krótka długość, która nie pozwala na uzyskanie wystarczającej precyzji przy dużych odległościach. Z kolei długość 30 m staje się problematyczna w kontekście pomiarów, gdyż może zwiększać ryzyko błędów kumulacyjnych oraz trudności związanych z precyzyjnym przenoszeniem wymiarów na większe odległości. Odpowiedź sugerująca 15 m jest nie tylko niewłaściwa, ale także w praktyce może prowadzić do istotnych trudności w realizacji pomiarów budowlanych, szczególnie na otwartych terenach, gdzie warunki atmosferyczne i uwarunkowania przestrzenne mogą wpływać na dokładność. Istotne jest, aby geodeci mieli świadomość, że stosowanie nieodpowiednich długości rzędnych może skutkować błędami, które mogą wpłynąć na całkowitą rzetelność projektu budowlanego, prowadząc do niepoprawnych danych geodezyjnych i konsekwencji w fazach realizacji inwestycji. Dlatego znajomość i stosowanie przyjętej długości rzędnej, jaką jest 25 m, jest kluczowe dla zapewnienia wysokiej jakości pomiarów.

Pytanie 6

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 150 m
B. 400 m
C. 250 m
D. 600 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 7

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Po upływie dwóch lat od dodania do zasobu
B. Kiedy nie były używane przez pięć lat
C. Kiedy zostaną zniszczone
D. Kiedy stracą wartość użytkową
Materiały z państwowego zasobu geodezyjnego i kartograficznego podlegają wyłączeniu z tego zasobu w momencie, gdy utracą swoją przydatność użytkową. Przydatność użytkowa materiałów geodezyjnych i kartograficznych oznacza ich zdolność do spełniania wymagań użytkowników, w tym instytucji, które się nimi posługują. Przykładem może być aktualizacja map topograficznych, które muszą odzwierciedlać rzeczywisty stan terenu, aby były użyteczne dla planowania przestrzennego czy działań związanych z ochroną środowiska. Gdy materiały przestają odpowiadać rzeczywistemu stanowi, ich wartość w kontekście zastosowań praktycznych spada, co może prowadzić do decyzji o ich wyłączeniu z zasobu. W kontekście dobrych praktyk w zarządzaniu informacjami geodezyjnymi, regularna weryfikacja i aktualizacja zasobów jest kluczowa dla zapewnienia ich aktualności oraz zgodności z obowiązującymi normami, co przyczynia się do poprawy efektywności działań w zakresie planowania i zarządzania przestrzenią.

Pytanie 8

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 100g
B. 200g
C. 400g
D. 300g
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych ΔxAB i ΔyAB. W tym przypadku mamy do czynienia z sytuacją, gdy ΔxAB = 0 oraz ΔyAB > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 9

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. siatkowej
B. hydrostatycznej
C. trygonometrycznej
D. punktów rozproszonych
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 10

Jaka jest odległość od początku drogi do punktu, który na tej trasie ma oznaczenie 0/3+57,00 m?

A. 357,00 m
B. 3057,00 m
C. 3557,00 m
D. 557,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 11

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. libeli pudełkowej
B. kolimacji
C. libeli rurkowej
D. inklinacji
Odpowiedź "inklinacji" jest poprawna, ponieważ odnosi się do błędu, który występuje, gdy oś obrotu lunety nie jest prostopadła do pionowej osi obrotu instrumentu pomiarowego. W praktyce, błąd ten może prowadzić do nieprawidłowych odczytów i wpływać na dokładność pomiarów. Przykładowo, w geodezji oraz budownictwie, niewłaściwa inklinacja może skutkować błędami w pomiarach wysokości lub odległości, co może prowadzić do nieprawidłowego usytuowania budynków czy elementów infrastruktury. W celu minimalizacji błędu inklinacji, należy regularnie kalibrować instrumenty oraz upewnić się, że są one stabilnie zamocowane na odpowiednich podstawach. Ponadto, stosowanie wysokiej jakości poziomów oraz technik pomiarowych zgodnych z normami, takimi jak ISO 17123, może znacznie poprawić precyzję pomiarów oraz ograniczyć wpływ błędów inklinacji na wyniki w praktyce.

Pytanie 12

Podczas aktualizacji mapy zasadniczej w czasie pomiarów szczegółowych terenu sporządza się szkic

A. polowy
B. przeglądowy
C. inwentaryzacyjny
D. dokumentacyjny
Każda z pozostałych odpowiedzi nie oddaje właściwego kontekstu dla procesu aktualizacji mapy zasadniczej. Szkic przeglądowy, choć może służyć do ogólnej oceny terenu, nie zapewnia szczegółowego uchwycenia danych niezbędnych do aktualizacji mapy. Tego rodzaju szkic ma na celu jedynie przedstawienie nawykowych cech terenu, a nie zbieranie precyzyjnych informacji w terenie. Z kolei inwentaryzacyjny szkic odnosi się do dokumentacji już istniejących obiektów i ich stanu, co jest niezbędne w procesie inwentaryzacji, ale nie w samym pomiarze terenu i jego szczegółowym odwzorowaniu w dokumentach mapowych. Ostatnia z odpowiedzi, szkic dokumentacyjny, również nie pasuje do kontekstu, ponieważ koncentruje się bardziej na formalnej prezentacji danych, a nie na ich zbieraniu w terenie. Typowym błędem myślowym jest mylenie różnych rodzajów szkiców i ich zastosowań. Aby skutecznie wykonywać pomiary w terenie, istotne jest zrozumienie różnicy między dokumentacją a praktycznym zbieraniem danych. Wiedza o tym, jakie narzędzie wykorzystać w danej sytuacji, wpłynie na jakość końcowego produktu, jakim jest mapa zasadnicza.

Pytanie 13

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. limbusem
B. pionem
C. spodarką
D. alidadą
W teodolicie istnieje wiele elementów i terminów, które mogą prowadzić do zamieszania, gdy próbujemy zrozumieć jego budowę i funkcje. Limbusem nazywamy inną część teodolitu, która jest odpowiedzialna za wskazywanie kątów na obręczy. Jest to element, który służy do odczytu kątów, a nie do ustalania stabilnej podstawy narzędzia, co jest jego podstawową funkcją. Kolejnym terminem jest pion, który odnosi się do kierunku prostopadłego do poziomu, ale również nie ma nic wspólnego z podstawą teodolitu. Pion jest kluczowy dla określenia pozycji urządzenia w przestrzeni, jednakże nie stanowi jego podstawy. Alidadą jest natomiast wskazówka montowana na teodolicie, używana do celowania w określony punkt. Choć wszystkie te terminy są istotne dla funkcjonowania teodolitu, żaden z nich nie odpowiada funkcji podstawy, poza spodarką. Właściwe zrozumienie tych terminów oraz ich zastosowanie w praktyce geodezyjnej jest kluczowe dla uniknięcia błędów i nieporozumień, które mogą wpłynąć na jakość pomiarów oraz skuteczność pracy w terenie. Dlatego, aby uniknąć typowych błędów myślowych, ważne jest dokładne zrozumienie, jak poszczególne elementy teodolitu współpracują ze sobą, co pomoże w prawidłowym wykonywaniu pomiarów.

Pytanie 14

Jaką wartość ma średni błąd pomiaru graficznego odcinka o długości 10 cm, gdy błąd względny pomiaru wynosi 1:1000?

A. ±0,10 mm
B. ±0,01 mm
C. ±10,00 mm
D. ±1,00 mm
Odpowiedzi, które wskazują inne wartości błędu pomiaru, wykazują niedokładne zrozumienie zasad obliczania błędu względnego. Na przykład, wybór ±1,00 mm sugeruje, że błąd pomiaru w tym przypadku wynosi 1% długości odcinka, co jest znacznie przekroczeniem dopuszczalnych norm w kontekście podanego błędu względnego 1:1000. Tego rodzaju myślenie prowadzi do poważnych konsekwencji w praktyce inżynieryjnej, gdzie precyzyjne pomiary są niezbędne dla prawidłowego funkcjonowania mechanizmów. Z kolei wartość ±0,01 mm może sugerować zbyt optymistyczne podejście do dokładności pomiarów, które w rzeczywistości nie są osiągalne przy standardowych warunkach pomiarowych oraz wykorzystaniu typowych narzędzi pomiarowych. Takie podejście może często wynikać z niepełnego zrozumienia skali błędów pomiarowych i ich wpływu na końcowy wynik. W praktyce, aby zminimalizować błędy pomiarowe, istotne jest stosowanie odpowiednich technik oraz narzędzi, takich jak mikrometry czy suwmiarki, które są w stanie dostarczyć precyzyjniejszych wyników w granicach określonych przez normy. Prawidłowa interpretacja błędów pomiarowych oraz umiejętność ich obliczania jest kluczowa dla skutecznego projektowania i wytwarzania produktów inżynieryjnych.

Pytanie 15

Na czym polega metoda niwelacji trygonometrycznej?

A. Na określaniu współrzędnych punktów za pomocą GPS, co nie jest związane z niwelacją trygonometryczną.
B. Na obliczaniu różnic wysokości na podstawie pomiarów kątów i odległości.
C. Na bezpośrednim pomiarze długości przy użyciu miarki, co nie ma związku z pomiarami wysokościowymi.
D. Na tworzeniu profili terenu za pomocą modelowania 3D, co nie dotyczy bezpośrednio pomiarów wysokościowych.
Metoda niwelacji trygonometrycznej jest jedną z kluczowych technik stosowanych w geodezji do pomiaru różnic wysokości między punktami terenowymi. Polega ona na wykorzystaniu pomiarów kątów oraz odległości poziomych lub skośnych, aby obliczyć różnice wysokości. Metoda ta wykorzystuje trygonometrię, w szczególności funkcje trygonometryczne, takie jak sinus i tangens, do przekształcenia danych kątowych i odległościowych w różnice wysokości. Dzięki temu można precyzyjnie określić wysokość punktów w terenie bez konieczności fizycznego przemieszczania się między nimi. W praktyce, niwelacja trygonometryczna jest stosowana w sytuacjach, gdy teren jest trudny do przebycia lub gdy pomiary wymagają dużej dokładności, np. w budownictwie mostów czy tuneli. Dodatkowo, ta technika jest przydatna w miejscach, gdzie niemożliwe jest zastosowanie tradycyjnych metod niwelacji, takich jak niwelacja geometryczna. Korzystanie z tej metody wymaga jednak precyzyjnych instrumentów, takich jak tachimetry, oraz umiejętności analizy danych pomiarowych w kontekście matematycznym. Metoda ta jest zgodna z normami i standardami geodezyjnymi, co czyni ją niezastąpioną w wielu profesjonalnych zastosowaniach.

Pytanie 16

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta pionowego i odległości poziomej
B. kąta poziomego i odległości skośnej
C. kąta pionowego i odległości skośnej
D. kąta poziomego i odległości poziomej
Pojęcia związane z pomiarami geodezyjnymi są złożone i często mylone, co prowadzi do nieprawidłowych wniosków. Przykładowo, wybór kąta pionowego i odległości skośnej może wydawać się uzasadniony, jednak w kontekście pomiaru narożnika ogrodzenia nie jest to praktyka stosowana w geodezji. Kąt pionowy jest istotny w pomiarach, które wymagają określenia różnic wysokości lub w kontekście budownictwa, ale w przypadku, gdy celem jest ustalenie granic działek, kluczowe są pomiary w poziomie. Ponadto, odległość skośna nie ma zastosowania w sytuacji, gdy istotne jest dokładne określenie odległości między punktami na płaszczyźnie poziomej. Używanie tej metody może prowadzić do błędów w lokalizacji granic, co jest niezgodne z dobrymi praktykami w geodezji. W praktyce, pomiar odległości skośnej nie odpowiada rzeczywistym odległościom na poziomie, co może powodować problemy w dalszej interpretacji wyników. Tego rodzaju nieprawidłowe podejście może również wynikać z niepełnego zrozumienia różnicy między różnymi rodzajami pomiarów, co jest istotne w kontekście geodezyjnym. Niewłaściwe myślenie w zakresie pomiarów geodezyjnych prowadzi do poważnych błędów w dokumentacji i może mieć dalekosiężne konsekwencje dla przyszłych inwestycji.

Pytanie 17

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. czarnym
B. czerwonym
C. brązowym
D. żółtym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 18

Fragment łączący dwa sąsiadujące punkty sytuacyjne tego samego obiektu określa się mianem

A. czołówką
B. podpórką
C. odciętą
D. rzędną
Wybór odciętej jako odpowiedzi jest nieporozumieniem związanym z terminologią geodezyjną. Odcięta odnosi się do poziomego lub pionowego skoku wartości w kontekście pomiarów, na przykład, w analizach funkcji w przestrzeni, ale nie jest terminem odnoszącym się do połączenia punktów sytuacyjnych obiektu. W praktyce, odcięta jest często używana w kontekście obliczeń różnicowych, gdzie analizuje się zmiany w wartościach pomiędzy różnymi punktami, jednak nie ma zastosowania w bezpośrednim łączeniu dwóch sąsiednich punktów. Podpórka z kolei odnosi się do wsparcia dla konstrukcji, a nie do geodezyjnego opisu relacji między punktami. W kontekście geodezji, podpórki mogą być używane w konstrukcjach, ale nie w sensie odnoszącym się do punktów sytuacyjnych. Rzędna, choć również związana z poziomem, odnosi się do wartości wysokości punktu w kontekście terenu, a nie do łączenia dwóch punktów. Zrozumienie tych terminów jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niepoprawnych wniosków w analizach przestrzennych. Kluczowe jest, aby zastosować właściwą terminologię w każdym kroku procesu pomiarowego, aby zapewnić klarowność i precyzję w dokumentacji oraz analizach geodezyjnych. Właściwe rozumienie czołówki i jej roli w łączeniu punktów sytuacyjnych jest fundamentem dla profesjonalnego podejścia w geodezji.

Pytanie 19

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. kolimacji
B. centrowania
C. inklinacji
D. indeksu
Odpowiedź 'centrowania' jest prawidłowa, ponieważ pomiar kątów tachimetrem elektronicznym w dwóch położeniach lunety nie eliminuje błędu centrowania. Błąd centrowania odnosi się do nieprecyzyjnego umiejscowienia instrumentu geodezyjnego nad punktem pomiarowym. Nawet przy dokładnym ustawieniu lunety na dwóch różnych pozycjach, jeśli instrument nie jest idealnie wyśrodkowany, może wystąpić błąd w pomiarze kątów. W praktyce geodezyjnej, aby zminimalizować ten błąd, zaleca się stosowanie statywów o wysokiej stabilności oraz precyzyjnych zamocowań, które umożliwiają dokładne centrowanie instrumentu. Standardy geodezyjne, takie jak normy ISO i zalecenia organizacji geodezyjnych, podkreślają znaczenie precyzyjnego centrowania jako kluczowego elementu uzyskiwania wiarygodnych pomiarów. Dobrą praktyką jest również stosowanie instrumentów wyposażonych w funkcje automatycznego centrowania, co znacznie zwiększa dokładność pomiarów.

Pytanie 20

Zgodnie z ustawodawstwem geodezyjnym oraz kartograficznym mapy zasadnicze powinny być sporządzane w następujących skalach:

A. 1:25 000, 1:50 000, 1:100 000
B. 1:1000, 1:2000, 1:5000, 1:10 000
C. 1:10 000, 1:25 000, 1:50 000
D. 1:500, 1:1000, 1:2000, 1:5000
Wybór niewłaściwych skal do wykonania mapy zasadniczej może prowadzić do poważnych błędów w interpretacji danych i planowaniu. W przypadku odpowiedzi, które obejmują skale takie jak 1:25 000, 1:50 000 czy 1:100 000, odzwierciedlają one podejście bardziej związane z mapami topograficznymi lub ogólnymi przeglądowymi, a nie z mapami o szczegółowym układzie przestrzennym, które są wymagane dla celów geodezyjnych i kartograficznych. Takie skale są zbyt małe, by dokładnie oddać lokalizacje granic działek czy infrastruktury, co jest kluczowe w pracach geodezyjnych. Warto również zauważyć, że odpowiedzi związane z mniejszymi skalami, takimi jak 1:500, 1:1000, 1:2000 czy 1:5000, są niezbędne w kontekście lokalnych projektów, gdzie precyzja jest kluczowa. Typowe błędy myślowe prowadzące do wyboru nieodpowiednich odpowiedzi często wiążą się z brakiem zrozumienia celów konkretnej mapy oraz jej zastosowań. W praktyce, odpowiednie skalowanie mapy jest istotne dla zapewnienia, że odwzorowanie terenu jest zarówno funkcjonalne, jak i zgodne z regulacjami prawnymi, co może mieć konsekwencje prawne i finansowe w kontekście planowania przestrzennego.

Pytanie 21

Które z wymienionych obiektów przestrzennych są zaliczane do drugiej kategorii szczegółów terenowych?

A. Ściany oporowe
B. Linie brzegowe
C. Boiska sportowe
D. Tory kolejowe
Ściany oporowe, linie brzegowe oraz tory kolejowe, mimo że są istotnymi elementami infrastruktury, nie należą do drugiej grupy szczegółów terenowych, co może prowadzić do błędnych konkluzji. Ściany oporowe to struktury zaprojektowane w celu utrzymywania gruntów i zapobiegania erozji, a ich głównym celem jest stabilizacja terenu. Nie mają one bezpośredniego związku z rekreacją czy sportem, co wyklucza je z omawianej grupy. Linie brzegowe, będące granicami akwenów wodnych, również nie są obiektami, które spełniają funkcję aktywności fizycznej, chociaż są istotne w kontekście ekosystemów wodnych i ochrony środowiska. Tory kolejowe, z kolei, są infrastrukturą transportową, która związana jest z transportem lądowym i również nie wchodzi w skład terenów rekreacyjnych. Typowym błędem myślowym jest postrzeganie obiektów przestrzennych jako równorzędnych w kontekście ich funkcjonalności. W rzeczywistości, klasyfikacja obiektów terenowych powinna opierać się na ich zastosowaniu w codziennym życiu, co oznacza, że obiekty związane z infrastrukturą transportową i ochroną terenu nie są częścią grupy obiektów rekreacyjnych, jakimi są boiska sportowe. Zrozumienie tej klasyfikacji jest kluczowe dla prawidłowego planowania przestrzennego oraz podejmowania decyzji dotyczących inwestycji w infrastrukturę.

Pytanie 22

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. niwelacji geometrycznej
B. tachimetryczną
C. biegunową
D. niwelacji trygonometrycznej
Wielu ludzi może mieć problem z różnicowaniem metod niwelacji, co czasami prowadzi do złych wyborów. Metoda biegunowa, która opiera się na pomiarze kątów i odległości z jednego punktu, nie bierze pod uwagę kilku ważnych spraw przy przestrzennym wcięciu w przód. Moim zdaniem, trochę mylące jest też myślenie, że metoda tachimetryczna, mimo swojego zaawansowania, dotyczy tylko pomiaru kątów i odległości, a to jakoś nie wystarcza do dokładnych obliczeń wysokości. A jeśli chodzi o niwelację geometryczną, to chociaż działa w pomiarze różnic wysokości, to nie wykorzystuje kątów w taki sposób, żeby skutecznie zastosować wcięcie w przód. Często też mylą się pojęcia związane z tymi metodami, co prowadzi do pomyłek i źle dobranych technik w pracy geodezyjnej. Ważne jest, żeby zrozumieć, że każda z tych metod ma swoje plusy i minusy, a niwelacja trygonometryczna to tylko jedno z wielu narzędzi, które umożliwiają precyzyjne pomiary w terenie. Dobrze zrozumiane podstawy tych metod i ich odpowiednie zastosowanie są kluczowe dla każdego geodety.

Pytanie 23

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. trygonometrycznej
B. wcięć kątowych
C. fotogrametrycznej
D. stałej prostej
Odpowiedź wskazująca na metodę stałej prostej jako nieodpowiednią do badania pionowości komina przemysłowego jest poprawna, ponieważ ta technika nie jest w stanie precyzyjnie określić odchyleń od pionu. Metoda ta polega na wyznaczeniu linii prostych, które mogą być łatwo zakłócone przez zjawiska atmosferyczne, a także przez trudne warunki terenowe. W praktyce, do oceny pionowości kominów przemysłowych najczęściej wykorzystuje się metody takie jak wcięcia kątowe, trygonometryczne czy fotogrametryczne, które zapewniają większą dokładność i powtarzalność pomiarów. W przypadku pomiarów kominów, które mogą mieć znaczne wysokości, kluczowe jest zastosowanie technik, które uwzględniają zarówno perspektywiczne zniekształcenia, jak i ewentualne przesunięcia w poziomie, co czyni metody oparte na geodezji i fotogrametrii bardziej odpowiednimi. Przykłady zastosowania takich metod można znaleźć w dokumentacji projektowej budynków przemysłowych, gdzie dokładność pomiarów pionowości ma kluczowe znaczenie dla bezpieczeństwa konstrukcji.

Pytanie 24

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Budynek szkoły
B. Linia brzegowa jeziora
C. Drzewo przyuliczne
D. Boisko sportowe
Budynek szkoły to coś, co możemy spokojnie wrzucić do pierwszej grupy dokładnościowej, jeśli mówimy o analizie terenowej i geodezyjnej. W tej grupie są obiekty, które mają naprawdę wysoką precyzję. To znaczy, że ich lokalizacja jest dokładnie określona i można je wykorzystać w różnych sytuacjach, jak planowanie przestrzenne czy urbanistyka. Jak to z budynkami bywa, zwłaszcza tymi publicznymi, jak szkoły, mają one duże znaczenie dla analizy przestrzennej, bo ich lokalizacja wpływa na to, jak dostępne są usługi dla ludzi w okolicy. Kiedy tworzymy mapy społeczne czy sprawdzamy dostęp do edukacji, precyzyjna lokalizacja szkół jest super ważna, żeby ocenić jakość życia i infrastruktury w danym miejscu. A wiesz, stosowanie standardów jak ISO 19115, które dotyczą metadanych geograficznych, pomaga w tym, żeby te dane były zebrane i użyte tak, jak trzeba. To naprawdę ważne dla dalszych analiz.

Pytanie 25

Jakie jest przyrost współrzędnej ∆x1-2, przy pomiarze długości d1-2 = 100,00 m oraz sinAz1-2 = 0,7604 i cosAz1-2 = 0,6494?

A. 7,60 m
B. 76,04 m
C. 6,49 m
D. 64,94 m
Podczas analizy dostępnych odpowiedzi pojawia się wiele typowych pułapek związanych z obliczeniami trygonometrycznymi, które mogą prowadzić do błędnych wniosków. W przypadku przyrostu współrzędnej ∆x1-2 nie można mylić wartości sinus i cosinus azymutu. Odpowiedzi sugerujące wartości 6,49 m, 7,60 m oraz 76,04 m są wynikiem błędnej aplikacji wzorów trygonometrycznych. Typowym błędem jest mylenie zastosowania funkcji trygonometrycznych. Wartość 76,04 m może wynikać z nieprawidłowego pomnożenia długości przez sinus, co skutkuje zawyżeniem wyniku. Długość d1-2 mnożona przez sinus azymutu daje przyrost wysokości, a nie współrzędnej x. Natomiast wartości 6,49 m i 7,60 m mogą wskazywać na zbyt małe mnożenie d1-2 przez cosinus, co również jest konsekwencją niewłaściwego zastosowania wzoru. Kluczem do prawidłowych obliczeń jest zrozumienie, że przyrost współrzędnej x zależy od wartości cosAz, a przyrost współrzędnej y (wysokości) od sinAz. Używanie nieodpowiednich wartości do obliczeń w geodezji może prowadzić do poważnych błędów projektowych, dlatego tak ważne jest przestrzeganie standardów oraz dobrych praktyk w obliczeniach geodezyjnych.

Pytanie 26

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 4 punkty
B. 5 punktów
C. 2 punkty
D. 3 punkty
Wybranie innej liczby punktów może się brać z tego, że nie do końca rozumiesz, jak działa interpolacja warstwicowa. Często myśli się, że liczbę punktów liczy się tylko na podstawie zaokrągleń albo prostych różnic w wysokości, co sprawia, że liczba punktów jest zaniżona. Jak się stosuje złe metody obliczeń, na przykład ignorując cięcie warstwicowe, to wychodzą błędne wyniki. W geodezji i inżynierii lądowej bardzo ważne jest, żeby dokładnie ustalić pomiary, bo jeśli zaniżysz liczbę punktów, to potem mogą być poważne błędy w analizach i projektowaniu. Ustalając wysokości warstwic, zawsze musisz mieć na uwadze różnicę wysokości i wybrane cięcie. Pamiętaj, że pomiar powinien być zgodny z branżowymi standardami, takimi jak normy ISO czy lokalne przepisy geodezyjne. To wszystko przekłada się na jakość wyników, co jest kluczowe w planowaniu przestrzennym.

Pytanie 27

Jaki błąd jest wskaźnikiem precyzji tyczenia?

A. Błąd graniczny tyczenia
B. Błąd średni tyczenia
C. Błąd względny tyczenia
D. Błąd przypadkowy tyczenia
Błąd względny tyczenia, choć ma swoje znaczenie w analizie precyzji, nie jest najlepszą miarą ogólnej dokładności. Liczy się go, robiąc stosunek błędu do wartości rzeczywistej, co czasem może zmylić, zwłaszcza jak mamy do czynienia z małymi wartościami pomiarowymi. W geodezji błąd graniczny tyczenia odnosi się do maksymalnego dopuszczalnego błędu, ale to też nie oddaje pełnego obrazu dokładności. I jeszcze jest błąd przypadkowy, który dotyczy losowych wahań wyników, ale to nie jest dobry sposób na mierzenie jakości. Często mylimy różne miary błędu z ogólną dokładnością, co może prowadzić do pomyłek. Ważne, żeby zrozumieć, że dokładność tyczenia trzeba analizować z różnych perspektyw, a błąd średni jest w tym najlepszym narzędziem.

Pytanie 28

Błąd, który nie wpływa na kartometryczną precyzję mapy, to

A. deformacji papieru
B. wysokościowych pomiarów terenowych
C. materiału wyjściowego, na podstawie którego powstała mapa
D. przeniesienia punktów z materiału wyjściowego na oryginał mapy
Wybór odpowiedzi dotyczącej wysokościowych pomiarów terenowych jako elementu, który nie wpływa na kartometryczną dokładność mapy, jest trafny. Kartometryczna dokładność odnosi się do precyzji i dokładności odwzorowania rzeczywistych położenia obiektów na mapie, co jest determinowane przez wiele czynników, ale nie przez błędy pomiarów wysokościowych. Wysokościowe pomiary terenowe są istotne w kontekście modelowania powierzchni terenu i kształtowania trójwymiarowych przedstawień, lecz nie wpływają na dwuwymiarowe odwzorowanie przestrzenne, które jest kluczowe w kontekście kartometrycznej dokładności. Na przykład, w sytuacjach, gdy mapa jest używana do nawigacji na poziomie gruntu, to błędy w pomiarach wysokości nie mają wpływu na lokalizację punktów na mapie. Również w praktyce kartograficznej, przy zastosowaniu standardów takich jak ISO 19111 dotyczących geograficznych informacji przestrzennych, kluczowe są pomiary poziome, a nie wysokościowe. Zatem, w kontekście kartometrycznej dokładności, błędy w wysokościowych pomiarach terenowych są drugorzędne.

Pytanie 29

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną jednorzędową
B. Realizacyjną dwurzędową
C. Realizacyjną typu A
D. Realizacyjną wydłużoną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Osnowa realizacyjna dwurzędowa to świetny wybór, jeśli chodzi o geodezję w dużych zakładach. Szczególnie, gdy prace są podzielone na etapy. Taka osnowa jest bardzo precyzyjna i elastyczna, a to naprawdę ważne przy inwestycjach, które rozwijają się w tempie błyskawicy. W praktyce to oznacza, że geodeci mogą szybko dostosować pomiary do zmieniających się warunków na budowie, co ułatwia kontrolowanie postępu w różnych częściach projektu. Dzięki osnowie dwurzędowej, możliwe jest równoczesne robienie kilku pomiarów, co znacząco przyspiesza realizację inwestycji. Na przykład w trakcie budowy fabryki można jednocześnie zajmować się pomiarami pod fundamenty, instalacjami technicznymi i rozmieszczaniem sieci infrastrukturalnych. To zdecydowanie zwiększa efektywność całego przedsięwzięcia. I co ważne, zgodne z normami, takimi jak PN-EN ISO 17123, użycie takiej osnowy w dużych projektach to klucz do zachowania wysokich standardów dokładności i rzetelności pomiarów.

Pytanie 30

Jakie elementy powinno zawierać sprawozdanie techniczne z przeprowadzonej pracy geodezyjnej?

A. spis współrzędnych punktów
B. rysunek z pomiaru sytuacyjnego
C. wykaz zastosowanych metod pomiarowych
D. mapę z analizy terenowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wykaz zastosowanych metod pomiarowych jest kluczowym elementem sprawozdania technicznego z pracy geodezyjnej, ponieważ dostarcza informacji o technikach i narzędziach użytych w trakcie realizacji projektu. Przykładowo, w dokumentacji dotyczącej pomiarów geodezyjnych, takich jak niwelacja, triangulacja czy pomiar GPS, szczegółowe opisanie metod umożliwia innym specjalistom zrozumienie oraz powtórzenie badania, co jest zgodne z zasadami dobrej praktyki w geodezji. Wykaz ten powinien również zawierać informacje o poziomie precyzji pomiarów oraz warunkach, w jakich zostały one przeprowadzone. Standardy geodezyjne oraz normy takie jak ISO 17123 wskazują na konieczność dokumentowania metod, aby zapewnić jednolitość oraz transparentność procesów pomiarowych. W praktyce, dobrze przygotowane sprawozdanie techniczne nie tylko zwiększa wiarygodność wyników, ale również ułatwia przyszłą interpretację oraz porównywanie danych.

Pytanie 31

Dlaczego w geodezji ważna jest kalibracja przyrządów pomiarowych?

A. Aby ułatwić transport sprzętu na miejsce pomiaru.
B. Aby zredukować zużycie materiałów pomiarowych.
C. Aby przyspieszyć proces wykonywania pomiarów.
D. Aby zapewnić dokładność i wiarygodność pomiarów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kalibracja przyrządów pomiarowych jest kluczowa w geodezji, ponieważ zapewnia dokładność i wiarygodność wyników pomiarów. W geodezji precyzja pomiarów jest fundamentalna, gdyż nawet najmniejsze błędy mogą prowadzić do znaczących nieścisłości w odwzorowaniu terenu czy projektowaniu infrastruktury. Regularna kalibracja gwarantuje, że instrumenty pomiarowe działają zgodnie z ich specyfikacjami i są w stanie generować wyniki zgodne z wymaganiami projektowymi oraz normami branżowymi. Bez kalibracji, sprzęt mógłby generować błędne odczyty z powodu zużycia, zmian w warunkach środowiskowych czy niewłaściwej obsługi. Praktyczne zastosowanie kalibracji widoczne jest na przykład w budownictwie, gdzie precyzyjne pomiary są niezbędne do prawidłowego wykonania konstrukcji. Ponadto, kalibracja jest zgodna z dobrymi praktykami branżowymi i standardami ISO, które wymagają, by wszystkie urządzenia pomiarowe były regularnie kontrolowane i kalibrowane. Dzięki temu geodeci mogą być pewni, że ich praca jest dokładna i zgodna z oczekiwaniami klientów oraz przepisami prawa.

Pytanie 32

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,001 m
B. 0,02 m
C. 0,01 m
D. 0,004 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 33

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. 6,700 m
B. -0,670 cm
C. 0,670 m
D. -0,670 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -0,670 m jest prawidłowa, ponieważ różnica wysokości między punktami niwelacyjnymi oblicza się jako różnicę odczytów poziomych na łatach. W tym przypadku, aby obliczyć różnicę wysokości Δh100-101, należy wykorzystać wzór Δh = l101 - l100. Podstawiając wartości: Δh = 2 225 - 1 555 = 670. Ponieważ punkt 101 jest wyżej od punktu 100, różnica wysokości powinna być ujemna, co daje -0,670 m. W praktyce proces ten jest kluczowy w geodezji, szczególnie w kontekście budowy, gdzie precyzyjne pomiary różnic wysokości są niezbędne do zapewnienia odpowiednich spadków i poziomów fundamentów. W branży stosuje się różne techniki pomiarowe, takie jak niwelacja, które pozwalają na dokładne określenie różnic wysokości między punktami. Dodatkowo, standardy geodezyjne, takie jak normy ISO i PN-EN, podkreślają znaczenie dokładności w pomiarach wysokościowych, co jest kluczowe dla bezpieczeństwa konstrukcji.

Pytanie 34

Przekierowanie spionowanej osi obrotowej tachimetru na punkt geodezyjny to

A. rektyfikacja
B. pionowanie
C. centrowanie
D. poziomowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Centrowanie oznacza precyzyjne doprowadzenie spionowanej osi obrotu tachimetru do punktu geodezyjnego. Jest to kluczowy proces w geodezji, ponieważ zapewnia, że wszystkie pomiary są dokonywane z jednego, stabilnego punktu. W praktyce centrowanie polega na umieszczeniu tachimetru w dokładnej pozycji nad punktem, co jest niezbędne do uzyskania prawidłowych i wiarygodnych wyników. Proces ten w szczególności uwzględnia użycie statywów i poziomic, aby zapewnić, że instrument jest nie tylko zlokalizowany w odpowiednim miejscu, ale również w odpowiedniej orientacji. Dobre praktyki w zakresie centrowania wymagają również regularnego kalibrowania sprzętu, aby zminimalizować błędy systematyczne. W praktyce, centrowanie jest stosowane zarówno w pomiarach terenowych, jak i w aplikacjach budowlanych, gdzie precyzja ma kluczowe znaczenie dla dalszych etapów pracy. Zrozumienie i umiejętność centrowania jest niezbędna dla każdego geodety, ponieważ błędne centrowanie prowadzi do nieprawidłowych pomiarów, co z kolei może wpłynąć na całokształt projektu.

Pytanie 35

Godło mapy zasadniczej 6.115.27.4 w systemie współrzędnych PL-2000 wskazuje na mapę stworzoną w skali

A. 1:2000
B. 1:1000
C. 1:500
D. 1:5000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1:5000 jest poprawna, ponieważ w systemie oznaczeń map zasadniczych w Polsce, godło mapy 6.115.27.4 wskazuje na mapę opracowaną w skali 1:5000. Skala mapy to ważny aspekt, który wpływa na szczegółowość przedstawianych informacji geograficznych i ich zastosowanie w różnych dziedzinach, takich jak planowanie przestrzenne, budownictwo czy zarządzanie kryzysowe. W przypadku skali 1:5000, jeden centymetr na mapie odpowiada pięciu tysiącom centymetrów w rzeczywistości, co oznacza, że mapa jest stosunkowo szczegółowa i może być używana do analizy małych obszarów. Jest to standardowa skala dla map miejskich, co pozwala na dokładne odwzorowanie ulic, budynków oraz infrastruktury. W praktyce, takie mapy są wykorzystywane m.in. przez architektów, inżynierów oraz planistów, którzy potrzebują precyzyjnych danych do projektów budowlanych oraz rozwoju urbanistycznego. Rekomendacje dotyczące stosowania odpowiednich skal map są również zawarte w normach ISO dotyczących kartografii, co podkreśla ich znaczenie w profesjonalnym środowisku.

Pytanie 36

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 0,145 m
B. 1,450 m
C. 145,000 m
D. 14,500 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 37

Kiedy oznaczenia geodezyjne uległy zniszczeniu, rekonstruowanie punktów szczegółowej osnowy poziomej należy przeprowadzić na podstawie zarejestrowanych w opisie topograficznym zmierzonych odległości do

A. najbliższych elementów terenu
B. elementów terenowych z I kategorii dokładnościowej
C. punktów określanych jako poboczniki
D. sąsiednich funkcjonujących punktów osnowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "punkty zwane pobocznikami" jest prawidłowa, ponieważ w geodezji poboczniki odgrywają kluczową rolę w procesie odtwarzania zniszczonych punktów osnowy. Poboczniki, jako znane punkty geodezyjne, mogą być używane jako odniesienie podczas rekonstrukcji siatki punktów osnowy. W praktyce, w przypadku zniszczenia znaków geodezyjnych, geodeta powinien najpierw zidentyfikować i wykorzystać dostępne poboczniki, które były wcześniej pomierzone i opisane w dokumentacji topograficznej. Przykładowo, gdy istniejące punkty osnowy są usunięte, poboczniki mogą zapewnić niezbędne odniesienie do precyzyjnego przywrócenia punktów osnowy. Zgodnie z obowiązującymi regulacjami geodezyjnymi, przy odtwarzaniu punktów osnowy poziomej niezbędne jest zachowanie wysokiej dokładności, co można osiągnąć właśnie poprzez odniesienie do stabilnych punktów, takich jak poboczniki. Dobrą praktyką jest regularne aktualizowanie i weryfikowanie stanu poboczników, aby zapewnić ich wiarygodność jako odniesienia w procesach geodezyjnych.

Pytanie 38

Jaką wartość ma korekta kątowa dla jednego kąta w zamkniętym ciągu poligonowym, jeżeli ciąg ten zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vk = +5cc
B. Vk = -5cc
C. Vk = -6cc
D. Vk = +6cc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość poprawki kątowej do jednego kąta w ciągu poligonowym zamkniętym oblicza się na podstawie ogólnej zasady, że suma kątów wewnętrznych n-kąta w postaci: (n-2) * 180°. W przypadku poligonu zamkniętego, gdzie mamy 5 kątów, oczekiwana suma kątów powinna wynosić (5-2) * 180° = 540°. Odchyłka kątowa, fα = +30cc, oznacza, że całkowita suma kątów zamyka się z błędem pomiarowym, co wpływa na konieczność wprowadzenia poprawek. Zatem, aby skorygować pomiar, stosujemy wzór na poprawkę kątową Vk = fα / n, gdzie n to liczba kątów. W tym przypadku Vk = +30cc / 5 = +6cc. Jednakże w kontekście zamkniętego poligonu, w którym zaszła odchyłka, musimy dodać dodatkową poprawkę wynikającą z błędu pomiarowego, co prowadzi do obliczenia wartości korygującej na -6cc, aby uzyskać zamknięcie poligonu. Praktyczne zastosowanie tej wiedzy ma miejsce w geodezji, gdzie dokładność pomiarów kątowych jest kluczowa przy tworzeniu map i pomiarach terenowych.

Pytanie 39

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Domiary prostokątne
B. Sytuacyjne szczegóły terenowe
C. Numery obiektów
D. Wysokości punktów terenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 40

Jakie znaczenie ma oznaczenie mz1 1 na mapie zasadniczej?

A. Wieżowiec.
B. Budynek mieszkalny.
C. Jednorodzinny dom.
D. Dom w zabudowie szeregowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapis 'mz1 1' na mapie zasadniczej oznacza wieżowiec i jest zgodny z obowiązującymi standardami klasyfikacji obiektów budowlanych. Wieżowce to budynki, które przekraczają określoną wysokość, co czyni je dominującymi elementami w krajobrazie urbanistycznym. W praktyce, wieżowce są projektowane w sposób umożliwiający maksymalne wykorzystanie przestrzeni, co jest istotne w gęsto zabudowanych obszarach miejskich. Często pełnią funkcje mieszkalne, biurowe lub komercyjne. W kontekście planowania przestrzennego, zrozumienie tej klasyfikacji jest kluczowe dla urbanistów i architektów, ponieważ wpływa na decyzje dotyczące zagospodarowania terenu oraz wytycznych budowlanych. Przykładowo, przy planowaniu nowego osiedla w obrębie miasta, wiedza o tym, jak klasyfikować budynki, pozwala na lepsze dostosowanie infrastruktury do potrzeb mieszkańców oraz na utrzymanie harmonii w krajobrazie miejskim. Obiekty te często wymagają również specjalnych rozwiązań inżynieryjnych, takich jak systemy przeciwpożarowe i windy o dużej wydajności, co może wpływać na koszty budowy i późniejszej eksploatacji.