Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 26 kwietnia 2025 22:27
  • Data zakończenia: 26 kwietnia 2025 22:48

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Gdzie należy przechowywać cyjanek potasu KCN?

A. w warunkach chłodniczych
B. w pojemniku, z dala od źródeł ciepła
C. w szczelnie zamkniętym eksykatorze
D. w stalowej szafie, zamkniętej na klucz
Przechowywanie cyjanku potasu w szczelnym eksykatorze, w warunkach chłodniczych lub w pojemniku z dala od źródeł ciepła jest niewłaściwym podejściem, które nie uwzględnia kluczowych aspektów bezpieczeństwa. Eksykatory są zazwyczaj używane do przechowywania substancji higroskopijnych, a nie toksycznych, jak KCN. Umieszczanie go w eksykatorze może prowadzić do trudności w dostępie i kontroli nad substancją, co zwiększa ryzyko przypadkowego uwolnienia. Przechowywanie w warunkach chłodniczych może wydawać się racjonalne z perspektywy obniżenia reaktywności, jednak nie eliminuje ryzyka kontaktu z osobami nieuprawnionymi. Poza tym, substancje chemiczne powinny być przechowywane w odpowiednich warunkach, które są zgodne z zależnościami prawnymi i normami, jednak nie w warunkach, które mogą zmylić personel co do poziomu zagrożenia. Ostatnia koncepcja przechowywania KCN w pojemniku z dala od źródeł ciepła nie uwzględnia faktu, że nie jest to wystarczające zabezpieczenie. Każda substancja chemiczna wymaga odpowiedniego przechowywania, które zapewni nie tylko ochronę przed wysoką temperaturą, ale również przed dostępem osób nieuprawnionych. Prawidłowe podejście do przechowywania substancji niebezpiecznych wiąże się z zastosowaniem dedykowanych, zamykanych przestrzeni magazynowych, co stanowi najlepszą praktykę w zarządzaniu substancjami chemicznymi.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. suszenie roztworu w suszarce laboratoryjnej
B. sączenie przez sączek o drobnych porach lub filtr membranowy
C. dekantację bez sączenia
D. podgrzewanie roztworu do wrzenia
Wiele osób błędnie zakłada, że samo podgrzewanie roztworu do wrzenia rozwiąże problem zawiesin. W praktyce jednak podgrzanie może powodować rozpuszczenie niektórych substancji, lecz zupełnie nie usuwa cząstek stałych – a wręcz czasem prowadzi do ich agregacji lub wytrącania nowych osadów, zwłaszcza w złożonych mieszaninach. To klasyczny błąd myślowy: myślimy, że ciepło „załatwi sprawę”, tymczasem w spektrofotometrii nawet drobne cząstki potrafią zaburzyć pomiar, a wrzenie nic tu nie zmieni. Z kolei dekantacja bez sączenia może być dobra do oddzielenia grubego osadu od cieczy, ale nie ma szans, żeby usunąć bardzo drobne zawiesiny czy koloidy – one po prostu zostają w roztworze i skutecznie zniekształcają wynik spektrofotometryczny. W praktyce laboratoryjnej dekantację stosuje się raczej jako etap wstępny, a nie ostateczny. Suszenie roztworu w suszarce laboratoryjnej to już zupełne nieporozumienie w tym kontekście – ta technika służy do odparowania rozpuszczalnika i uzyskania suchej pozostałości, a nie do oczyszczania roztworu z zawiesin. W dodatku po wysuszeniu nie mamy już roztworu, tylko suchą masę, więc nie przeprowadzimy spektrofotometrii. Często spotykam się z myśleniem, że każda operacja laboratoryjna „coś daje”, ale tutaj tylko filtracja przez sączek lub filtr membranowy zapewnia skuteczne oczyszczenie roztworu do pomiaru spektrofotometrycznego. Pozostałe metody są nieefektywne lub wręcz prowadzą do utraty próbki albo zafałszowania wyniku.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
B. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
C. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
D. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
Wybrana odpowiedź jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy do przeprowadzenia opisanego eksperymentu. Zlewka jest podstawowym naczyniem, w którym odbywa się reakcja chemiczna, a cylindry miarowe o pojemności 50 i 100 cm3 są kluczowe do dokładnego odmierzenia reagentów, takich jak BaCl2 i H2SO4. Użycie pipety jednomiarowej o pojemności 20 cm3 zapewnia precyzyjne dawkowanie roztworu BaCl2. Łaźnia wodna jest niezbędna do kontrolowania temperatury podczas ogrzewania mieszaniny, co zapobiega degradacji reagentów i zapewnia optymalne warunki dla reakcji tworzenia osadu BaSO4. Bagietka umożliwia dokładne mieszanie roztworu, co jest kluczowe dla uzyskania jednorodności reakcji. Zestaw do sączenia i sączek 'twardy' są niezbędne do separacji osadu BaSO4 od cieczy, co jest istotnym krokiem w procesie izolacji tego związku. Wszystkie te elementy są zgodne z dobrymi praktykami laboratoryjnymi, które nakładają nacisk na dokładność, precyzję oraz bezpieczeństwo w pracy z substancjami chemicznymi.

Pytanie 9

Jaką metodą nie można rozdzielać mieszanin?

A. krystalizacja
B. aeracja
C. ekstrakcja
D. chromatografia
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 10

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 50 cm3
C. 25 cm3
D. 10 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 11

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. gazów.
B. ciał stałych.
C. płynów.
D. cieczy.
Wybór odpowiedzi związanej z gazami, cieczami czy innymi substancjami może być mylący, ponieważ nie uwzględnia specyfiki klasyfikacji materiałów niebezpiecznych. Piktogramy informujące o substancjach szkodliwych dla zdrowia, choć mogą dotyczyć różnych stanów skupienia, w tym gazów i cieczy, w tym przypadku odnoszą się bezpośrednio do ciał stałych. Zrozumienie, dlaczego substancje stałe zostały wyróżnione, jest kluczowe. Wiele osób może błędnie zakładać, że wszystkie substancje szkodliwe dotyczą również cieczy, co jest mylne, gdyż klasyfikacja musi uwzględniać konkretne właściwości fizyczne substancji. Ponadto, niektóre substancje w postaci gazów mogą być szkodliwe, ale ich klasyfikacja jest inna i ma odrębne wymagania dotyczące transportu. Dlatego ważne jest, aby przyjmować podejście holistyczne, uwzględniając właściwości fizyczne oraz chemiczne substancji. Warto także zaznaczyć, że niewłaściwa klasyfikacja może prowadzić do poważnych konsekwencji zdrowotnych oraz prawnych, co czyni tę tematykę niezwykle istotną. Zrozumienie klasyfikacji materiałów niebezpiecznych i ich odpowiedniego transportu jest kluczowe w branżach związanych z chemią, farmaceutyką czy inżynierią środowiska.

Pytanie 12

Aby przeprowadzić syntezę substancji organicznej w temperaturze 150°C, należy zastosować łaźnię

A. powietrzną
B. parową
C. wodną
D. olejową
Wybór łaźni powietrznej, parowej lub wodnej do syntezy organicznej w temperaturze 150°C jest niezbyt dobrym pomysłem. Łaźnie powietrzne, mimo że można ich używać w niższych temperaturach, nie są w stanie zapewnić odpowiedniej stabilności oraz precyzji, co może sprawić, że reakcje będą nieregularne. W sytuacji wysokotemperaturowych syntez, to nie wystarczy, bo powietrze ma niskie ciepło właściwe i słabo przewodzi ciepło. Łaźnie parowe są skuteczne tylko do około 100°C, a przy wyższych temperaturach mogą wystąpić kłopoty z wrzeniem i stratą cieczy, co w wielu reakcjach może być kłopotliwe. Z kolei łaźnie wodne mają swoją granicę, bo nie mogą obsłużyć 150°C ze względu na temperaturę wrzenia. Używanie wody w takich warunkach naraża nas na ryzyko kondensacji pary, co może zanieczyścić nasz produkt. W praktyce w laboratoriach starają się wybierać takie medium grzewcze, które będzie miało odpowiednie parametry temperaturowe i gwarantowało stabilność oraz czystość reakcji. Dlatego, do syntez organicznych w wysokich temperaturach, łaźnia olejowa to zdecydowanie najlepszy wybór, a inne metody są tu nieodpowiednie.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. bezwzględny
B. przypadkowy
C. względny
D. systematyczny
W kontekście pomiarów różnice pomiędzy średnimi wynikami a wartościami rzeczywistymi mogą być opisywane różnymi terminami, jednak użycie pojęcia błędu względnego, systematycznego czy przypadkowego może prowadzić do nieporozumień. Błąd względny to stosunek błędu bezwzględnego do wartości rzeczywistej, co oznacza, że opisuje on błąd w kontekście wielkości zmierzonej. Na przykład, jeśli błąd bezwzględny wynosi 0,5 cm, a wartość rzeczywista to 10 cm, błąd względny wyniósłby 5%. Warto jednak zauważyć, że błąd względny nie informuje nas o rzeczywistej wielkości błędu, a jedynie o jego proporcji do wartości rzeczywistej. Błąd systematyczny odnosi się do błędów, które są stałe lub powtarzalne w danym pomiarze, na przykład spowodowane nieprawidłową kalibracją przyrządów. Takie błędy mogą być trudne do wykrycia, ponieważ wpływają na wszystkie pomiary w podobny sposób, co może prowadzić do błędnych wniosków dotyczących analizowanych danych. Wreszcie, błąd przypadkowy odnosi się do losowych fluktuacji, które mogą wystąpić podczas pomiarów, a ich przyczyny mogą być trudne do zidentyfikowania. Te błędy są niemal nieuniknione w każdym pomiarze, ale nie powinny być mylone z błędami bezwzględnymi, które są ważnym wskaźnikiem dokładności pomiaru. Właściwe zrozumienie tych terminów i ich różnic jest kluczowe dla właściwej analizy wyników oraz podejmowania decyzji opartych na pomiarach.

Pytanie 15

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. wykazują toksyczne działanie na organizmy żywe
B. powodują nadmierny wzrost roślinności w zbiornikach wodnych
C. prowadzą do zakwaszenia wód
D. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 16

250 cm3 roztworu kwasu octowego o stężeniu 10% objętościowych zostało rozcieńczone pięciokrotnie. Jakie jest stężenie otrzymanego roztworu?

A. 2%
B. 1,25%
C. 2,5%
D. 5%
Roztwór kwasu octowego o stężeniu 10% objętościowych zawiera 10 g kwasu octowego w 100 cm³ roztworu. W przypadku 250 cm³ tego roztworu mamy 25 g kwasu octowego (10 g/100 cm³ * 250 cm³). Rozcieńczenie pięciokrotne oznacza, że całkowitą objętość roztworu zwiększamy pięciokrotnie, co daje 250 cm³ * 5 = 1250 cm³. Aby obliczyć stężenie, dzielimy masę kwasu octowego przez objętość nowego roztworu: 25 g / 1250 cm³ = 0,02 g/cm³, co odpowiada 2% objętościowych. Praktyczne zastosowanie tej wiedzy znajduje się w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne przygotowywanie roztworów o określonych stężeniach jest kluczowe dla jakości produkcji i bezpieczeństwa. Dobre praktyki wskazują, że zawsze należy dokładnie obliczać ilości reagentów przed ich użyciem, aby uniknąć niepożądanych reakcji chemicznych.

Pytanie 17

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 0,001 g
B. 0,01 g
C. 1 g
D. 0,1 g
Wybór wagi o dokładności 0,001 g (1 mg) jest uzasadniony, gdyż do przygotowania miany kwasu solnego potrzebna jest odważka węglanu sodu o masie około 400 mg. Wymagana dokładność przy ważeniu substanacji chemicznych jest kluczowa dla uzyskania precyzyjnych wyników analitycznych. W analityce chemicznej, zwłaszcza w titracji, precyzyjne ważenie reagentów jest niezbędne, aby uniknąć błędów pomiarowych, które mogą prowadzić do fałszywych wniosków. Przyjęcie dokładności na poziomie 0,001 g pozwala na dokładniejsze przygotowanie roztworu, co jest istotne w kontekście późniejszych obliczeń i analiz. Stosowanie wag analitycznych jest standardem w laboratoriach chemicznych, ponieważ umożliwiają one kontrolowanie jakości analizowanego materiału i zapewniają zgodność z zasadami dobrej praktyki laboratoryjnej (GLP). Przykładowo, w przypadku przygotowywania roztworów wzorcowych, dokładność ważenia jest kluczowa dla uzyskania odpowiednich stężeń, co jest niezbędne w dalszych etapach analizy.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Po połączeniu 50 cm3 wody z 50 cm3 alkoholu etylowego, objętość otrzymanej mieszanki jest poniżej 100 cm3. Zjawisko to jest spowodowane

A. adsorpcją
B. kontrakcją
C. ekstrakcją
D. desorpcją
Kontrakcja to zjawisko, które zachodzi w wyniku interakcji cząsteczek dwóch różnych cieczy, w tym przypadku wody i alkoholu etylowego. Gdy te dwa płyny są mieszane, cząsteczki alkoholu wchodzą w interakcję z cząsteczkami wody, co prowadzi do efektywnego zajmowania mniejszej objętości niż suma objętości poszczególnych cieczy. To zjawisko jest ściśle związane z różnicami w gęstości oraz strukturze cząsteczek, co skutkuje zmniejszeniem przestrzeni pomiędzy nimi. Kompaktowanie cząsteczek może być wykorzystane w praktyce podczas przygotowywania roztworów o określonym stężeniu, gdzie precyzyjne obliczenia objętości są kluczowe. Znajomość zjawiska kontrakcji jest istotna w przemyśle chemicznym i farmaceutycznym, gdzie odpowiednie proporcje składników zapewniają pożądane właściwości produktów. Na przykład, przy produkcji alkoholi, takich jak wino czy piwo, zrozumienie kontrakcji jest niezbędne do uzyskania optymalnych smaków i aromatów, co wpływa na jakość końcowego produktu.

Pytanie 21

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. średnio gęste
B. bardzo gęste
C. twarde
D. rzadkie
Wybór gęstych lub średnio gęstych sączków do filtracji osadów kłaczkowatych jest nieprawidłowy, ponieważ te materiały nie są przystosowane do skutecznego oddzielania tego rodzaju zanieczyszczeń. Gęste sączki, posiadające bardzo małe pory, mogą prowadzić do zatykania się, co spowoduje zwiększenie ciśnienia i zmniejszenie efektywności procesu filtracji. Użytkownicy mogą błędnie zakładać, że gęstsze materiały będą bardziej efektywne w usuwaniu osadów, co jest mylące, ponieważ nie uwzględniają, że osady kłaczkowate mogą mieć różne rozmiary oraz kształty, które mogą nie przechodzić przez małe pory, a tym samym zablokować filtr. Ponadto, twarde sączki również nie będą właściwie pełnić swojej roli, ponieważ ich struktura nie pozwala na odpowiednią elastyczność niezbędną do dobrze uformowanej filtracji. Również sączki rzadkie są preferowane w kontekście analitycznym, gdzie wymagane jest szybkie usunięcie osadów bez pociągania za sobą ryzyka kontaminacji próbki. Zastosowanie nieodpowiednich sączków może prowadzić do błędnych wyników analitycznych, co jest niezgodne z praktykami laboratoriami, które dążą do zapewnienia wysokiej jakości wyników zgodnych z regulacjami i standardami branżowymi, takimi jak GLP (Dobre Praktyki Laboratoryjne) i ISO 17025.

Pytanie 22

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
B. Przepuszczalność promieniowania ultrafioletowego
C. Niska wrażliwość na zmiany temperatury
D. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
Przepuszczalność promieniowania nadfioletowego, większa kruchość i mniejsza wytrzymałość na uderzenia w porównaniu do zwykłego szkła oraz mała wrażliwość na zmiany temperatury są cechami, które mogą mylnie kojarzyć się z naczyniami kwarcowymi. Naczynia te rzeczywiście przepuszczają promieniowanie UV, co czyni je odpowiednimi do zastosowań w biologii molekularnej i fotonice, jednak ich odporność na różnorodne substancje chemiczne nie jest niezrównana. W rzeczywistości, kruchość naczyń kwarcowych często prowadzi do ich uszkodzeń w wyniku uderzeń, co jest sprzeczne z założeniem, że są one bardziej wytrzymałe od szklanych naczyń zwykłych. Warto również zauważyć, że chociaż naczynia kwarcowe wykazują pewną odporność na zmiany temperatury, nie są one zupełnie odporne na nagłe ich zmiany. Typowe błędy myślowe w analizie tego zagadnienia mogą obejmować uproszczone wnioski o wytrzymałości materiałów na podstawie ich ogólnych właściwości fizycznych, bez uwzględnienia specyficznych reakcji chemicznych, które mogą występować w praktycznych zastosowaniach. Dlatego tak ważne jest, aby dokładnie rozumieć właściwości materiałów i ich zastosowanie w kontekście specyficznych warunków pracy.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Pierwotna próbka jest zbierana

A. w jednym punkcie partii materiału
B. z próbki przeznaczonej do badań
C. z próbki ogólnej w sposób bezpośredni
D. z opakowania pierwotnego
Pobieranie próbki pierwotnej bezpośrednio z próbki ogólnej może prowadzić do znacznych rozbieżności w wynikach analizy. Ta koncepcja ignoruje fakt, że próbka ogólna jest zbiorczym przedstawieniem materiału, a nie reprezentatywnym źródłem do pobierania próbek. W rzeczywistości, gdy próbka jest brana z ogólnej puli, istnieje ryzyko, że nie uwzględni ona różnic w składzie, co może prowadzić do zafałszowanych wyników. Ponadto, pobieranie próbek z opakowania pierwotnego jest również niewłaściwe, ponieważ może nie oddać prawdziwego stanu całej partii materiału – opakowanie może zawierać zanieczyszczenia lub niejednorodności, które nie występują w samej partii. Z kolei sugerowanie, że próbki do badań są miejscem pobierania próbki pierwotnej, jest mylące, jako że próbki do badań powinny być wynikiem odpowiednich procedur pobierania, a nie źródłem do ich pobierania. Kluczowym elementem efektywnego procesu pobierania próbek jest przestrzeganie standardów ISO oraz wytycznych odpowiednich branż, które podkreślają znaczenie reprezentatywności próbek i odpowiednich metod ich pobierania, aby uniknąć błędów analitycznych i zapewnić rzetelność wyników. Właściwe podejście do pobierania zapewnia, że wyniki analizy będą stanowiły wiarygodną podstawę do decyzji o jakości i zgodności materiału.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W tabeli przedstawiono wymiary, jakie powinny mieć oznaczenia opakowań substancji niebezpiecznych.
Korzystając z informacji w tabeli, określ minimalne wymiary, jakie powinno mieć oznaczenie dla cysterny o pojemności 32840 dm3.

Pojemność opakowaniaWymiary (w centymetrach)
Nieprzekraczająca 3 litrówco najmniej 5,2 x 7,4
Ponad 3 litry, ale nieprzekraczająca 50 litrówco najmniej 7,4 x 10,5
Ponad 50 litrów, ale nieprzekraczająca 500 litrówco najmniej 10,5 x 14,8
Ponad 500 litrówco najmniej 14,8 x 21,0

A. 7,4 x 10,5 cm
B. 10,5 x 14,8 cm
C. 5,2 x 7,4 cm
D. 14,8 x 21,0 cm
Odpowiedź "14,8 x 21,0 cm" jest prawidłowa, ponieważ zgodnie z obowiązującymi normami dotyczącymi oznaczeń opakowań substancji niebezpiecznych, wymiary te są wymagane dla cystern o pojemności powyżej 500 litrów. W przypadku cysterny o pojemności 32840 dm³, co odpowiada 32840 litrów, konieczne jest stosowanie wyraźnych i większych oznaczeń, aby zapewnić odpowiednią widoczność i zrozumienie dla osób, które mogą mieć kontakt z tymi substancjami. Przykładem zastosowania tej wiedzy jest transport chemikaliów, gdzie prawidłowe oznakowanie ma kluczowe znaczenie dla bezpieczeństwa pracowników oraz osób postronnych. Oznaczenia muszą spełniać określone standardy, takie jak te ustalone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz przepisy krajowe, co gwarantuje, że są one odpowiednio przygotowane na wszelkie okoliczności, w tym na sytuacje awaryjne. Zastosowanie odpowiednich wymiarów oznaczeń nie tylko zwiększa bezpieczeństwo, ale również ułatwia identyfikację substancji niebezpiecznych w transporcie i przechowywaniu.

Pytanie 27

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z wybuchem
B. z poparzeniem
C. z pożarem
D. z lotnością
Wybór odpowiedzi związanej z lotnością, poparzeniem czy wybuchem nie uwzględnia kluczowego zagrożenia, jakim jest pożar, które jest szczególnie istotne w kontekście wielu reagentów chemicznych. Lotność substancji chemicznych, chociaż ważna, odnosi się głównie do ich zdolności do przechodzenia w stan gazowy. Substancje lotne mogą tworzyć łatwopalne mieszaniny z powietrzem, lecz to nie zawsze prowadzi do wybuchu. Z kolei poparzenia chemiczne są rzeczywiście zagrożeniem, jednak nie są one bezpośrednio związane z pożarem, a bardziej z reakcjami chemicznymi, które mogą wystąpić w kontakcie z reagentem. Odpowiedź związana z wybuchem odnosi się do specyficznych warunków, które są wymagane, by doszło do takiego zdarzenia, jak np. obecność silnie reaktywnych substancji czy niewłaściwe warunki przechowywania. Typowym błędem myślowym jest mylenie tych zagrożeń lub niewłaściwe ocenianie ich prawdopodobieństwa. Kluczowe jest zrozumienie, że wiele substancji chemicznych, które mogą wydawać się niegroźne, w rzeczywistości mają wysoką tendencję do zapłonu i muszą być przechowywane oraz używane zgodnie z obowiązującymi normami bezpieczeństwa, jak na przykład NFPA (National Fire Protection Association), które dostarczają wytycznych dotyczących ochrony przed pożarami w laboratoriach.

Pytanie 28

W celu przeprowadzenia opisanego doświadczenia, należy przygotować:

Opis procesu wydzielenia kwasu acetylosalicylowego z tabletek
Pięć rozgniecionych tabletek aspiryny (polopiryny) umieszcza się w kolbie stożkowej o pojemności 100 ml, dodaje 10 ml etanolu i ogrzewa na łaźni wodnej, aż do momentu rozpadnięcia się tabletek. W roztworze znajduje się kwas acetylosalicylowy, natomiast masa tabletkowa pozostaje w osadzie. Osad ten odsącza się na ogrzanym lejku szklanym zaopatrzonym w sączek karbowany. Do odebiornego przesączu dodaje się 20-30 ml zimnej wody destylowanej. Dodatek wody powoduje wypadanie osadu aspiryny z roztworu (zmniejsza się rozpuszczalność aspiryny w roztworze wodno-alkoholowym). Wydzielone kryształy odsączyć na lejku sitowym i suszyć na powietrzu.

A. aspirynę etanol, kolbę stożkową 250 ml, łaźnię wodną, lejek metalowy do sączenia na gorąco, bagietkę, pompkę wodą, cylinder miarowy.
B. etopirynę, stężony kwas siarkowy, etanol, kolbę ssawkową lejek sitowy, pompkę wodną, eksykator, cylinder miarowy, moździerz.
C. polopirynę, metanol, kolbę stożkową 100 ml, łaźnię wodną, bagietkę, lejek szklany, termometr.
D. aspirynę, moździerz, etanol, kolbę stożkową 100 ml, łaźnię wodną, lejek szklany, kolbę ssawkową, lejek sitowy, sączek karbowany.
Odpowiedź jest poprawna, ponieważ opisany proces eksperymentalny rzeczywiście wymaga użycia aspiryny, która jest substancją czyną w tym doświadczeniu. Kluczowym krokiem jest rozcieranie aspiryny w moździerzu, co pozwala na zwiększenie powierzchni kontaktu substancji z rozpuszczalnikiem, jakim jest etanol. Użycie kolby stożkowej o pojemności 100 ml jest zgodne z zasadami laboratoryjnymi, które zalecają stosowanie odpowiednich naczyń do reakcji chemicznych, aby zapewnić dokładność pomiarów. Ogrzewanie roztworu w łaźni wodnej to standardowa procedura, która pozwala na kontrolowanie temperatury, co jest niezbędne dla prawidłowego rozpuszczenia aspiryny. W procesie filtracji, obecność lejka szklanego, kolby ssawkowej, lejka sitowego oraz sączka karbowanego umożliwia skuteczne oddzielenie kryształów aspiryny od roztworu oraz ich osuszenie. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi, które kładą nacisk na precyzję i efektywność w przeprowadzaniu doświadczeń chemicznych.

Pytanie 29

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol

A. 56,0%
B. 4,4%
C. 44,6%
D. 100%
Wydajność reakcji chemicznych jest kluczowym parametrem oceny efektywności procesów w chemii, a błędne obliczenia mogą prowadzić do mylnych wniosków. Często pojawiają się nieporozumienia związane z teoretyczną masą produktów, co prowadzi do niepoprawnych odpowiedzi. Warto zauważyć, że odpowiedzi sugerujące 100% wydajności są mylące, ponieważ w praktyce niemożliwe jest uzyskanie całkowitej wydajności w reakcji chemicznej. Straty mogą wynikać z wielu czynników, takich jak niepełny rozkład reagentów, nieodpowiednie warunki reakcji czy też straty materiałowe podczas przetwarzania. Ponadto odpowiedzi, które wskazują na zaniżoną wydajność, jak 4,4%, również omijają kluczowy kontekst obliczeń, ponieważ nie uwzględniają rzeczywistej masy produktu oraz teoretycznych podstaw reakcji. Nieporozumienia w obliczeniach mogą być wynikiem typowych błędów myślowych, takich jak zbytnie uproszczenia lub brak zrozumienia, jak przebiegają reakcje chemiczne. Prawidłowe podejście do obliczeń wydajności reakcji wymaga znajomości zarówno teoretycznych podstaw chemii, jak i praktycznych aspektów procesów produkcyjnych, co jest istotne w kontekście zrównoważonego rozwoju przemysłu chemicznego.

Pytanie 30

Laboratoryjny aparat szklany, który wykorzystuje kwasy do wytwarzania gazów w reakcji z metalem lub odpowiednią solą, to

A. aparat Kippa
B. aparat Soxhleta
C. aparat Hofmanna
D. aparat Orsata
Aparat Kippa jest specjalistycznym narzędziem laboratoryjnym, które służy do wytwarzania gazów poprzez reakcje chemiczne, najczęściej polegające na działaniu kwasów na metale lub odpowiednie sole. Jego konstrukcja pozwala na kontrolowane wydobywanie gazu, co jest niezbędne w wielu procesach chemicznych. Kluczowym elementem tego aparatu jest jego zdolność do gromadzenia gazów w komorze, a następnie ich wydawania w sposób zorganizowany. Przykładowo, w laboratoriach chemicznych aparat Kippa jest wykorzystywany do produkcji gazu wodoru poprzez reakcję kwasu solnego z cynkiem. Stosując ten aparat, laboranci mogą utrzymać bezpieczeństwo i kontrolować ilość wytwarzanego gazu, co jest szczególnie istotne przy pracy z substancjami łatwopalnymi lub toksycznymi. Warto również podkreślić, że aparat Kippa jest zgodny z normami bezpieczeństwa i praktykami laboratoryjnymi, co czyni go niezastąpionym narzędziem w chemii analitycznej i preparatywnej.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę wielomiarową o pojemności 25 cm3
B. pipetę jednomiarową o pojemności 20 cm3
C. cylinder miarowy o pojemności 25 cm3
D. pipetę jednomiarową o pojemności 10 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 33

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 25%
B. 2,5%
C. 75%
D. 20%
Wiele osób, analizując problem stężenia roztworu, może popełnić typowe błędy w obliczeniach, które prowadzą do niewłaściwych wyników. Na przykład, wybierając odpowiedź 75%, można pomylić się w interpretacji proporcji masy jodku potasu do masy wody, nie uwzględniając całkowitej masy roztworu. Często zdarza się również zignorowanie faktu, że masa rozpuszczalnika (wody) i masa substancji rozpuszczonej (jodku potasu) muszą być sumowane, aby obliczyć całkowitą masę roztworu. Osoby, które wskazują na 25% stężenie, mogą błędnie obliczać stężenie, przyjmując masę jodku potasu za masę roztworu, co jest oczywistym błędem logicznym. W przypadku opcji 2,5% może wystąpić nieporozumienie związane z myleniem jednostek miary, gdzie mogą być stosowane niewłaściwe wartości masy przy obliczeniach. Ważne jest, aby uwzględnić wszystkie składniki roztworu, aby uzyskać prawidłowe wyniki. Przy obliczaniu stężenia procentowego, kluczowe jest zrozumienie definicji oraz umiejętność prawidłowego sumowania mas, co jest fundamentem chemii i niezbędne w laboratoriach. Użycie odpowiednich jednostek oraz precyzyjnych obliczeń jest kluczowe w naukach chemicznych, zwłaszcza w kontekście norm jakościowych i standardów branżowych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
B. Dodać soli buforowej do dowolnej ilości wody.
C. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
D. Przygotować bufor wyłącznie z wody kranowej.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 36

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
B. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
C. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
D. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
Aby przygotować eluent w chromatografii cienkowarstwowej, musimy zachować odpowiednie proporcje objętości składników. W przypadku stosunku 10:4:1 oznacza to, że na każde 10 części toluenu przypada 4 części acetonu i 1 część kwasu mrówkowego. Sumując te proporcje, otrzymujemy 15 części łącznie. Dla 300 cm³ eluentu obliczamy objętości poszczególnych składników w następujący sposób: (10/15) * 300 cm³ = 200 cm³ toluenu, (4/15) * 300 cm³ = 80 cm³ acetonu, oraz (1/15) * 300 cm³ = 20 cm³ kwasu mrówkowego. Przygotowanie eluentu w tych dokładnych proporcjach zapewnia optymalne warunki separacji składników w chromatografii. W praktyce, takie precyzyjne przygotowanie roztworów jest istotne, aby zapewnić powtarzalność wyników oraz zgodność z normami laboratoryjnymi dotyczących analizy chemicznej. Warto również zauważyć, że stosowanie odpowiednich proporcji składników eluentu może wpływać na efektywność separacji i rozdziału substancji, co jest kluczowe w analityce chemicznej.

Pytanie 37

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. filtracji
B. destylacji
C. krystalizacji
D. koagulacji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 38

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. sól kamienna
B. siarczan(VI) miedzi(II)
C. cukier
D. saletra potasowa
Cukier, siarczan(VI) miedzi(II) i saletra potasowa to substancje, które w sumie dobrze się rozpuszczają w wodzie, ale nie są odpowiedzią na pytanie, której substancji rozpuszczalność jest najsłabsza. Cukier, czyli sacharoza, jest znany z tego, że łatwo się rozpuszcza – w 100°C potrafi się rozpuścić nawet do 2000 g/l, co naprawdę przewyższa sól kamienną. Siarczan(VI) miedzi(II) ma też dobrą rozpuszczalność, bo przy 20°C dochodzi do około 70 g/l, więc również nie pasuje do tego pytania. Saletra potasowa, czyli azotan potasu, rozpuszcza się w wodzie do około 350 g/l przy 20°C. Czasami ludzie mylą, co to znaczy, że coś dobrze się rozpuszcza, bo na przykład myślą, że jak cukier się łatwo rozpuszcza w herbacie, to musi być słabiej rozpuszczalny. W rzeczywistości jednak, żeby zrozumieć rozpuszczalność substancji, warto sięgnąć po konkretne dane naukowe i zrozumieć, jakie właściwości chemiczne decydują o ich zachowaniu w roztworach.

Pytanie 39

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 75%
B. 62,5%
C. 60,5%
D. 125%
Wydajność krystalizacji oblicza się, dzieląc masę czystego produktu przez masę surowca, a następnie mnożąc przez 100%. W tym przypadku masa czystego produktu wynosi 125 g, a masa surowca to 200 g. Obliczenia przedstawiają się następująco: (125 g / 200 g) * 100% = 62,5%. Zrozumienie wydajności krystalizacji ma kluczowe znaczenie w przemyśle chemicznym, ponieważ pozwala ocenić skuteczność procesu, co jest niezbędne do optymalizacji produkcji. Wydajność krystalizacji jest często analizowana w kontekście różnych metod oczyszczania substancji, a jej wysoka wartość wskazuje na efektywność procesu. W praktyce, osiągnięcie wysokiej wydajności krystalizacji może mieć istotne znaczenie ekonomiczne, szczególnie w sektorach takich jak farmaceutyka czy przemysł chemiczny, gdzie czystość produktu końcowego jest kluczowa dla spełnienia standardów jakości. Dlatego regularne monitorowanie wydajności procesu krystalizacji stanowi część dobrych praktyk inżynieryjnych oraz zarządzania jakością.

Pytanie 40

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w butelce z ciemnego szkła.
B. w szklanej butelce.
C. w metalowym naczyniu.
D. w polietylenowej butelce.
Wybór niewłaściwego materiału do przechowywania próbek do oznaczania BZT może prowadzić do zafałszowania wyników analizy, co jest istotnym problemem w praktykach laboratoryjnych. Przechowywanie próbek w polietylenowej butelce nie jest odpowiednie, ponieważ polietylen może wchodzić w reakcje chemiczne z substancjami obecnymi w próbce, co z kolei może prowadzić do zmiany ich właściwości fizykochemicznych i nieadekwatnych wyników. Metalowe naczynia również nie są zalecane, ponieważ mogą reagować z niektórymi związkami chemicznymi, a ich powierzchnia może prowadzić do adsorpcji substancji, co zniekształca analizowane wartości. Wybór szklanej butelki nie wystarczy, jeśli nie jest to szkło ciemne; przezroczyste szkło nie zapewnia ochrony przed promieniowaniem UV, co prowadzi do degradacji składników próbki. Takie podejście jest sprzeczne z zaleceniami międzynarodowych standardów dotyczących przechowywania próbek w laboratoriach analitycznych, które jasno określają, że próbki wymagają konkretnego typu opakowania, aby uniknąć wpływu światła na ich integralność. Dlatego ważne jest, aby w procesie przechowywania próbek kierować się nie tylko dostępnością materiałów, ale przede wszystkim ich właściwościami chemicznymi i fizycznymi, aby zachować jakość analizy.