Poprawna odpowiedź to D, ponieważ wzór na wzmocnienie napięciowe K_U wzmacniacza operacyjnego w konfiguracji nieodwracającej jest opisany równaniem 1 + (R2/R1). W tym przypadku R1 i R2 to odpowiednio rezystory włączone w układzie. Zrozumienie tego wzoru jest kluczowe dla projektowania układów analogowych, ponieważ pozwala na precyzyjne określenie, jaką wartość wzmocnienia można osiągnąć w danym układzie. W praktyce, wzmocnienie napięciowe jest stosowane w wielu aplikacjach, w tym w systemach audio, gdzie sygnały muszą być wzmocnione przed dalszym przetwarzaniem. Ważne jest również, aby zastosowane rezystory były o odpowiedniej tolerancji, aby zapewnić stabilność wzmocnienia. Wzór ten jest zgodny z best practices w inżynierii elektronicznej, a jego znajomość jest fundamentalna dla każdego inżyniera zajmującego się projektowaniem wzmacniaczy. Warto również zaznaczyć, że wzmocnienie napięciowe K_U jest niezależne od wartości napięcia zasilania, co uczyniło go jeszcze bardziej uniwersalnym w zastosowaniach przemysłowych.
Niepoprawne odpowiedzi mogą wynikać z nieporozumień dotyczących działania wzmacniaczy operacyjnych. Wiele osób myli różne konfiguracje wzmacniacza, na przykład myśląc, że wzmocnienie napięciowe w konfiguracji odwracającej można stosować w przypadku układu nieodwracającego. Wzmacniacze operacyjne w konfiguracji odwracającej mają zupełnie inny wzór na wzmocnienie, który opiera się na ujemnym sprzężeniu zwrotnym, a co za tym idzie, skutkuje inną charakterystyką sygnału wyjściowego. W przypadku, gdy osoby odpowiadające na pytanie wybierają inne odpowiedzi, mogą mylić terminy związane z wzmocnieniem i nie rozumieć, jak oblicza się wzmocnienie na podstawie wartości rezystorów. Często też pomijają one fakt, że w celu uzyskania stabilnego wzmocnienia niezbędne jest odpowiednie dobranie wartości R1 i R2, co jest kluczowe w praktycznych zastosowaniach. Ignorowanie tych zasad prowadzi do niepoprawnych obliczeń i może skutkować nieprawidłowym działaniem całego układu. Zrozumienie tych podstawowych zasad jest istotne dla prawidłowego projektowania i wdrażania układów elektronicznych, a także dla uniknięcia typowych błędów, które mogą wpłynąć na jakość sygnału i efektywność działania systemu.