Odpowiedź jest słuszna, ponieważ wynika z analizy charakterystyki fotorezystora, która pokazuje zależność rezystancji od natężenia oświetlenia. W praktyce, przy natężeniu 1000 lx, rezystancja wynosi około 100 Ω. Fotorezystory są szeroko stosowane w różnych aplikacjach, takich jak automatyka domowa, oświetlenie zewnętrzne i systemy detekcji światła. Przykładem może być układ, w którym fotorezystor steruje włączaniem lub wyłączaniem oświetlenia w zależności od poziomu światła dziennego. W branży stosuje się również standardy, które określają charakterystyki takich elementów, aby zapewnić ich niezawodność i wydajność w zastosowaniach inżynieryjnych. Właściwe zrozumienie działania fotorezystorów jest kluczowe dla projektowania efektywnych układów elektronicznych, które reagują na zmiany w natężeniu oświetlenia.
Wybór nieprawidłowej rezystancji wskazuje na niepełne zrozumienie działania fotorezystora oraz jego charakterystyki. Odpowiedzi 10 kΩ, 10 Ω i 100 kΩ są zbyt dużymi lub zbyt małymi wartościami w kontekście natężenia 1000 lx. Fotorezystory, w przeciwieństwie do standardowych rezystorów, mają zmienną rezystancję, która znacznie zależy od oświetlenia. Zazwyczaj wyższe natężenie światła prowadzi do obniżenia rezystancji, co jest kluczowe w ich zastosowaniach. W przypadku 10 kΩ rezystancja jest zbyt wysoka, co sugerowałoby, że fotorezystor jest w prawie całkowitej ciemności, podczas gdy w rzeczywistości przy 1000 lx powinien wykazywać stosunkowo niską rezystancję. Z kolei wybór 10 Ω jest nieuzasadniony, ponieważ sugeruje, że fotorezystor jest w pełni naświetlony, co w praktyce jest rzadkością. Odpowiedź 100 kΩ jest błędna, ponieważ wskazuje na niemal całkowity brak światła, co nie odpowiada podanemu natężeniu. Często błędne wnioski wynikają z uproszczenia zjawisk fizycznych, które dotyczą działania fotorezystorów. Zrozumienie, jak fotorezystory funkcjonują w rzeczywistych warunkach, oraz jak różne czynniki wpływają na ich rezystancję jest kluczowe dla ich skutecznego wykorzystania w projektach inżynieryjnych.