W układzie przedstawionym na rysunku, przy temperaturze 20 stopni C przez cewkę przekaźnika prąd nie płynie, a jego styki są rozwarte. Aby nastąpiło zwarcie styków przekaźnika
Odpowiedzi
Informacja zwrotna
Odpowiedź dotycząca wzrostu temperatury termistora PTC jest prawidłowa, ponieważ w układach elektronicznych, termistory PTC zmieniają swoją rezystancję w zależności od temperatury otoczenia. W miarę wzrostu temperatury, ich rezystancja rośnie, co skutkuje zwiększeniem napięcia na bazie tranzystora BD139. Kiedy napięcie to osiąga odpowiedni poziom, tranzystor przechodzi w stan przewodzenia, co aktywuje przekaźnik i zamyka styki. Tego rodzaju mechanizm jest powszechnie wykorzystywany w automatyzacji, gdzie kontrola temperatury jest kluczowa, na przykład w systemach grzewczych, klimatyzacyjnych czy chłodniczych. W praktyce, odpowiednie korzystanie z termistorów PTC pozwala na automatyczne włączanie lub wyłączanie urządzeń w zależności od warunków temperaturowych, co przyczynia się do oszczędności energetycznych oraz bezpieczeństwa urządzeń. Dobrą praktyką w projektowaniu takich systemów jest zapewnienie odpowiedniego zabezpieczenia przed przegrzaniem, a także monitorowanie pracy układu przez czujniki temperatury, co zwiększa niezawodność całego systemu.
Wybór odpowiedzi, w której wskazuje się na potrzebę wzrostu rezystancji rezystora prowadzi do nieporozumień. Rezystor w obwodach elektronicznych pełni rolę ogranicznika prądu, a jego rezystancja nie wpływa bezpośrednio na aktywację przekaźnika. Wzrost rezystancji rezystora mógłby jedynie ograniczyć prąd płynący w obwodzie, a nie spowodować aktywacji przekaźnika. Z kolei stwierdzenie, że temperatura termistora powinna zmaleć, jest sprzeczne z zasadami działania termistorów PTC, które w rzeczywistości zwiększają swoją rezystancję wraz ze wzrostem temperatury, co prowadzi do aktywacji przekaźnika. Odpowiedź dotycząca zmniejszenia napięcia zasilającego również nie jest poprawna, ponieważ zmniejszenie napięcia mogłoby skutkować brakiem aktywacji przekaźnika, a nie jego zamknięciem. W kontekście urządzeń elektronicznych, kluczowe jest zrozumienie, że zmiany w parametrach takich jak temperatura i napięcie mają bardzo specyficzny wpływ na działanie elementów, jakimi są termistory, tranzystory czy przekaźniki. Błędne rozumienie tych zasad prowadzi do niewłaściwych wniosków i może wpływać na projektowanie układów elektronicznych, co z kolei ma praktyczne konsekwencje w aplikacjach przemysłowych i automatyzacyjnych.